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Abstract

The state estimation and sensor placement for a continuous pulp digester with delayed mea-

surements are investigated. The underlying model of interest is heat transfer in a pulp digester

modeled by two coupled hyperbolic partial differential equations and an ordinary differential

equation. Output measurements are considered with delay due to the possible low sampling

rate. The Cayley-Tustin transformation is utilized to realize model time discretization in a

late lumping manner which does not account for any type of spatial approximation or model

reduction. The discrete Kalman filter is applied to estimate the system states using the de-

layed measurements. The selection of sensor location is addressed along with estimator design

accounting for the delayed measurements and investigated by minimizing the variance of esti-

mation error. The performance of the state estimator is evaluated, and the sensor placement

is analyzed through simulation studies, which provide guidance for sensor location selection in

industrial applications.

1 INTRODUCTION

The continuous pulp digester has been predominantly utilized to convert the wood chips into pulp

in industrial applications when it comes to the pulping process operation1. The typical continuous

pulp digester is a complex heterogeneous reactor, consisting of several zones in which the white

liquor reacts with wood chips to remove lignin and subsequently free wood fibers2. As illustrated

in Figure 1, the wood chips and white liquor are added to the impregnation zone where wood

chips are soaked by the cooking liquor via penetration and diffusion mechanism. After that, the

temperature of the chip mixture is rapidly increased through the external heat exchangers, and the

∗Corresponding author: S. Dubljevic. Tel: +1 780 248-1596. Fax: +1 780 492-2881. Email: Ste-
van.Dubljevic@ualberta.ca.
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mixture then enters the cooking zone where the most delignification reactions occur at an elevated

temperature. The spent liquor is withdrawn from the digester at extraction screens. At the same

time, the cooked pulp moves downwards to the wash zone where the chips are washed and cooled

down by the counter-current flow of wash liquor. Finally, the delignification reaction is stopped

and the cooked pulp is removed from the bottom of the digester.

Due to the industrial importance the considerable effort has been made in the past few decades

to model the delignification process of continuous pulp digesters based on the reaction and diffusion

dynamics, and chip-bed compaction. Three widely used dynamic models are known as the Purdue

model3, Gustafson model4, and Andersson model5, which have been the bases for the further devel-

opment of digester models6, 7, 8, 9. When it comes to the controller design for the continuous pulp

digester, one of the main objectives is to produce pulps that achieve specific quality according to

different wood species while respecting distinctive operating conditions. To this end, great efforts

have been made to meet various objectives based on the various control methods, such as model

predictive control (MPC), adaptive control, dynamic matrix control (DMC), reduced dimension

control (RDC), and genetic algorithms (GA) et.al10, 11, 12, 13, 14.

The state information or the process knowledge is essential for such controllers and/or regulators

design. However, the full state information is not often available due to the special features of

the continuous digester, physical constraints of sensor installation, and/or the prohibitive expense

of implementing spatially-distributed sensors. In addition, some important process variables are

sampled infrequently and there are long time delays associated with their measurement. Due to

this, the state estimation for the pulp digester attracts a lot of attention in both academia and

industry. Along this line, the extended Kalman filter was proposed to construct the true states of

a batch pulp digester using online measurements of various liquor characteristics, which shows a

good convergence property, even when the state errors and disturbances are undermodeled11. The

optimal state estimation was realized utilizing the subspace identification techniques and Kalman

filter for a continuous digester15. The partial least squares methodology was utilized to generate

the dynamic model based on input-output data collected from an industrial continuous digester16.

A multi-rate extended Kalman filter was applied to obtain state estimates that converge to the true

plant states in presence of parametric mismatches, unmeasured disturbances and large errors in

the initial state estimates17. However, even though the aforementioned works have made valuable

contributions toward the estimator design for the pulp digester, there are still some aspects which

did not receive much attention and consideration. On the one hand, the spatial discretization
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of PDE in the estimator design stage dramatically increases the complexity of the calculations

in estimator design and might induce numerical instability and/or alter the fundamental control

theoretical properties (controllability, observability, stability). On the other hand, the delayed

measurement need to be considered because of the possible low sampling rate of the continuous

pulp digester.

The accuracy of the estimation depends not only on the type of estimator but also on the

location of the sensors, especially for distributed parameter systems. The sensor placement problem

has been considered by many researchers in the area of chemical process control, and a number of

different performance criteria for sensor placement have been taken into account. One of the earliest

approaches is to maximize the observability through a choice of the sensor locations to improve

the degree of complete observability for the deterministic state reconstruction problem18, 19. For

the system with stochastic disturbances, unmeasured states can be estimated with the Kalman

filter, and the optimal selection of measurements can be determined by minimizing the average

variance of the state estimates20 or the steady-state error variance21. There are also some other

criteria to evaluate the performance of sensor locations including detection of load disturbances

and location for optimal control18. These approaches have mature applications on the lumped

parameter systems which are described by ordinary differential equations (ODEs), and have been

gradually extended and applied to the DPS in recent years. For example, the modal observability

and controllability measures was utilized to determine optimal sensor and actuator locations of

parabolic partial differential equations (PDEs)22. The optimal area for sensing or actuation in

advective PDEs was determined by maximizing the support of the observability or controllability

Gramian, respectively23. It was demonstrated that the nuclear norm of the solution to the operator

Riccati equation is the steady-state minimum error variance of an estimate for distributed parameter

systems24. The placement of a single sensor and/or a single actuator in advection-diffusion equations

with proportional feedback control was addressed25. Most of the previous contributions of the

sensor selection for distributed parameter systems mainly consider the spectral systems described

by parabolic PDEs, which can be addressed by means of model reduction techniques also known in

estimation and control theory as the early lumping approach. However, for non-spectral systems

(e.g., first order hyperbolic PDEs), where the slow-fast dynamic separation does not hold there

are less contributions in the literature. Hence, in this work, the sensor placement for the typical

transport-reaction system described by the hyperbolic PDE systems are investigated to motivate

and emphasize the issues associated with transport-reaction system setting. First, we consider
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the system without state and measurement disturbances, and the observability Gramian can be

evaluated in sensor’s potential position by solving the Lyapunov equation.

For example, let us consider a simple model of the plug flow reactor with constant transport

velocity v and spatial function ψ associated with linearized kinetics of the chemical reaction along

the reactor.

xt(z, t) = −v∂x(z, t)

∂z
+ ψ(z)x(z, t) + b(z)u(t) (1a)

y(t) = Cx(z, t) (1b)

x(0, t) = 0, x(z, 0) = x0 (1c)

where x(·, t) ∈ L2((0, 1),R) is the system state. The actuation distribution function b(z) is assumed

spatially uniform, which accounts for the uniform cooling with the jacket fluid flow. The point

measurement is specified with the operator C, which depends on the sensor location lm, and it can be

denoted as C(f(z)) =
∫ l

0 δ(z− lm)f(z)dη. One can further define the spatial linear operator A(·) =

−v ∂(·)
∂z +ψ(z)(·) with a domain D(A) = {φ(z) ∈ L2(0, 1)|φ(z) is abs. cont.,dφdz ∈ L2(0, 1), φ(0) = 0},

where abs.cont. denotes that φ is absolutely continuous.

The observability gramian is well-defined as Lcψ = lim
τ→∞

∫ τ

0
T (t)∗C∗CT (t)ψdt, where A gen-

erates a C0 semigroup T (t). Then, if T (t) is strongly stable, Lc is the unique solution of the

continuous-time observation Lyapunov equation A∗Lcϕ + LcAϕ = −C∗Cϕ,ϕ ∈ D(A), where ϕ

is a spatial function26. In order to obtain Lc, the adjoint operator A∗ needs to be found using

the inner product formula, 〈Aϕ, φ〉 = 〈ϕ,A∗φ〉, and is A∗(·) = −v ∂(·)
∂ζ + ψ∗(z)(·) with a domain

D(A∗) = {φ(z) ∈ L2(0, 1)|φ(z) is abs. cont.,dφdz ∈ L2(0, 1), φ(1) = 0}. The observability gramian

can be obtained further by substituting operators A and A∗ into the above Lyapunov equation and

rearrange as:

∂Lc
∂z

= −2ψ

v
Lc −

1

v
C∗C, Lc ∈ D(A∗) (2)

Then, the trace norm (nuclear norm) of the observability is utilized to quantify observability

for different sensor location, which has been found to be one of the most meaningful measures of

observability because it takes the observability of entire system into account27. Figure 2 illustrates

the relationship between the trace norm of the observability and the single sensor’s location along

the spatial position. As it is expected, the trace norm of observability gramian increases as the
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sensor moves towards the end of the reactor and reaches a maximum at the last point in space. This

confirms the application based and practical reasoning that sensor placement at the end of tubular

reactor is the best choice. However, when the system is corrupted by disturbances, whether this

conclusion still holds, or not, and how the relationship between sensor placement and maximum

observability changes are of importance to address especially for hyperbolic PDE systems.

Motivated by the aforementioned issues, this work considers the discrete-time state estimation

and sensor placement for stochastic model of continuous pulp digester with delayed boundary/point-

wise measurements. The temperature dynamics of a continuous pulp digester is studied, and it is

described by coupled PDE-ODE with measurement delay. The Cayley-Tustin time discretization

approach is utilized to obtain the discrete-time model with analytical expression that is easier to

implement in practical applications. The delayed measurements are expressed by an additional

hyperbolic PDE, and treated as the new states of the extended model. The unbounded boundary/

point-wise measurement is considered and can be transformed to a bounded one using Cayley-

Tustin approach. The discrete-time Kalman filter is designed with the stochastic discrete-time

digester system to realize the state estimation, and the sensor location selection for the temperature

measurements is investigated by minimizing the steady-state error variance of the estimated states.

This paper is organized as follows: In Section 2, a dynamic model that describes the temperature

system of the cook zone of continuous digester is introduced. The model is discretized in time by

utilizing Cayley-Tustin approach. Based on the discrete-time model, the discrete Kalman Filter

is designed and the optimal location for the temperature sensors is investigated in Section 3. In

Section 4, the performance of the estimator is examined on a number of examples. In Section 5,

concluding remarks are made.

2 MODEL FORMULATION FOR PULP DIGESTER

In this section, we introduce the simplified temperature model formulation of a continuous pulp

digester. In order to formulate the state-space model, the original model with measurement delay is

equivalently transformed to a standard state-space model by introducing the transport PDE. Based

on this model, the discrete-time infinite-dimensional model is obtained utilizing the Cayley-Tustin

transform framework.
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2.1 Model Formulation

Considering that the most of delignification reaction occurs in the cooking zone of a digester28, we

focus on analysis of this zone which can be seen as a vertical tubular reactor of co-current flow in

two phases. In addition, the existence of delay in the measurements or sensors is considered, which

may be due to slow sampling rate, missing measurement issues, the indirect laboratory analytical

test of these measurements, etc. A specified process schematic is shown in Figure 3. The top

position of this process is denoted as z = 0, and the liquor extraction at the bottom position is

denoted as z = L. The pre-prenetrated wood chips and free liquor are introduced at the top of the

cook zone and the liquor is heated to reaction temperatures achieved by liquor circulation through

the cook heater. Therefore, the temperature of heated liquor at the top of the cook zone is selected

as the manipulated variable which can be adjusted using the external heater.

The following assumptions are considered. The dynamic variations of chip porosity, the mass

variations of solid and liquor, and the variation in external volume flow rate are neglected. The heat

released by the exothermic reactions and energy transfer due to diffusion of components between

the entrapped liquor phase and free liquor phase can be ignored. Considering the most important

components in the chemical reactions taken place in the digester, only lignin in solid phase and

effective alkali in liquor phase are taken into account in the reaction rate equations. A further

simplification is made by considering only temperature behaviour as neglecting the heat due the

reaction makes the temperature variables independent of the concentration variables. For more

detail of the model assumptions please refer to the reference29.

In the ensuing model, the temperature variables are functions of both vertical position z and time

t. Tf (z, t) denotes the temperature of free liquor phase, and Tc(z, t) denotes the temperature of chip

phase. Ts(t) denotes the free liquor temperature in the steam zone. Based on the aforementioned

description, the mathematical model of the temperature behaviour in the cook zone of digester can

be modelled by the following set of equations:

∂Tc
∂t

= − Vc
Aεc

∂Tc(z, t)

∂z
+ U(Tf − Tc)/Cpe (3a)

∂Tf
∂t

= −
Vf
Aεf

∂Tf
∂z
− U(Tf − Tc)/Cpf (3b)

dTs
dt

= [−
vf,s

hs − hl
− klz − klw

Cpfρf
]Ts + [

vf,s
hs − hl

+
klz

Cpfρf
]u+

klwTa
Cpfρf

(3c)
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ym(t) =

Tc(lm1, t− τ1)

Tf (lm2, t− τ2)

 (3d)

The boundary conditions are given by:

Tc(0, t) = Tc0;Tf (0, t) = Ts(t). (4)

where Vc and Vf denote the volume of chip and free liquor respectively, and A is the digester cross

sectional area. εc is the chip compaction, which increases from the entry through the cook zone,

reaching a maximum at the main extraction, εc(z) = ε10 + ε11z, and εf (z) = 1− εc(z). U denotes

the heat-transfer coefficient and relates the rate of energy transfer due to conduction between the

wood chips and the free liquor per degree temperature difference per volume of chip7. The mixing

rules based on weighted averages are utilized to determine heat capacities of the entrapped and

free liquor phases, namely, Cpe and Cpf , which can be further obtained from the heat capacities of

the wood Cps and the liquor Cpl
30. vf,s denotes the steam velocity, and hs and hl are the height

of steam and liquor level, respectively The sensible heat transfer can be written equivalently as

klz(Ts−u), and the heat transfer through the digester shell is klw(Ts−Ta) where Ta is the ambient

temperature. The system input u(t) denotes the steam temperature or the inlet temperature of free

liquor at the top of cook zone. The measured output ym(t) contains the temperature measurement

of wood chip and free liquor. Particularly, the time delays (τ1, τ2) denote the measurement delays

or sensor delays at the bottom of the cook zone. The parameters lm1 and lm2 represent the sensor

locations to measure the temperature of wood chip and free liquor, respectively.

2.2 State-Space Model Formulation

In order to formulate the state-space model, the time delay can be firstly removed at a cost of

adding a transport PDE into the plant. Replacing the terms Tc(lm1, t − τ1) and Tf (lm2, t − τ2)

by two transport equations with velocity µ1 := lm1
τ1

and µ2 := lm2
τ2

(e.g.31, 32), the original system

(Equation (3)) is equivalently expressed as:

∂Tc
∂t

= − Vc
Aεc

∂Tc(z, t)

∂z
+ U(Tf − Tc)/Cpe (5a)

∂Tf
∂t

= −
Vf
Aεf

∂Tf
∂z
− U(Tf − Tc)/Cpf (5b)

∂Tw
∂t

= −µ1
∂Tw
∂z

(5c)
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∂Tv
∂t

= −µ2
∂Tv
∂z

(5d)

dTs
dt

= [−
vf,s

hs − hl
− klz − klw

Cpfρf
]Ts + [

vf,s
hs − hl

+
klz

Cpfρf
]u+

klwTa
Cpfρf

(5e)

ym(t) =

Tw(lm1, t)

Tv(lm2, t)

 (5f)

The corresponding boundary conditions for this configuration are:

Tc(0, t) = Tc0;Tf (0, t) = Ts(t).

Tw(0, t) = Tc(lm1, t);Tv(0, t) = Tf (lm2, t)
(6)

Then, the extended state x(z, t) = [Tc(z, t), Tf (z, t), Tw(z, t), Tv(z, t), Ts(t)]
T = [x1(z, t), x2(z, t),

x3(z, t), x4(z, t), x5(t)]T ∈ X
⊕

R is considered, where X is a real Hilbert spaces L2(0, l)4 with the

inner product 〈·, ·〉, and R denotes a real space. The input u(t) ∈ L2
loc([0,∞),U) and output

y(t) ∈ L2
loc([0,∞),Y), where U and Y are real separable Hilbert spaces. The standard infinite-

dimensional continuous-time state-space model can be further formulated as:

ẋ(z, t) = Ax(z, t) + Bu(t) (7a)

y(t) = Cx(z, t) (7b)

In this form, one can define the system operator A(·) = V ∂(·)
∂z + ψ(z)(·) on its domain

A(·) =



−vc ∂(·)
∂z + J11(·) J12(·) 0 0 0

J21(·) −vf ∂(·)
∂z + J22(·) 0 0 0

0 0 −µ1
∂(·)
∂z 0 0

0 0 0 −µ2
∂(·)
∂z 0

0 0 0 0 m1


(8)

D(A) =


φi(z) ∈ L2(0, l)4, x5 ∈ R :

φi(z) is abs. cont.,dφi

dz ∈ L2(0, l), with i = 1, 2, 3, 4,

φ1(0) = 0, φ2(0) = x5, φ3(0) = φ1(lm1), φ4(0) = φ2(lm2)

 (9)

where vc = Vc
Aεc

, vf =
Vf
Aεf

, J11 = −U/Cpe, J12 = U/Cpe, J21 = U/Cpf , J22 = −U/Cpf ,

m1 = [− vf,s
hs−hl −

klz−klw
Cpfρf

], m2 = [
vf,s
hs−hl + klz

Cpfρf
], m3 = klwTa

Cpfρf
. The input operator B is defined as a

8
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bounded operator B =[0; 0; 0; 0; m2]. The operator C is determined as C(·) = diag[0,0,
∫ l

0 δ(z −

lm1)(·)dη,
∫ l

0 δ(z − lm2)(·)dη,0].

In this infinite-dimensional state-space model, there is the uncertainty of operator C because

the sensor locations lm1 and lm2 need to be determined. Likewise, this also leads to the unknowns

of µ1 and µ2, which in turn leads to the uncertainty of operator A.

2.3 Model Time-Discretization

Based on the continuous-time infinite-dimensional system, we introduce the Cayley-Tustin dis-

cretization framework to transform the continuous system to the discrete-time one. Let us consider

the above linear system in Equation (7) and a given a time discretization h > 0, and for j ≥ 1 the

Cayley-Tustin discretization is given by

x(jh)− x((j − 1)h)

h
≈ Ax(jh) + x((j − 1)h)

2
+ Bu(jh) (10a)

y(jh) ≈ Cx(jh) + x((j − 1)h)

2
(10b)

with x(0) = x0, where we omit the spatial dependence of x for brevity. Then let
u
(h)
j√
h

be an

approximation of u(jh) by the mean value within a given sampling time,
u
(h)
j√
h

= 1
h

∫ jh
(j−1)h u(t)dt.

It has been shown in33 that
u
(h)
j√
h

converges to u(jh) as h → 0 in several different ways, similar

for Y (jh). Further, rewriting Equation (10) gives the discrete time dynamics Equation (11). It is

frequently called Tustin discretization in the engineering literature, which is discovered in 1940s by

Tustin and referred as Tustin transform in digital and sample-data control literature34.

x
(h)
j − x

(h)
j−1

h
≈ A

x
(h)
j + x

(h)
j−1

2
+ B

u
(h)
j√
h
, x

(h)
0 = X0 (11a)

y
(h)
j√
h
≈ C

x
(h)
j + x

(h)
j−1

2
(11b)

Through some basic computations, the following infinite-dimensional discrete-time state space

model is obtained:

x
(h)
j = Adx

(h)
j−1 + Bdu

(h)
j (12a)

y
(h)
j = Cdx

(h)
j−1 +Ddu

(h)
j (12b)
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where Ad, Bd, Cd, Dd are the discrete-time spatial operators and we denote:

Ad Bd
Cd Dd

=

[δ −A]−1[δ −A]
√

2δ[δ −A]−1B
√

2δC[δ −A]−1 C[δ −A]−1B

 (13)

where δ = 2/h and the resolvent is R(δ,A) = (δI − A)−1. Clearly, one must satisfy δ ∈ ρ(A)

so that the resolvent operator is well-defined. In particular, C(δ − A)−1B denotes the transfer

function of the continuous model (7). The unbounded operators A of the continuous-time system

are mapped into bounded operators Ad in the discrete-time counterpart through Cayley transform.

In addition, it has been demonstrated that the controllability and stability are invariant under this

transformation. The continuous state evolutional operator A is discretized in time and Ad can be

described by the resolvent operator as follows:

Ad(·) = [δI −A]−1[δI +A](·)

= −I(·) + 2δ[δI −A]−1(·)

= −I(·) + 2δR(δ,A)(·) (14)

where I is an identity operator.

2.4 Resolvent operator

From the previous section, one can find the resolvent operator R(δ,A) = (δI −A)−1 of the system

operator A, and then the discrete operators (Ad, Bd, Cd, Dd) can be easily realized. Recalling

the continuous-time system model (7), the resolvent operator can be obtained by taking Laplace

transform. Under the zero input condition, we can have the following expression:

∂x1(z, s)

∂z
=
s+ J11

vc
x1(z, s) +

J12

vc
x2(z, s) +

1

vc
x1(z, 0) (15a)

∂x2(z, s)

∂z
=
s+ J22

vf
x2(z, s) +

J21

vf
x1(z, s) +

1

vf
x2(z, 0) (15b)

∂x3(z, s)

∂z
= − s

µ1
x3(z, s) +

1

µ1
x3(z, 0) (15c)

∂x4(z, s)

∂z
= − s

µ2
x4(z, s) +

1

µ2
x4(z, 0) (15d)

xb(s) =
1

s−m1
xb(0) (15e)
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By solving the above ODE, a frequency-domain solution of the distributed digester system is finally

obtained as follows:x1(z, s)

x2(z, s)

 = eMz

x1(0, s)

x2(0, s)

− ∫ z

0
eM(z−η)V −1

0

x1(η, 0)

x2(η, 0)

 dη (16a)

x3(z, s) = e
− s
µ1
z
x3(0, s) +

∫ z

0
e
− s
µ1

(z−η)
x3(η, 0)dη (16b)

x4(z, s) = e
− s
µ2
z
x4(0, s) +

∫ z

0
e
− s
µ2

(z−η)
x4(η, 0)dη (16c)

where

V0 =

−vc 0

0 −vf

 , B0 =

s− J11 −J12

−J21 s− J22

 ,M = V −1
0 B0 (17)

For simplicity, one can introduce the following notations in order to determine the resolvent oper-

ator:

eMz =

M11(z, s) M12(z, s)

M21(z, s) M22(z, s)

 (18)

After further manipulations, the closed-form analytical solutions of the state evolution matrix can

be arranged as follows:

M11(z, s) = e
Gz

2vcvf

[
K
F sinh( Fz

2vcvf
) + cosh( Fz

2vcvf
)
]

M12(z, s) =
2J12vf
F e

Gz
2vcvf sinh( Fz

2vcvf
)

M21(z, s) = 2J21vc
F e

Gz
2vcvf sinh( Fz

2vcvf
)

M22(z, s) = e
Gz

2vcvf

[
−K
F sinh( Fz

2vcvf
) + cosh( Fz

2vcvf
)
]

(19)

where F,G,K are denoted as:

F =
√

(J11 − s)2v2
f + 2vcvf (2J12J21 + (J11 − s)(s− J22)) + (J22 − s)2v2

c

G = J11vf + J22vc − s(vc + vf )

K = J11vf − J22vc + s(vf − vc)

Therefore, with the boundary conditions given by x3(0, s) = x1(lm1, s) and x4(0, s) = x4(lm2, s),

x3(z, s) and x4(z, s) can be obtained. The resolvent operator can be expressed as follows:

x(z, s) = R(s,A)x(η, 0) (20)
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where

R(s,A) =



R11 R12 0 0 R15

R21 R22 0 0 R25

R31 R32 R33 0 R35

R41 R42 0 R44 R45

0 0 0 0 R55


(21)

where 

Ri1(·) =
∫ z

0
1
vc
Mi1(z − η, s)(·)dη, i = 1, 2

Ri2(·) =
∫ z

0
1
vf
Mi2(z − η, s)(·)dη, i = 1, 2

Ri5(·) = Mi2(z,s)
s−m1

(·), i = 1, 2

R31(·) = e
− s
µ1
z ∫ lm1

0
1
vc
M11(lm1 − η, s)(·)dη

R32(·) = e
− s
µ1
z ∫ lm1

0
1
vf
M12(lm1 − η, s)(·)dη

R33(·) =
∫ z

0 e
− s
µ1

(z−η) 1
µ1

(·)dη

R35(·) = e
− s
µ1
z M12(lm1,s)

s−m1
(·)

R41(·) = e
− s
µ2
z ∫ lm2

0
1
vc
M21(lm2 − η, s)(·)dη

R42(·) = e
− s
µ2
z ∫ lm2

0
1
vf
M22(lm2 − η, s)(·)dη

R44(·) =
∫ z

0 e
− s
µ2

(z−η) 1
µ2

(·)dη

R45(·) = e
− s
µ2
z M22(lm2,s)

s−m1
(·)

R55(·) = 1
s−m1

(·)

(22)

Now, the discrete-time operators in Equation (13) can be solved by straightforwardly substi-

tuting the above resolvent operators. Afterwards, the discrete-time linear model is obtained:

x(z, k) = Adx(z, k − 1) + Bdu(k) (23a)

y(k) = Cdx(z, k − 1) +Ddu(k) (23b)

with the boundary conditions Equation (6). It is worth noting that the uncertainty of the sensor

location lm1 and lm2 will lead to the uncertainty of the resolvent operator and then further effects

on the operators Ad, Bd, Cd and Dd.
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3 State Estimation and Sensor Placement for the Stochastic sys-

tem

3.1 Discrete Stochastic Model Formulation

In order to account for the process and measurement noise of the digester, the Kalman filter is

developed as an one-step ahead predictor. In this case, one can introduce the bounded operators

Gw accounting for spatial influence of state noise ωk at each time instance. By assuming that

there is no prior knowledge of the noise source, the discrete-time digester system with addictive

disturbances/noises is considered in the following form:

xk = Adxk−1 + Bduk +Gwωk (24a)

yk = Cdxk−1 +Dduk + vk (24b)

where ωk denotes process noise, which is the zero mean multivariate normal distribution with

covariance Qk given as ωk ∼ N (0, Qk), E[ωkω
T
j ] = Qkδk,j , and δk,j is the Dirac delta function,

i.e., δk,j = 1 if k = j and δk,j = 0 otherwise, while vk represents measurement noise at time

step k of having zero mean Gaussian white noise with covariance Rk denoted as vk ∼ N (0, Rk),

E[vkv
T
j ] = Rkδk,j , and E[vkω

T
j ] = 0. Furthermore, we consider independent process noise and

measurement noise. In order to guarantee the consistency in the time instants of the discrete

digester system and the standard discrete Kalman filter structure in finite-dimensional setting, one

can express yk by the state xk instead of xk−1 in Equation (23) and Equation (24), which yields

the following:

xk = Adxk−1 + Bduk +Gwωk (25a)

yk = C̄dxk + D̄duk + vk (25b)

where the associated discrete-time spatial operators are denoted as follows35:

Ad Bd Gw

C̄d D̄d −

=

−I + 2δR(z, δ)
√

2δR(z, δ)B
√

2δR(z, δ)G

−
√

2δCR(z,−δ) G(−δ) −

 (26)
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3.2 Discrete Kalman Filter Design

In this section, a classical discrete-time Kalman filter is designed for the well-defined stochastic

discrete-time digester system (24). Kalman filter is often realized in two steps, including a prediction

step and an updating step, also referred as a priori estimation step and a posteriori estimation step36.

Firstly, the following notations are introduced.

x̂−k = E[xk | y1, y2, ..., yk−1] = a priori estimate

x̂+
k = E[xk | y1, y2, ..., yk] = a posteriori estimate

(27)

In addition, we use the term Pk to denote the covariance of the estimation error. P−k denotes

the covariance of the estimation error of x̂−k , P−k = E[(xk − x̂−k )(xk − x̂−k )∗], and P+
k denotes the

covariance of the estimation error of x̂+
k , P+

k = E[(xk − x̂+
k )(xk − x̂+

k )∗].

We begin the estimation process with the guess of initial conditions which are described as

below:  x̂+
0 = E(x0) = x̂0

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )∗] = Q0

(28)

Then, one has the following prior estimation or prediction step, with measurement up to time k−1: P−k = AdP+
k−1A

∗
d +GwQk−1G

∗
w = Ad(AdP+

k−1)∗ +GwQk−1G
∗
w

x̂−k = Adx̂+
k−1 + Bduk

(29)

The posterior estimation or update step is given as follows, by using additional output measurement

yk at time instance k:



Kk = P−k C̄
∗
d(C̄dP−k C̄

∗
d +Rk)

−1 = (C̄dP−k )∗[C̄d(C̄dP−k )∗ +Rk]
−1

P+
k = (I −KkC̄d)P−k (I −KkC̄d)∗ +KkRkK

∗
k

= IP−k I
∗ −KkC̄dP−k I

∗ − IP−k C̄
∗
dK
∗
k +KkC̄dP−k C̄

∗
dK
∗
k +KkRkK

∗
k

= IP−k I
∗ −KkC̄dP−k I

∗ − I(C̄dP−k )∗K∗k +KkC̄d(C̄dP−k )∗K∗k +KkRkK
∗
k

x̂+
k = x̂−k +Kk(yk − C̄dx̂−k − D̄duk)

(30)

The basic configuration extends a standard discrete-time finite-dimensional Kalman filter de-

sign algorithm36. Compared to the general matrix forms of state space representation in finite-

dimensional systems, the discrete spatial operators (Ad,Bd, C̄d, D̄d, Gw) need to be treated carefully

as they are induced by Cayley-Tustin time discretization. In addition, the covariances P−k and P+
k
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are two-dimensional and self-adjoint with spatial characteristics.

3.3 Optimal Sensor Location

The basic idea of optimal sensor selection is to select the locations of sensor among a given finite

location set, which provides as much information of the dynamic system as possible. To realize

this goal, the optimal sensor selection can be formulated as an optimization problem, aiming to

minimize a given objective function related to the dynamic characteristics of the system. In this

paper, the objective is to minimize the steady-state error variance of the estimated states, which is

in the nuclear norm24. The value of steady-state error variance is dependent on the measurement

operator C, and hence on the number of sensors, as well as on the sensor noise covariance Rk. Thus,

minimizing the steady-state error variance is a reasonable design goal when it comes to the sensor

location selection. The sensor locations are defined as the discrete optimization variables and the

constraints are typically the given sensor number.

min
ϑ∈Ωn

‖Pss(ϑ)‖1 (31a)

s.t. g(ϑ) = n, (31b)

ϑlb ≤ ϑ ≤ ϑub, (31c)

ϑ ∈ Z+. (31d)

where ϑ = {θ1, θ2, ..., θn} represents the sensor locations defined by a set of integers, ‖Pss(ϑ)‖1 is

the nuclear norm of steady-state error variance, g(ϑ) denotes the total number of sensor locations,

n is the given sensor number, ϑlb and ϑub are the lower and upper bounds of ϑ, respectively, and

Z+ denotes the set of positive integers. The minimum solution of Equation (31) is then the optimal

sensor configuration as follows:

ϑ∗ = arg min
ϑ∈Ωn

‖Pss(ϑ)‖1 (32a)

s.t. g(ϑ) = n, (32b)

ϑlb ≤ ϑ ≤ ϑub, (32c)

ϑ ∈ Z+. (32d)
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Problem (32) can be solved by the following procedure.

1) determine the feasible sensor location set Ωn

2) For every sensor configuration ϑ ∈ Ωn, solve the problem (32).

3) The optimal sensor location of the considered system is obtained as ϑ∗.

4 SIMULATION RESULTS

In this section, we provide numerical examples associated with the discrete-time Kalman filter

design and sensor selection. First, we revisit the motivation example discussed in Section 1 to

demonstrate the performance of the proposed filter and compare the results of sensor location by

using different criteria, including maximum observability and minimum variance estimation. Then,

the developed infinite-dimensional discrete-time Kalman filter for the digester system is simulated

and the corresponding results are discussed in detail. Two cases are further considered, including

the spatially distributed process noise and the spatially centered process noise. The numerical

simulation is further investigated to determine the optimal sensor placement, which might provide

a guidance for sensor location selection and efficient monitoring of digester systems in practice.

4.1 Motivation Example Revisited

In this section, the proposed Kalman filter design and sensor selection are applied to the scalar

hyperbolic system presented in Section 1. The discrete-time linear hyperbolic PDE system corre-

sponding to Equation (1) is obtained by applying Cayley-Tustin transformation and is given in the

following form:

x(z, k) = Adx(z, k − 1) + Bdu(k) + ω(k), x(z, 0) = x0 (33a)

y(k) = Cdx(z, k) +Ddu(k) + v(k) (33b)
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where 

Ad(·) = [δI −A]−1[δI +A](·)

= −I(·) + 2δ
[∫ z

0
1
v (·)e−

1
v

(ψ−δ)ηdη
]
e

1
v

(ψ−δ)z

Bd =
√

2δ[δI −A]−1B(z)

=
√

2δ
[∫ z

0
1
vB(η)e−

1
v

(ψ−δ)ηdη
]
e

1
v

(ψ−δ)z

Cd(·) = −
√

2δC[−δI −A]−1(·)

= −
√

2δ
[∫ lm

0
1
v (·)e−

1
v

(ψ+δ)ηdη
]
e

1
v

(ψ+δ)lm

Dd = C[−δI −A]−1B +D

=
[∫ lm

0
1
vB(η)e−

1
v

(ψ+δ)ηdη
]
e

1
v

(ψ+δ)lm

(34)

The simulation result of the Kalman filter design given Equations (28)-(30) for the discrete scalar

hyperbolic PDE system is shown in Figure 4. In this case, the spatial parameter in the operator A is

chosen to be ψ = 0.5, while the input operator B(0 < z < 1) = 1 represents spatially uniform real-

ized heat transfer across the reactor shell. The time varying input is considered as u(k) = 3sin(2πk),

the potential position of the sensor location is considered as [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].

The initial conditions are taken as x0 = 5sin(2πz) and x̂0 = 3sin(4πz). The process noise and

measurement noise are considered as ωk ∼ N (0, Qk) with Qk = 0.05, and vk ∼ N (0, Rk) with

Rk = 0.1.

The evolution profiles of the trace of two-dimensional estimate covariance along the time in-

stance at each potential position of the sensor are shown in Figure 5. The trace norm profiles are

able to converge to the steady state after 1 second. The steady state of the trace norm of estimation

error covariance subject to the location of the sensor is shown in Figure 6, which also shows the

profile of the trace of observability. It is clear that the trace norm of observability increases roughly

linearly with the movement of the sensor position, and reaches the maximum at the end. However,

the trace norm of estimation covariance shows roughly a quadratic relationship with the sensor

location and reaches the minimum point at 0.7. The results indicate that for the scalar hyperbolic

PDE, maximizing observability does not generally guarantee the minimum variance estimation. In

the other words, it also implies that the maximum observability is not the best criteria for the

sensor location from minimizing estimation error view point.

4.2 Performance of State Estimation and Sensor Selection for Pulp Digester

The values of all system parameters and for simulations are listed in Table 1. For the initial

conditions of the dynamic system, we consider x1(z, 0) = 0.18sin(0.4πz), x2(z, 0) = 0.87sin(0.4πz).
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As for the Cayley-Tustin time discretization, we choose h = 2s at the time discretization interval.

The spatial discretization interval is taken as ∆z = 0.05. The time delays (τ1, τ2) are considered

as (0.05, 0.05). Firstly, the open-loop temperature model of cook zone is simulated in Figure 7

with the activated control action u(t) = 4sin(0.05t). It is apparent that the state evolution profile

behaves follow the periodic wave trend induced by the given input.

4.2.1 Performance of Discrete Kalman Filter

In this case, the developed discrete-time Kalman filter configuration is applied to the stochastic

linear infinite-dimensional discrete-time digester system (25), and the performance is analyzed. In

addition, the sensor location is first considered at the bottom of cook zone, that means lm1 = lm2 =

l. Based on that, two different disturbances are considered: spatially distributed and centered

disturbance. In both cases, the plant and measurement noises, we take ωk ∼ N (0, Qk), E[ωkω
T
j ] =

Qkδk,j , vk ∼ N (0, Rk), E[vkv
T
j ] = Rkδk,j , E[vkω

T
j ] = 0 with Qk = 0.005 and Rk = diag(1, 2).

The initial conditions are taken as x1(z, 0) = 0.18sin(0.4πz) and x2(z, 0) = 0.9sin(0.4πz), and the

control action are given as u(t) = 4sin(0.05t), and the estimated initial conditions are x̂1(z, 0) =

0.16sin(0.4πz) and x̂2(z, 0) = 0.8sin(0.4πz).

Case 1: Spatially distributed process noise

In this case, the spatially distributed noise is considered first for the description of the noise on

the state distribution in the spatial domain, which is defined as g(z) = 1 + 30sech(100(z − 0.2)),

and the operator is defined as G(z) = [1,1,1,1,1]T .

Profiles of the state with noise and the estimated state are presented in Figure 8 and Figure 9.

Compared with Figure 7 , it can be seen that there are some noisy oscillations in the two states

induced by the process noise and measurement noise, and the developed Kalman filter is capable

of reconstructing the entire spatiotemporal state profile and reducing noises present in the process

and measurement simultaneously. Moreover, in Figure 10 the profiles of the noisy outputs, the

estimated outputs, and the real outputs are presented. The filtered output of interest matches

perfectly with the one in the noise-free system, with largely eliminating the noises involved in the

stochastic digester system. The measurement error and the estimation error are utilized to evaluate

the estimation accuracy of the designed Kalman filter, as shown in Figure 11.

Case 2: Spatially centered process noise

In this case, the spatially centered process noise is considered and we assume the noise only

appears in the temperature of wood chips. The centered disturbance illustrated as function g(z) =
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20sech(100(z − 0.2)), and the operator is defined as G(z) = [g(z),0, g(z),0,0]T .

Figure 12 shows the state profiles with noise and the estimated state using Kalman filter. It is

apparent that the temperature profile of wood chips are quite noisy in Figure 12 (a), while after

applying the developed discrete-time Kalman filter, one can directly see that the noise has been

filtered out, and the original state evolution is revealed as shown in Figure 12 (b). Although the

temperature of wood chips and free liquor is coupled, in this case, the temperature of free liquor is

relatively less affected by noise, therefore the profile of the estimated state for x2 is not provided.

By comparing the filtered state evolution with the original one (Figure 7), the effectiveness of the

proposed discrete Kalman filter can be verified. From the comparison of outputs in Figure 13, one

can noticed that the measured output profiles in the two figures are quite noisy, as shown in the

black dashed lines, and the proposed Kalman filter can smooth out the noises in outputs and make

the filtered output converge to real output profiles, as shown in green dashed lines and red solid

lines, respectively.

To quantity the estimation performance of the proposed Kalman filter, the measurement error

and the estimation error are calculated based on the actual outputs, as shown in Figure 14. The

measurement error is defined as the difference between the measurement and the actual output,

and the estimation error denotes the difference between the filtered output using Kalman filter and

the actual output. The measurement error of both output are relatively random and large. After

applying the Kalman filter, the estimated output 1 is close to the real output 1 as the estimation

error is smooth and relatively small. Although the measurement error is largest when the time

lag is around 100s, the Kalman filter can also achieve relatively better estimation. As for output

2, the estimation performance is much better since the estimation error is converge to zero within

35s that might be caused by the spatially localized noise only appears in the temperature of wood

chips or x1.

4.2.2 Determination of Optimal sensor placement

We performed several simulation runs to evaluate the performance if the proposed method for com-

puting optimal locations of measurement sensors. Each sensor have 6 possible locations distributed

in the range [0, 5] as shown in Table 2.

Based on the algorithm shown in Section 3, we compute the optimal sensor locations by mini-

mizing the proposed cost function. By solving Equation (32), the optimal sensor locations can be

determined. In this case, the optimal sensor locations were found at ϑ∗ = [1, 3], where the minimum
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cost was 181.5839. Figure 15 shows the distribution of the ‖Pss‖1, and it can be seen that ‖Pss‖1 is

relatively large when the temperature sensor of free liquor is located close to the upper boundary

(i.e., lm2 is small and close to 0). When the sensor is located far from the upper boundary, the

value of trace becomes smaller and not much different from each other. The minimum value appears

when the temperature sensor of free liquor is located at 3m. The meaning behind this investigation

is that it provides an efficient way and insightful guidance for practitioners when performing sensor

location selection. However, when the feasible sensor location set has relatively large candidates,

the computational cost will also increase by using the proposed method. The computation issue

will be addressed in a future work.

5 CONCLUSION

In summary, the state estimation and sensor placement for the stochastic continuous pulp digester

with measurement delay are investigated in this work from the monitoring point of view. The

temperature system of a continuous pulp digester is modeled by two coupled hyperbolic partial dif-

ferential equations and an ordinary differential equation, and there exists the measurement delay at

the considered outputs. In order to realize discrete implementation, the Cayley-Tustin transform

is utilized to map the continuous-time system to the discrete-time model representation without

spatial discretization and model reduction which preserves the input-output stability of the plant.

The discrete-time infinite-dimensional Kalman filter is applied to estimate the system states using

the process measurements. The selection of sensor location is then addressed based on the esti-

mator design and investigated by minimizing the variance of estimate error. The effectiveness and

feasibility of the proposed Kalman filter are verified by a set of simulations, and the results of the

determination of optimal sensor placement provided an efficient way and insightful guidance for

practitioners when performing sensor location selection.
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Figure 1: Simplified scheme of a continuous pulp digester1
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Figure 2: Trace norm of the observability gramian versus the single sensor location
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Figure 3: The scheme of cook zone in a pulp digester

Figure 4: Profiles of the state with noise and the estimated state
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Figure 5: The convergency performance of the trace of the estimation error covariance
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Figure 6: Comparison of the trace of steady-state estimation error covariance and trace of observ-

ability versus the spatial location of the sensor

Figure 7: Perturbations of open-loop state profiles

Figure 8: Profile of the states with noise
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Figure 9: Profile of the estimated states
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Figure 10: Filtering performance of outputs
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Figure 11: The measurement error and estimation error for case 1

Figure 12: Profiles of the state with noise and the estimated states
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Figure 14: The measurement error and estimation error for case 2
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Figure 15: The trace norm values of different sensor locations under the consideration of given

sensors location
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Table 1: Notation and Values of Parameters37

Process parameters Notations Numerical Values
Volumetric flow rate of chip Vc 0.0267 m3/min

Volumetric flow rate of
free liquor Vf 0.09 m3/min

Digester cross sectional area A 21 m2

Interphase heat-transfer coefficient U 827 kJ/min ·K ·m3

Heat capacities of the wood Cps 1.47 kJ/kg ·K
Heat capacities of the liquor Cpl 4.19 kJ/kg ·K

Table 2: Locations considered for each sensor

Temperature locations of wood chips/lm1 Temperature locations of free liquor/lm2

0.2, 1, 2, 3, 4, 5 0.2, 1, 2, 3, 4, 5
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