References
1. Drake LR, Hillmer AT, Cai Z. Approaches to PET imaging of
glioblastoma. Molecules 2020; 25: 568. doi:
10.3390/molecules25030568
2. Reza SMS, Samad MD, Shboul ZA, Jones KA, Iftekharuddin KM. Glioma
grading using structural magnetic resonance imaging and molecular data.
J Med Imaging (Bellingham) 2019, 6: 024501. doi:
10.1117/1.JMI.6.2.024501
3. Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC.
Magnetic resonance spectroscopy, positron emission tomography and
radiogenomics-relevance to glioma. Front Neurol 2018, 9: 33.
doi: 10.3389/fneur.2018.00033
4. Frosina G. Positron emission tomography of high-grade gliomas. J
Neurooncol 2016, 127: 415-25. doi: 10.1007/s11060-016-2077-1
5. Holzgreve A, Albert NL, Galldiks N, Suchorska B. Use of PET imaging
in neuro-oncological surgery. Cancers (Basel) 2021, 13: 2093.
doi: 10.3390/cancers13092093
6. Moreau A, Febvey O, Mognetti T, Frappaz D, Kryza D. Contribution of
different positron emission tomography tracers in glioma management:
focus on glioblastoma. Front Oncol 2019, 9: 1134. doi:
10.3389/fonc.2019.01134
7. Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and
interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and
carbon-11 methionine. Eur J Nucl Med 1999, 26: 1363–78. doi:
10.1007/s002590050597
8. Culverwell AD, Scarsbrook AF, Chowdhury FU. False-positive uptake on
2-[18F]-fluoro-2-deoxy-D-glucose (FDG)
positron-emission tomography/computed tomography (PET/CT) in oncological
imaging. Clin Radiol 2011, 66: 366–82. doi:
doi.org/10.1016/j.crad.2010.12.004
9. Nozaki S, Nakatani Y, Mawatari A, Shibata N, Hume WE, Hayashinaka Eet al. 18F-FIMP: a LAT1-specific PET probe for discrimination
between tumor tissue and inflammation. Sci Rep 2019, 9: 15718.
doi: 10.1038/s41598-019-52270-x
10. Fordham AJ, Hacherl CC, Patel N, Jones K, Myers B, Abraham M et al.
Differentiating glioblastomas from solitary brain metastases: an update
on the current literature of advanced imaging modalities. Cancers
(Basel) 2021, 13: 2960. doi: 10.3390/cancers13122960
11. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR
et al. The somatic genomic landscape of glioblastoma. Cell 2013,155: 462-77. doi: 10.1016/j.cell.2013.09.034
12. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger
D, Cavenee WK et al. The 2016 World Health Organization
Classification of Tumors of the Central Nervous System: a summary. Acta
Neuropathol 2016, 131: 803-20. doi: 10.1007/s00401-016-1545-1
13. Roesler R, Brunetto AT, Abujamra AL, de Farias CB, Brunetto AL,
Schwartsmann G. Current and emerging molecular targets in glioma. Expert
Rev. Anticancer Ther 2010, 10: 1735-51. doi: 10.1586/era.10.167
14. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ,et al. Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med 2005, 352: 987-96. doi:
10.1056/NEJMoa043330
15. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008,359: 492-507. doi: 10.1056/NEJMra0708126
16. Alghamri MS, McClellan BL, Hartlage MS, Haase S, Faisal SM, Thalla
R, et al. Targeting neuroinflammation in brain cancer: uncovering
mechanisms, pharmacological targets, and neuropharmaceutical
developments. Front Pharmacol 2021, 12: 680021. doi:
10.3389/fphar.2021.680021
17. Arimappamagan A, Somasundaram K, Thennarasu K, Peddagangannagari S,
Srinivasan H, Shailaja BC, et al. A fourteen gene GBM prognostic
signature identifies association of immune response pathway and
mesenchymal subtype with high risk group. PLoS One 2013, 8:e62042. doi: 10.1371/journal.pone.0062042
18. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et
al. The transcriptional network for mesenchymal transformation of brain
tumours. Nature 2010, 463: 318-25. doi: 10.1038/nature08712
19. DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SV,et al. Molecular heterogeneity and immunosuppressive
microenvironment in glioblastoma. Front Immunol 2020, 11: 1402.
doi: 10.3389/fimmu.2020.01402
20. Yeo ECF, Brown MP, Gargett T, Ebert LM. The role of cytokines and
chemokines in shaping the immune microenvironment of glioblastoma:
implications for immunotherapy. Cells 2021, 10: 607. doi:
10.3390/cells10030607
21. Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by
glioblastoma cell lines facilitate recruitment, survival, and expansion
of regulatory T cells: implications for immunotherapy. Neuro Oncol 2012,14: 584-95. doi: 10.1093/neuonc/nos014
22. Groblewska M, Litman-Zawadzka A, Mroczko B. The role of selected
chemokines and their receptors in the development of gliomas. Int J Mol
Sci 2020, 21: 3704. doi: 10.3390/ijms21103704
23. Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the
immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 1995,146: 317-22
24. Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas:
parallels at non-CNS sites. Front Oncol 2015, 5: 153. doi:
10.3389/fonc.2015.00153
25. Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G,et al. Pro-inflammatory gene expression in solid glioblastoma
microenvironment and in hypoxic stem cells from human glioblastoma. J
Neuroinflammation 2011, 8: 32. doi: 10.1186/1742-2094-8-32
26. Urbantat RM, Vajkoczy P, Brandenburg S. Advances in chemokine
signaling pathways as therapeutic targets in glioblastoma. Cancers
(Basel) 2021, 13: 2983. doi: 10.3390/cancers13122983
27. Van Meir E, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N. Human
glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer
Res 1990, 50: 6683-8
28. Waters MR, Gupta AS, Mockenhaupt K, Brown LN, Biswas DD, Kordula T.
RelB acts as a molecular switch driving chronic inflammation in
glioblastoma multiforme. Oncogenesis 2019, 8: 37. doi:
10.1038/s41389-019-0146-y
29. Papale M, Buccarelli M, Mollinari C, Russo MA, Pallini R,
Ricci-Vitiani L, et al. Hypoxia, inflammation and necrosis as
determinants of glioblastoma cancer Stem cells progression. Int J Mol
Sci 2020, 21: 2660. doi: 10.3390/ijms21082660
30. Wang L, Liu Z, Balivada S, Shrestha T, Bossmann S, Pyle M, et
al. Interleukin-1β and transforming growth factor-β cooperate to induce
neurosphere formation and increase tumorigenicity of adherent LN-229
glioma cells. Stem Cell Res Ther 2012, 3: 5. doi:
10.1186/scrt96
31. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F,et al. Disease progression or pseudoprogression after concomitant
radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol.
2008, 10: 361-7. doi: 10.1215/15228517-2008-008
32. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in
patients cured of brain metastases. Neurology 1989, 39: 789-96.
doi: 10.1212/wnl.39.6.789
33. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain
injury. Int J Radiat Oncol Biol Phys 1980, 6: 1215-28. doi:
10.1016/0360-3016(80)90175-3
34. Bolcaen J, Descamps B, Deblaere K, Boterberg T, De Vos Pharm F,
Kalala JP, et al. (18)F-fluoromethylcholine (FCho),
(18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for
the discrimination between high-grade glioma and radiation necrosis in
rats: a PET study. Nucl Med Biol 2015, 42: 38-45. doi:
10.1016/j.nucmedbio.2014.07.006
35. Verhoeven J, Baguet T, Piron S, Pauwelyn G, Bouckaert C, Descamps B,
Raedt R, Vanhove C, et al. 2-[18F]FELP, a novel LAT1-specific
PET tracer, for the discrimination between glioblastoma, radiation
necrosis and inflammation. Nucl Med Biol 2020, 82-83: 9-16.
doi: 10.1016/j.nucmedbio.2019.12.002
36. Sonar SA, Lal G. Blood-brain barrier and its function during
inflammation and autoimmunity. J Leukoc Biol 2018, 103: 839-53.
doi: 10.1002/JLB.1RU1117-428R
37. Burger PC, Dubois PJ, Schold SC Jr, Smith KR Jr, Odom GL, Crafts DC,et al. Computerized tomographic and pathologic studies of the
untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg
1983, 58: 159–69. doi: 10.3171/jns.1983.58.2.0159
38. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton
TH. Brain radiation lesions: MR imaging. Radiology 1986, 158:149–55.
39. Jain R, Narang J, Sundgren PM, Hearshen D, Saksena S, Rock JP,et al. Treatment induced necrosis versus recurrent/progressing
brain tumor: going beyond the boundaries of conventional morphologic
imaging. J Neurooncol 2010, 100: 17-29. doi:
10.1007/s11060-010-0139-3
40. Tihan T, Barletta J, Parney I, Lamborn K, Sneed PK, Chang S.
Prognostic value of detecting recurrent glioblastoma multiforme in
surgical specimens from patients after radiotherapy: should pathology
evaluation alter treatment decisions? Hum Pathol 2006, 37:272–82. doi: 10.1016/j.humpath.2005.11.010
41. Martínez-Bisbal MC, Celda B. Proton magnetic resonance spectroscopy
imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging.
2009, 53: 618-30
42. Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S,et al. Differentiation between brain tumor recurrence and
radiation injury using MR spectroscopy. AJR Am J Roentgenol 2005,185: 1471-6. doi: 10.2214/AJR.04.0933
43. Chen W. Clinical applications of PET in brain tumors. J Nucl Med
2007, 48: 1468-81. doi: 10.2967/jnumed.106.037689
44. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP.
Differentiating recurrent tumor from radiation necrosis: time for
re-evaluation of positron emission tomography? AJNR Am J Neuroradiol
1998, 19: 407-13
45. Menoux I, Noël G, Namer I, Antoni D. [PET scan and NMR
spectroscopy for the differential diagnosis between brain radiation
necrosis and tumour recurrence after stereotactic irradiation of brain
metastases: Place in the decision tree]. Cancer Radiother 2017,21: 389-97. doi: 10.1016/j.canrad.2017.03.003
46. Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger
MS, et al. Differentiation of recurrent glioblastoma multiforme
from radiation necrosis after external beam radiation therapy with
dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.
Radiology 2009, 253: 486-96. doi: 10.1148/radiol.2532090007
47. Nakajima T, Kumabe T, Kanamori M, Saito R, Tashiro M, Watanabe M,et al. Differential diagnosis between radiation necrosis and
glioma progression using sequential proton magnetic resonance
spectroscopy and methionine positron emission tomography. Neurol Med
Chir (Tokyo) 2009, 49: 394-401. doi: 10.2176/nmc.49.394
48. Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T. Differentiation
of cerebral radiation necrosis from tumor recurrence by proton magnetic
resonance spectroscopy. Neurol Med Chir (Tokyo) 1997, 37:250-6. doi: 10.2176/nmc.37.250
49. Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating
radiation-induced necrosis from recurrent brain tumor using MR perfusion
and spectroscopy: a meta-analysis. PLoS One 2016, 11: e0141438.
doi: 10.1371/journal.pone.0141438
50. Gao L, Xu W, Li T, Zheng J, Chen G. Accuracy of 11C-choline positron
emission tomography in differentiating glioma recurrence from radiation
necrosis: A systematic review and meta-analysis. Medicine (Baltimore)
2018, 97: e11556. doi: 10.1097/MD.0000000000011556
51. Tan H, Chen L, Guan Y, Lin X. Comparison of MRI, F-18 FDG, and
11C-choline PET/CT for their potentials in differentiating brain tumor
recurrence from brain tumor necrosis following radiotherapy. Clin Nucl
Med 2011, 36: 978-81. doi: 10.1097/RLU.0b013e31822f68a6
52. Bolcaen J, Descamps B, Deblaere K, Boterberg T, De Vos Pharm F,
Kalala JP, et al. (18)F-fluoromethylcholine (FCho),
(18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for
the discrimination between high-grade glioma and radiation necrosis in
rats: a PET study. Nucl Med Biol 2015, 42: 38-45. doi:
10.1016/j.nucmedbio.2014.07.006
53. Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, Yano
H, et al. Comparison of (11)C-methionine, (11)C-choline, and
(18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from
radiation necrosis. Neurol Med Chir (Tokyo) 2014, 54: 280-9.
doi: 10.2176/nmc.oa2013-0117
54. Lai PH, Weng HH, Chen CY, Hsu SS, Ding S, Ko CW, et al. In
vivo differentiation of aerobic brain abscesses and necrotic
glioblastomas multiforme using proton MR spectroscopic imaging. AJNR Am
J Neuroradiol 2008, 29: 1511-8. doi: 10.3174/ajnr.A1130
55. Aziz K, Nawaz, Atif. 1411. Differentiation of fungal abscess of
brain from brain glioblastoma by MRI scan ADC value. Open Forum Infect
Dis 2019, 6(Suppl 2): S514. 2019 Oct 23. doi:
10.1093/ofid/ofz360.1275
56. Bink A, Gaa J, Franz K, Weidauer S, Yan B, Lanfermann H, et al.
Importance of diffusion-weighted imaging in the diagnosis of cystic
brain tumors and intracerebral abscesses. Zentralbl Neurochir 2005,66: 119-25. doi: 10.1055/s-2005-836478
57. Nandy SB, Lakshmanaswamy R. Cancer stem cells and metastasis. Prog
Mol Biol Transl Sci 2017, 151: 137-76. doi:
10.1016/bs.pmbts.2017.07.007
58. Doron H, Pukrop T, Erez N. A Blazing landscape: neuroinflammation
shapes brain metastasis. Cancer Res 2019, 79: 423-36. doi:
10.1158/0008-5472.CAN-18-1805
59. Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain
injury: therapeutic potential of targeting cell-cell communication by
chemokines. Trends Pharmacol Sci 2015, 36: 471-80. doi:
10.1016/j.tips.2015.04.003
60. O’Callaghan JP, Sriram K, Miller DB. Defining ”neuroinflammation”.
Ann N Y Acad Sci 2008, 1139: 318-30. doi:
10.1196/annals.1432.032
61. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor
progression and metastasis. Cell 141: 39–51, doi:
10.1016/j.cell.2010.03.014
62. Sikpa D, Whittingstall L, Fouquet JP, Radulska A, Tremblay L, Lebel
R, et al. Cerebrovascular inflammation promotes the formation of
brain metastases. Int J Cancer 2020, 147: 244-55. doi:
10.1002/ijc.32902
63. Burda JE, Sofroniew MV. Reactive gliosis and the multicellular
response to CNS damage and disease. Neuron 2014, 81: 229-48.
doi: 10.1016/j.neuron.2013.12.034
64. Doron H, Amer M, Ershaid N, Blazquez R, Shani O, Lahav TG, et
al. Inflammatory activation of astrocytes facilitates melanoma brain
tropism via the CXCL10-CXCR3 signaling axis. Cell Rep 2019, 28:1785-98.e6. doi: 10.1016/j.celrep.2019.07.033
65. Klein A, Schwartz H, Sagi-Assif O, Meshel T, Izraely S, Ben Menachem
S, et al. Astrocytes facilitate melanoma brain metastasis via
secretion of IL-23. J Pathol 2015, 236: 116-27. doi:
10.1002/path.4509
66. Seike T, Fujita K, Yamakawa Y, Kido MA, Takiguchi S, Teramoto N, et
al. Interaction between lung cancer cells and astrocytes via specific
inflammatory cytokines in the microenvironment of brain metastasis. Clin
Exp Metastasis 2011, 28: 13-25. doi: 10.1007/s10585-010-9354-8
67. Xing F, Kobayashi A, Okuda H, Watabe M, Pai SK, Pandey PR, et
al. Reactive astrocytes promote the metastatic growth of breast cancer
stem-like cells by activating Notch signalling in brain. EMBO Mol Med
2013, 5: 384-96. doi: 10.1002/emmm.201201623
68. Fordham AJ, Hacherl CC, Patel N, Jones K, Myers B, Abraham M,et al. Differentiating glioblastomas from solitary brain
metastases: an update on the current literature of advanced imaging
modalities. Cancers (Basel) 2021, 13: 2960. doi:
10.3390/cancers13122960
69. Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K.
Differentiation between high-grade glioma and metastatic brain tumor
using single-voxel proton MR spectroscopy. Eur Radiol 2001, 11:1784-91. doi: 10.1007/s003300000814
70. Beig Zali S, Alinezhad F, Ranjkesh M, Daghighi MH, Poureisa M.
Accuracy of apparent diffusion coefficient in differentiation of
glioblastoma from metastasis. Neuroradiol J 2021, 34: 205-12.
doi: 10.1177/1971400920983678
71. Zhang G, Chen X, Zhang S, Ruan X, Gao C, Liu Z, et al.Discrimination between solitary brain metastasis and glioblastoma
multiforme by using ADC-based texture analysis: a comparison of two
different ROI placements. Acad Radiol 2019, 26: 1466-72. doi:
10.1016/j.acra.2019.01.010
72. Fordham AJ, Hacherl CC, Patel N, Jones K, Myers B, Abraham M,et al. Differentiating glioblastomas from solitary brain
metastases: an update on the current literature of advanced imaging
modalities. Cancers (Basel) 2021, 13: 2960. doi:
10.3390/cancers13122960
73. Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server A.
Texture analysis on diffusion tensor imaging: discriminating
glioblastoma from single brain metastasis. Acta Radiol 2019,60: 356-66. doi: 10.1177/0284185118780889
74. Abdel Razek AAK, Talaat M, El-Serougy L, Abdelsalam M, Gaballa G.
Differentiating glioblastomas from solitary brain metastases using
arterial spin labeling perfusion- and diffusion tensor imaging-derived
metrics. World Neurosurg 2019, 127, e593-e598. doi:
10.1016/j.wneu.2019.03.213
75. Ortiz-Ramón R, Ruiz-España S, Mollá-Olmos E, Moratal D.
Glioblastomas and brain metastases differentiation following an MRI
texture analysis-based radiomics approach. Phys Med 2020, 76:44-54. doi: 10.1016/j.ejmp.2020.06.016
76. Petrujkić K, Milošević N, Rajković N, Stanisavljević D, Gavrilović
S, Dželebdžić D, et al. Computational quantitative MR image
features - a potential useful tool in differentiating glioblastoma from
solitary brain metastasis. Eur J Radiol 2019, 119: 108634. doi:
10.1016/j.ejrad.2019.08.003
77. de Causans A, Carré A, Roux A, Tauziède-Espariat A, Ammari S,
Dezamis E, et al. Development of a machine learning classifier
based on radiomic features extracted from post-contrast 3D T1-weighted
MR images to distinguish glioblastoma from solitary brain metastasis.
Front Oncol 2021, 11: 638262. doi: 10.3389/fonc.2021.638262
78. Shin I, Kim H, Ahn SS, Sohn B, Bae S, Park JE, et al.Development and validation of a deep learning-based model to distinguish
glioblastoma from solitary brain metastasis using conventional MR
images. AJNR Am J Neuroradiol 2021, 42: 838-44. doi:
10.3174/ajnr.A7003
79. Swinburne NC, Schefflein J, Sakai Y, Oermann EK, Titano JJ, Chen I,et al. Machine learning for semi-automated classification of
glioblastoma, brain metastasis and central nervous system lymphoma using
magnetic resonance advanced imaging. Ann Transl Med 2019, 7:232. doi: 10.21037/atm.2018.08.05
80. Tateishi M, Nakaura T, Kitajima M, Uetani H, Nakagawa M, Inoue T, et
al. An initial experience of machine learning based on multi-sequence
texture parameters in magnetic resonance imaging to differentiate
glioblastoma from brain metastases. J Neurol Sci 2020, 410:116514. doi: 10.1016/j.jns.2019.116514
81. Ziebart A, Stadniczuk D, Roos V, Ratliff M, von Deimling A, Hänggi
D, et al. Deep neural network for differentiation of brain tumor tissue
displayed by confocal laser endomicroscopy. Front Oncol 2021,11: 668273. doi: 10.3389/fonc.2021.668273
82. She D, Xing Z, Cao D. Differentiation of glioblastoma and solitary
brain metastasis by gradient of relative cerebral blood volume in the
peritumoral brain zone derived from dynamic susceptibility contrast
perfusion magnetic resonance imaging. J Comput Assist Tomogr 2019,43: 13-7. doi: 10.1097/RCT.0000000000000771
83. Doishita S, Sakamoto S, Yoneda T, Uda T, Tsukamoto T, Yamada E, et
al. Differentiation of brain metastases and gliomas based on color map
of phase difference enhanced imaging. Front Neurol 2018, 9:788. doi: 10.3389/fneur.2018.00788
84. Tran TT, Gallezot JD, Jilaveanu LB, Zito C, Turcu G, Lim K, et al.
[11C]methionine and [11C]PBR28 as PET imaging tracers to
differentiate metastatic tumor recurrence or radiation necrosis. Mol
Imaging 2020, 19: 1536012120968669. doi:
10.1177/1536012120968669
85. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et
al. Diffusion-weighted imaging of radiation-induced brain injury for
differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005,26: 1455-60
86. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in
the follow-up of treated high-grade gliomas: tumor recurrence versus
radiation injury. AJNR Am J Neuroradiol 2004, 25: 201-9
87. Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion
and perfusion MRI to differentiate treatment-related changes including
pseudoprogression from recurrent tumors in high-grade gliomas with
histopathologic evidence. AJNR Am J Neuroradiol 2015, 36: 877-85. doi:
10.3174/ajnr.A4218
88. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T,et al. Posttherapeutic intraaxial brain tumor: the value of
perfusion-sensitive contrast-enhanced MR imaging for differentiating
tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J
Neuroradiol 2000, 21: 901-9.
89. Xu JL, Li YL, Lian JM, Dou SW, Yan FS, Wu H, et al.Distinction between postoperative recurrent glioma and radiation injury
using MR diffusion tensor imaging. Neuroradiology 2010, 52:1193-9. doi: 10.1007/s00234-010-0731-4
90. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al. MRI
perfusion in determining pseudoprogression in patients with
glioblastoma. Clin Imaging 2013, 37: 41-9. doi:
10.1016/j.clinimag.2012.02.016
91. Yun TJ, Park CK, Kim TM, Lee SH, Kim JH, Sohn CH, et al.
Glioblastoma treated with concurrent radiation therapy and temozolomide
chemotherapy: differentiation of true progression from pseudoprogression
with quantitative dynamic contrast-enhanced MR imaging. Radiology 2015,
274: 830-40. doi: 10.1148/radiol.14132632
92. Wesseling P, Ruiter DJ, Burger PC. Angiogenesis in brain tumors;
pathobiological and clinical aspects. J Neurooncol 1997, 32: 253-65.
doi: 10.1023/a:1005746320099
93. Nael K, Bauer AH, Hormigo A, Lemole M, Germano IM, Puig J, et al.
Multiparametric MRI for differentiation of radiation necrosis from
recurrent tumor in patients with treated glioblastoma. AJR Am J
Roentgenol 2018, 210: 18-23. doi: 10.2214/AJR.17.18003
94. Soni N, Ora M, Mohindra N, Menda Y, Bathla G. Diagnostic performance
of PET and perfusion-weighted imaging in differentiating tumor
recurrence or progression from radiation necrosis in posttreatment
gliomas: a review of literature. AJNR Am J Neuroradiol 2020, 41: 1550-7.
doi: 10.3174/ajnr.A6685