
For peer review only

Uncertainty Quantification in Machine Learning and
Nonlinear Least Squares Regression Models

Journal: AIChE Journal

Manuscript ID AIChE-21-24159

Wiley - Manuscript type: Research Article

Date Submitted by the
Author: 22-Jul-2021

Complete List of Authors: Zhan, Ni; Carnegie Mellon University, Chemical Engineering
Kitchin, John; Carnegie Mellon University, Chemical Engineering

Keywords: Artificial intelligence, uncertainty, machine learning

AIChE Journal

AIChE Journal

For peer review only

Uncertainty Quantification in Machine Learning and
Nonlinear Least Squares Regression Models

Ni Zhan and John R. Kitchin

July 22, 2021

Abstract

Machine learning (ML) models are valuable research tools for making accurate pre-
dictions. However, ML models often unreliably extrapolate outside their training data.
We propose an uncertainty quantification method for ML models (and generally for
other nonlinear models) with parameters trained by least squares regression. The un-
certainty measure is based on the multiparameter delta method from statistics, which
gives the standard error of the prediction. The uncertainty measure requires the gradi-
ent of the model prediction and the Hessian of the loss function, both with respect to
model parameters. Both the gradient and Hessian can be readily obtained from most
ML software frameworks by automatic differentiation. We show that the uncertainty
measure is larger for input space regions that are not part of the training data. There-
fore this method can be used to identify extrapolation and to aid in selecting training
data or assessing model reliability.

Page 1 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

1 Introduction

Machine learning (ML) models are used in many fields of science and engineering. They can

decrease computational time, make predictions and forecasts, and improve insights of com-

plex and high dimensional datasets. Models are more useful when they provide a prediction

with its uncertainty, and in some applications it may be critical to provide a reliable uncer-

tainty estimate1,2. The uncertainty estimate should also help identify input data regions that

lead to extrapolation. Overall, ML models can be used more reliably when robust uncer-

tainty quantification is available. In the simple case of low dimensional linear regression, an

analytical prediction interval is available3, and that can be used to calculate the uncertainty

intervals in many statistical software packages. The analytical prediction interval for linear

regression requires (XTX) to be invertible, where X ∈ Rn×d is the design matrix with n data

points and d feature dimensions. In general for more complex (nonlinear) models and higher

dimension datasets, analytical prediction intervals do not exist and alternative methods are

required.

Uncertainty quantification methods for ML models are an active area of research4–6. Some

common methods are model ensembling and training models with built in uncertainty such as

Gaussian process (GP) regression and quantile regression7,8. If we already have a model with

trained parameters, we may want to avoid training a different model type or additional model

ensemble. In these cases, this paper presents a simple uncertainty quantification method for

parameterized models trained on minimizing the summed squared error between a model

and a dataset. The method exploits automatic differentiation to calculate the Hessian of

the loss function based on summed squared errors, and provides an uncertainty estimate

which depends on the prediction point, model training data, and model itself. We show how

the uncertainty can identify if extrapolation is occurring and aids in dataset selection for

an example application of molecular simulation. In the remaining sections, we review the

background on uncertainty quantification and an application of ML models for molecular

1

Page 2 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

simulation, describe the method called the delta method, and show its use in an example

neural network that predicts energies from atomic structures.

1.1 Uncertainty Quantification Methods

An ML model is defined by its mathematical definition and training dataset. In complex

models, the mathematical definition may be best defined with a computing program (code)

and includes the model structure, parameters, and hyperparameters. The training data is

most likely preprocessed and modified to normalize and standardize them. The ML models

are fitted to the training data, usually by minimizing an error function. In parameterized

models, the training process determines the model parameters. We take the model parame-

ters, the error function, exact training dataset with its modifications, and all aspects of the

model’s mathematical definition to be the ML model.

Here we describe the motivation and need for the uncertainty estimate. When we use

a trained ML model to predict on another dataset, the prediction accuracy depends on the

training data used. If the new data is in an extrapolation region, the accuracy is not expected

to be good9. It is nonobvious when the model is predicting in an extrapolation region if the

ML model has a high dimension input space. A motivation for an uncertainty measurement

is to help determine when the model is extrapolating, or is simply not reliable. Knowledge of

the uncertainty helps identify when a model is reliable and indicates confidence in a model

prediction.

Uncertainty quantification methods for models include bootstrap, ensembling, using

model-specific uncertainty, and the delta method. Bootstrap, ensembling, and the delta

method can be used for parametric models and neural networks (NNs). Bootstrap uncer-

tainty is based on statistical theory, has some different variations, and requires training

multiple models on different bootstrap samples of the data or residuals10–12. With the dif-

ferent models, the uncertainty on predictions can be estimated.

Ensemble methods require training multiple models on the entire dataset, and the differ-

2

Page 3 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

ent models give the uncertainty13–15. The uncertainty estimate quantitatively improves as

the ensemble size increases, so the optimal number of ensemble models is unknown and must

be user determined16. Some studies used bootstrap uncertainty for NN models and showed

that it gave more reliable uncertainties than the delta method17,18, but training multiple

models is computationally expensive and time consuming.

Model-specific uncertainty include Gaussian process regression19, dropout for NNs20,

and Bayesian NNs21–23. Obtaining uncertainties in this way limits the possible mathematical

forms of the model. Dropout and Bayesian NNs are also more difficult to train than standard

NNs. Section 1.2 describes specific instances in which ensembling, bootstrap, and Gaussian

process methods were used for molecular simulation. In another method, the posterior of

model parameters can be approximated by the Laplace approximation, which is the second-

order Taylor series expansion around the optimal model parameters24,25. Hence the Hessian

of the log likelihood contains relevant information about uncertainty.

This work focuses on the delta method, a method which also uses the Hessian of the log

likelihood. The method is based on linearly approximating the model and uses an estimate

of the standard error of model parameters assuming maximum likelihood estimation (MLE).

Therefore, the method applies to models with parameters trained by minimizing squared

error, and the model structure could be a simple linear regression to complex nonlinear re-

gression including NNs. Different variants of the method use approximations of the Hessian,

and experiments tested the delta method on NN models17,26–30. We further describe the

method in Section 2 with theoretical details in the Appendix (Section 5).

1.2 Addressing Uncertainty in Molecular Simulation

We examine uncertainty quantification using the example application of molecular simula-

tion, an area which has benefited from ML. Here we describe the background of ML for

molecular simulation. Simulations allow researchers to obtain materials’ physical properties

and quickly screen materials. Molecular dynamics (MD) and Monte Carlo simulations re-

3

Page 4 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

quire a model of the potential energy surface (PES) which predicts energies and forces from

atomic configurations. The options for the PES model include first principles methods such

as density functional theory (DFT), physical potentials, and ML potentials. ML potentials

aim to achieve the high accuracy of DFT at a significantly faster computational time. ML

potentials are also more systematically improvable than physical potentials31. Many studies

have successfully used ML potentials in simulations32–35.

Uncertainty quantification is useful for ML potentials. Commonly used ML potentials

such as NNs will usually unreliably extrapolate on inputs much different from their training

data. A consequence of extrapolation during a molecular simulation is that it likely gives

wrong or unphysical results. The best ways to select enough of the relevant training space

are nonobvious, since the space of atomic structures is often large, not well understood, and

not possible to enumerate. Further, atomic structures are translated into fingerprints which

are high dimensional and less human-interpretable than the original atomic configurations.

Hence, we require a method to determine the uncertainty of a prediction from a ML potential,

and the quantitative uncertainty helps us avoid extrapolation and identify sparse regions in

the training dataset.

Current methods developed to address uncertainty are ensemble of potentials, on-the-

fly methods, and using ML models with built-in uncertainty. Ensemble methods indepen-

dently train two or more ML potentials, and check for agreement between them. In Behler’s

approach, they trained NNs with different architectures, and atomic structures whose pre-

dictions’ differ significantly across NNs are added to the training set36–38. Peterson et al.

trained an ensemble of 50 NN potentials and found that ensemble spread was a good indi-

cator for prediction error across the space39. Smith et al. also used ensemble disagreement

to approximate prediction error and select a small training set40,41.

In MD simulations, on-the-fly methods use a ML potential augmented with quantum

mechanical (QM) calculations42. There is a query if the ML prediction can be used. If it

fails, a QM calculation is run and added to a database, and the ML model can be retrained. A

4

Page 5 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

simple query is if the fingerprint is out of the minimum and maximum bounds in the current

database43. This is a minimum requirement that the ML model is not extrapolating; however,

guaranteeing that the fingerprint is within bounds of training data does not guarantee a low

error44.

Another approach is training Gaussian process regressions42,45 or other ML models with

built-in uncertainty estimates. Vandermause and Xie et al. used GP uncertainty to train

potentials on-the-fly46,47. Many ML models, such as NNs, do not have theoretical guarantees

for uncertainty of a prediction. Perturbation of NN weights could provide some range of

uncertainty48. Other work used dropout in NN training as a Bayesian approximation and

thereby calculating uncertainties for interatomic potentials49. Janet et al. used the distance

in values of the last layer of NNs (or latent space) as an uncertainty measure50. Tran et

al. compared GP, Bayesian NN, dropout NN, and ensembles of different NN structures and

found more conservative uncertainties for GP and overconfident uncertainties for Bayesian

NN, dropout, and NN ensemble51.

Musil et al. compared GP, ensembling with random subsets of the data, and bootstrap

methods for obtaining uncertainties of predicting formation energies on molecular datasets52.

They found that random sampling was easier to implement than bootstrapping, computa-

tionally faster than GP for uncertainty estimates, and matches the true error and uncertainty

from GP. Li et al. trained NN potentials with different NN structures (number of nodes),

weight initialization, and learning rates, and compared the resulting prediction accuracies53.

Their work showed a quantitative uncertainty arising from some NN hyperparameters, but

it required training several NN potentials for a new system, and does not provide confidence

or prediction intervals. In an alternative approach, Botu et al. fitted an empirical function

to an uncertainty estimate as a function of fingerprint distance between input and reference

training fingerprints54. Their uncertainty estimation approach requires a larger training set

size.

Overall, there is not a clear consensus on the best uncertainty quantification method, and

5

Page 6 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

its selection usually depends on the model form used, e.g. built-in uncertainty from GPR or

ensembles when using NNs. The delta method provides a simple alternative for providing

quantitative uncertainty when a pretrained model exists, without the necessity of training

additional models. That is the focus of this work.

2 Methods

The delta method applies to regression problems of a model with parameters g(θ). The

residuals of model prediction are assumed to be Gaussian distributed and centered around

zero. We assume the model parameters θ̂ were obtained by minimizing a function of the

summed squared errors, although the method can be extended to maximize a posteriori

estimation and cross-entropy loss. We obtain an approximate standard error of a model

prediction g(θ̂, x) by using a Taylor series approximation and an approximate standard error

of θ̂. Equation 1 shows the standard error g(θ̂, x) for a point x, following the delta method.

se(g(θ̂, x)) ≈

√
∂g(θ̂, x)

∂θ̂

T

I−1n
∂g(θ̂, x)

∂θ̂
(1)

where ∂g(θ̂,x)

∂θ̂
is the gradient of the model with respect to parameters at the point x

for which we are calculating uncertainty, ∂g(θ̂,x)

∂θ̂
nonzero, and In is the Fisher information

matrix, defined as the expectation of the Hessian of the negative log likelihood. The Fisher

information is related to the Hessian of the loss, usually the sum of squared errors, by

a scaling factor. Equation 1 shows that the model prediction of the standard error is a

function of the training data, model, and point for which the uncertainty is calculated.

For small to medium models, the delta method is faster and easier to implement compared

to ensembling, and the Hessian and gradients of the model are readily obtained with auto-

matic differentiation that is included in most machine learning packages. To demonstrate

the ease of use, we show a simple code example using the autograd55 package in Section 2.2.

The delta method is limited by model size since the Hessian will be m×m where m is number

6

Page 7 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

of parameters, and the Hessian needs to be inverted. For very large models, approximations

to the Hessian are required for the method, and for large NNs, Kronecker-factored Hessian

is an option24.

The uncertainties are calculated after the model has finished training, and the Fisher

information inverse only needs to be calculated once per model and training data set. In

previous tests, a model with 861 parameters and 1900 training data points required around

five minutes to calculate the inverse Fisher information with Intel Core i7-7820HQ CPU

@ 2.9GHz using autograd. Using more modern automatic differentiation frameworks are

expected to be faster. Calculating the uncertainties after obtaining the inverse Fisher infor-

mation requires much less time. Theoretically, calculation of the Fisher information matrix

scales quadratically with number of parameters and linearly with number of training data

points. In fact, the Hessian of the loss can be linearly separated by training data since the

loss is a sum over training data points.

The quality of standard errors calculated using the delta method depends on the fit

of the model. We found that well fitted models have better uncertainty measures, and our

assumptions required residuals to be independent, and identically distributed normal around

zero. Poorly fitted models have uncertainty measures that are less quantitatively accurate.

2.1 Practical Modifications to the Inverse Fisher Matrix

There are a few steps or best practices to modify how the inverse Fisher information matrix

is computed.

1. We start with H, the Hessian of the sum squared errors loss function. For some models,

such as NNs, the Hessians of the loss functions with respect to parameters are often

nearly singular with some eigenvalues much larger than the others56,57, and the optimal

parameters may be at a saddle point.

2. Add a small number ε to Hessian diagonal. Adding ε to the diagonals makes the matrix

7

Page 8 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

better conditioned for taking its inverse. ε should be larger in magnitude than the most

negative eigenvalue. We used ε = max(1e − 5, 1.05 · abs(λmin(H))), where λmin(H) is

the smallest eigenvalue of H. Modifying the Hessian of objective function with respect

to NN parameters has been suggested in literature and is justified because the top

eigenvalues are a few orders of magnitude larger than the other eigenvalues24,57,58.

Also note the Hessian conditioning suggests that the number of parameters of the NN

is much larger than the actual degrees of freedom of the NN.

3. We take the Moore-Penrose pseudoinverse (H + εI)−1. If the inverse exists, which is

most cases following step 2, it is the same as the true inverse.

4. Multiply (H + εI)−1 by a scaling factor α. This is done to calibrate the uncertainties

to be near the residuals. We set α to be mean squared error (MSE) in most cases. To

select α, we suggest trying nβ ·MSE where n is number of training data points and β

is any nonnegative number, but usually in range [0, 1]. The α should be chosen so that

uncertainties are the same order of magnitude as the residual errors for the training

dataset.

5. Force the scaled inverse P := α(H+εI)−1 to be positive semi-definite. For eigendecom-

position P = QΛQ−1, the closest positive semi-definite matrix in terms of Frobenius

norm is Qmax(Λ, 0)Q−1, where max is element-wise max59.

The final inverse Fisher information I−1n used in Equation 1 is Qmax(Λ, 0)Q−1.

2.2 Code Example

We show a simple code implementation of the delta method in Listing 46 using the autograd

package55. Note that obtaining the required gradients is a single line for the Hessian (line 24)

and gradients (line 30) , demonstrating the ease of automatic differentiation. Similar codes

would apply in PyTorch60 or other machine learning packages. In this simple example we fit

8

Page 9 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

a quadratic function to some slightly noisy data, and show the resulting confidence intervals

on the fit. The Hessian in this case was well-conditioned, so the modifications described

above were not necessary.

import autograd . numpy as np

from autograd import e lementwise grad , he s s i an

from sc ipy . opt imize import minimize

import matp lo t l i b . pyplot as p l t

from sc ipy . s t a t s . d i s t r i b u t i o n s import t

x = np . array ([0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9]) # {x , y} data

y = np . array ([0 . 0 , 0 . 1 , 0 . 3 , 0 . 5 , 0 . 8])

de f g (theta , x) :

’ ’ ’ f unc t i on with parameters thetha ’ ’ ’ #

return theta [0] ∗ x∗∗2 + theta [1] ∗ x + theta [2]

de f s s e (theta) :

’ ’ ’Summed squared e r r o r o b j e c t i v e funct ion ’ ’ ’

r e turn np . sum ((g (theta , x) − y)∗∗2)

i n i t i a l g u e s s = np . array ([0 . 1 , 0 . 5 , 0 . 2])

s o l = minimize (sse , i n i t i a l g u e s s) # minimize s s e

theta = s o l . x

ypred = g (theta , x)

h = hes s i an (s s e) (theta) # obta in Hess ian o f

9

Page 10 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

s s e us ing autograd

p = s s e (theta) / l en (x) ∗ np . l i n a l g . pinv (h) # i n v e r s e and s c a l e

Hess ian

unce r t s = []

f o r x i in x :

gprime = elementwise grad (g , 0) (theta , x i) # obta in g rad i en t

us ing autograd

uncer t s += [np . s q r t (gprime @ p @ gprime)] # d e l t a method

uncer t s = np . array (uncer t s)

t v a l = t . ppf (0 . 9 7 5 , l en (x)) # t−value

p l t . p l o t (x , y , ’ o ’) # p lo t the data , f i t and

con f idence i n t e r v a l s

p l t . p l o t (x , ypred)

p l t . p l o t (x , ypred + t v a l ∗ uncerts , ’−−r ’)

p l t . p l o t (x , ypred − t v a l ∗ uncerts , ’−−r ’)

p l t . x l a b e l (’ x ’)

p l t . y l a b e l (’ y ’)

p l t . l egend ([’ Data ’ , ’ Pred ic t ion ’ , ’95% conf idence ’])

p l t . s a v e f i g (’ s imple−code−ex . png ’)

Listing 1: Autograd example of the delta method.

This simple example shows all the pieces of the delta method. There is data, and a

function (line 11) with parameters that are fitted to the data. The regression here is done by

optimization (line 20); this problem is linear and could be solved analytically, but we show

the optimization approach for generality). We used automatic differentiation to obtain the

Hessian (line 24) and gradient of the function (line 30) with respect to the parameters. The

10

Page 11 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only
Figure 1: Result from Listing 46.

rest is conventional linear algebra.

In calculating the t-value (line 35), technically the degrees of freedom should be used in-

stead of number of datapoints. However for large NNs, the model degrees of freedom is much

smaller than the number of model parameters, and the effective degrees of freedom is un-

known. For simplicity, we used the number of datapoints to estimate the t-value throughout

our results.

3 Results

We show examples of using the delta method on different models to demonstrate how the

uncertainty behaves. We begin with a simple 1-D NN, and build in complexity in subsequent

examples.

3.1 One Dimension Input NN

This example is a one dimension input NN. We start with one dimension input for clearer

intuition and visualization. We generated synthetic data from the one dimensional Lennard

Jones (LJ) function and added some Gaussian noise. We fitted this data to a neural network

with structure [1, 4, 1] (one input, one hidden layer with four nodes, and one output) using

scipy.optimize.minimize. The NN had 13 total parameters.

11

Page 12 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

We test how the standard error changes with different training data sets. We generated

two sets of training data to fit the NN, and Fig. 2 shows the fits. These sets of training data

were from the same LJ function and had the same variance of Gaussian noise added. We

expect the true function to be within the confidence interval 95% of the time. In Fig. 2a,

the uncertainty increases for large and small x, which is desirable because we do not know

how the NN will behave in those regions outside the training data. In Fig. 2b, there is a

region of missing data in the middle, and the confidence interval expands in the region of

missing data. These cases demonstrate that the uncertainty depends on the training data

in a useful way. The uncertainty generally increases in regions with less data, which makes

sense because we are less certain of our model in a space with less training data.

(a) (b)

Figure 2: One dimension input NN and confidence intervals. a): 23 training data points, and
confidence interval wider at the edges. b): Region of missing data in middle, and confidence
interval expands in region of missing data.

3.2 High Dimensional NN Potential

3.2.1 Trained NN Potential

This example applies the delta uncertainty method to a high dimensional NN potential. We

use the SingleNN (implemented in PyTorch) and weighted Behler-Parinello style symmetry

12

Page 13 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

functions61–63. The data are DFT energy and force calculations based on atomic configura-

tions, specifically the dataset used in Boes 201764. The dataset contains 3907 unique AuPd

slabs, and example configurations are shown in Fig. 3. The symmetry functions transform

the atomic configuration information into a vector of numbers, or ”fingerprint”, and we used

four weighted G2 symmetry functions. For the NN, we used two hidden layers with 11 nodes

each; thus the NN architecture is [4, 11, 11, 1], which is 211 total parameters.

Figure 3: Three example atom configurations from dataset.

To demonstrate the usefulness of the uncertainty method, we start by training on a

subset of the data. This mimics the iterative approach often used in training these models.

We then check for extrapolation on the remaining data using the delta method. For this

first potential, 572 configurations with a 3.934 lattice constant were randomly split into

64%, 16%, 20% train, validation, test sets, respectively. The NN was trained on energies

and atomic forces using SingleNN, and uncertainties were calculated in the same PyTorch

framework.

Fig. 4 shows the energy parity plots of the training, validation, and test sets. The

parity is good in all cases, and root mean squared errors (RMSEs) are 0.003, 0.0023, 0.003

eV/atom for train, validation, and test, respectively. Fig. 5 shows the distributions of

standard errors of confidence for the three datasets. These distributions are very similar

and mostly overlapping. Fig. 6 shows the parity plot of the test-set with 95% prediction

intervals. The true values are within the prediction intervals for 98% of the dataset, which is

close to 95% and shows the delta method provides quantitatively reasonable uncertainties in

13

Page 14 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

this case. The main result is that similar datasets with the same accuracy using the model

will have similar distributions of uncertainties.

Figure 4: Parity plot of SingleNN.

Figure 5: Distribution of uncertainties (standard error confidence).

14

Page 15 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only
Figure 6: Parity plot with 95% prediction intervals for test set.

Next we use the same potential to predict on a new dataset. If the new dataset is

dissimilar from the training data, we expect the uncertainties to be high. While the training-

set all had 3.934 lattice constants, the new dataset has 4.034 and 4.134 lattice constants,

which we will refer to as predict-4.0 and 4.1 datasets. As a result, we expect the fingerprints

to differ from those of the train set, i.e. we know we are extrapolating here. Fig. 7 shows

the energy parity plots for the predict-sets with 95% prediction intervals. The predictions

are offset with an error, and the uncertainties are clearly much larger than those for the

test-set from Fig. 6. Table 1 shows the average standard error of confidence/prediction

for the datasets. Training and test-sets have around the same standard error confidence of

0.002 eV/atom, and predict-4.0 and 4.1 sets have higher uncertainties of 0.023 and 0.034

eV/atom, respectively, which are one order of magnitude larger than training and test.

Since this uncertainty is much larger, it could indicate that the model is extrapolating on

the predict-sets, and the parity plots (Fig. 7) seem to indicate this.

We examine the fingerprints, and Fig. 8 shows an example fingerprint for the train and

predict datasets. There are regions where the predict-4.0 and 4.1 atoms’ fingerprints are

outside of the training distributions, which is suggestive of extrapolation. For predict-4.0,

the true values are within the prediction intervals for 75% of the dataset, which is not that

close to 95%, however for predict-4.1, the true values were within the prediction intervals

for 0% of the dataset. This seems to indicate that the prediction interval becomes less

15

Page 16 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

quantitatively accurate as the extrapolation increases. However when the uncertainty is

much larger than the training uncertainties, the model is likely extrapolating, and we should

not trust the prediction. Therefore this uncertainty method helps identify the data regions

where a model extrapolates. Fig. 9 shows the standard error confidence vs. absolute energy

error, and their distributions for test and predict datasets. Fig. 9 shows the general trend

that uncertainty from the delta method increases when true error increases. The trend is

most obvious in a heterogeneous dataset.

Dataset Average Average
standard error standard error

confidence (eV/atom) prediction (eV/atom)
Test 0.0020 0.0036
Predict 4.0 0.0234 0.0235
Predict 4.1 0.0336 0.0337

Table 1: Average standard errors confidence of datasets.

Figure 7: Prediction on new lattice datasets, uncertainty may be much larger in an extrap-
olation region.

16

Page 17 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only
Figure 8: The predict-4.0 and 4.1 datasets have fingerprints outside of range of training
distribution (fingerprint example shown is eta=0 with Pd center atoms).

Figure 9: Standard error from delta method vs. absolute error and their distributions.

3.2.2 Uncertainties After Retraining

Next we retrain the potential with some of the predict-4.0 and 4.1 data and check how

uncertainties are affected. We expect the uncertainties to decrease after retraining. We

added 64% of each predict-4.0 and 4.1 dataset, or 365 datapoints each, and retrained. Fig.

17

Page 18 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

10 shows the energy parity plots of the new training and predict sets. After retraining,

the predict set is on parity and no longer offset. The true values are within the prediction

intervals for 98.7% of the training data and 98.5% of the predict data, which are close

to the theoretical 95% and show the uncertainties calculated from the delta method are

quantitatively reasonable. Fig. 11 shows the updated standard error confidence vs. absolute

energy error, and their distributions for test and predict datasets. After retraining, the

standard errors across datasets are mostly overlapping, and the average standard errors are

the same for the datasets. The average standard error confidence and predict are 0.002 and

0.003 eV/atom, respectively. Since we retrained on the predict-4.0 and 4.1 datasets, we are

no longer extrapolating on that data and the uncertainties updated to reflect this: they are

no longer an order of magnitude larger than the train-sets’ as was the case before retraining.

We can use this uncertainty method to iteratively retrain a potential by adding data with

high uncertainties. This is sometimes called active learning.

Figure 10: Parity plot after retraining.

18

Page 19 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

Figure 11: Distribution of uncertainties after retraining.

In the calculation of the Fisher information matrix, we used the errors of energies only,

although we trained on energies and forces. From a theoretical perspective, the Fisher infor-

mation should include some information about force errors, but exactly how much to include

is nonobvious. By using only loss of energies, we save computational time for calculating the

Fisher information, and the uncertainty measurement still accomplishes the objective and

is quantitatively reasonable. Therefore in practice, using only the loss of energies for the

Fisher information works well.

We can also extend uncertainty to other properties such as forces. For this case, in

Equation 1, g(θ̂) is force, which is − ∂E
∂position

, where E represents energy. We obtain g′(θ̂)

through automatic differentiation by taking the derivative of − ∂E
∂position

with respect to model

parameters. In this way, we use the delta method to calculate uncertainties for other quan-

tities of interest. Further work can be done to investigate the quality and methods for force

uncertainties of NN potentials.

There is a possibility for fast approximations of the Fisher information after retraining. If

19

Page 20 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

we retrain by adding one or a few new training points, we may want a cheaper calculation of

the Fisher information matrix. If the parameters of the model did not change from retraining,

then the new Fisher information is the summation of the original Fisher information and the

Fisher information for the new training points, because the loss is a sum over training points.

Since retraining likely alters the model parameters, the previous Fisher information from old

model parameters is an approximation. If only a few training points are added and model

parameters do not change much, taking the Fisher information of the new training points

and adding it to the original can be a fast approximation of the true Fisher information.

Further work is required to determine when this approximation is adequate.

4 Conclusions

The delta method is a fast and easy way to estimate uncertainty. It requires the Hessian of

the loss and gradient with respect to model parameters, and these are obtainable with most

machine learning packages using automatic differentiation. The delta method is applicable

to most models that are parametric and have nonzero gradients with respect to parameters.

The uncertainty estimate will depend on the training data, model, and input (point) for

which the uncertainty is calculated. The delta method is an alternative to ensemble or

bootstrapping methods for obtaining uncertainty estimates, and uncertainty estimates are

important because they can help determine when a model is extrapolating and increase

model reliability.

We showed an application of the delta method to a high-dimensional NN potential in

molecular simulation. We illustrated how we can iteratively retrain a model by adding data

with high uncertainties to improve it. This could also be done on the fly, e.g., while running

an MD simulation with a ML potential. The uncertainty can determine the longest timescale

MD simulation that is valid for a potential, or to identify when additional data should be

added to the training data to improve it. The utility of the delta method shown here extends

20

Page 21 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

far beyond molecular simulation, and it can also be applied to many other applications that

rely on linear or nonlinear regression models.

References

[1] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin,

Joshua V. Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your

model’s uncertainty? evaluating predictive uncertainty under dataset shift. CoRR,

2019.

[2] Benjamin Kompa, Jasper Snoek, and Andrew L. Beam. Second opinion needed: Com-

municating uncertainty in medical machine learning. npj Digital Medicine, 4(1):4, 2021.

[3] Larry Wasserman. All of Statistics. Springer Texts in Statistics. Springer New York,

2004.

[4] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon

Wilson. A simple baseline for bayesian uncertainty in deep learning. CoRR, 2019.

[5] Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov,

and Andrew Gordon Wilson. Subspace inference for bayesian deep learning. In Ryan P.

Adams and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty in Artificial

Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pages

1169–1179, Tel Aviv, Israel, 22–25 Jul 2020. PMLR.

[6] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji

Lakshminarayanan. Simple and principled uncertainty estimation with deterministic

deep learning via distance awareness. CoRR, 2020.

[7] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman.

Distribution-free predictive inference for regression. CoRR, 2016.

21

Page 22 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

[8] Yaniv Romano, Evan Patterson, and Emmanuel J. Candès. Conformalized quantile

regression. CoRR, 2019.

[9] Samad Hajinazar, Junping Shao, and Aleksey N. Kolmogorov. Stratified construction

of neural network based interatomic models for multicomponent materials. Physical

Review B, 95(1):014114, 2017.

[10] Tomohiro Endo, Tomoaki Watanabe, and Akio Yamamoto. Confidence interval estima-

tion by bootstrap method for uncertainty quantification using random sampling method.

Journal of Nuclear Science and Technology, 52(7-8):993–999, 2015.

[11] Glenn Palmer, Siqi Du, Alexander Politowicz, Joshua Paul Emory, Xiyu Yang, Anupraas

Gautam, Grishma Gupta, Zhelong Li, Ryan Jacobs, and Dane Morgan. Calibrated

bootstrap for uncertainty quantification in regression models. CoRR, 2021.

[12] Hongfei Du, Emre Barut, and Fang Jin. Uncertainty quantification in cnn through the

bootstrap of convex neural networks. Proceedings of the AAAI Conference on Artificial

Intelligence, 35(13):12078–12085, May 2021.

[13] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-

hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra

Acharya, Vladimir Makarenkov, and Saeid Nahavandi. A review of uncertainty quan-

tification in deep learning: Techniques, applications and challenges. Information Fusion,

nil(nil):nil, 2021.

[14] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter

ensembles for robustness and uncertainty quantification. CoRR, 2020.

[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable

predictive uncertainty estimation using deep ensembles. CoRR, 2016.

22

Page 23 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

[16] James O. Berger and Leonard A. Smith. On the statistical formalism of uncertainty

quantification. Annual Review of Statistics and Its Application, 6(1):433–460, 2019.

[17] Robert Tibshirani. A comparison of some error estimates for neural network models.

Neural Computation, 8(1):152–163, 1996.

[18] Richard Dybowski and Stephen J Roberts. Confidence intervals and prediction intervals

for feed-forward neural networks. Clinical Applications of Artificial Neural Networks,

pages 298–326, 2001.

[19] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning. MIT

Press, 2006.

[20] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. CoRR, 2015.

[21] David John Cameron Mackay. Bayesian methods for adaptive models. PhD thesis,

California Institute of Technology, 1992.

[22] Radford M. Neal. Priors for Infinite Networks, pages 29–53. Bayesian Learning for

Neural Networks. Springer New York, 1996.

[23] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight

uncertainty in neural networks. CoRR, 2015.

[24] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approxima-

tion for neural networks. In 6th International Conference on Learning Representations,

ICLR 2018-Conference Track Proceedings, volume 6. International Conference on Rep-

resentation Learning, 2018.

[25] Huijie Tian, Christopher Rzepa, Ronak Upadhyay, and Srinivas Rangarajan. Estimating

vibrational and thermodynamic properties of adsorbates with uncertainty using data

driven surrogates. AIChE Journal, 65(12), 2019.

23

Page 24 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

[26] Janet R. Donaldson and Robert B. Schnabel. Computational experience with confidence

regions and confidence intervals for nonlinear least squares. Technometrics, 29(1):67–82,

1987.

[27] Richard D. de Veaux, Jennifer Schumi, Jason Schweinsberg, and Lyle H. Ungar. Pre-

diction intervals for neural networks via nonlinear regression. Technometrics, 40(4):273,

1998.

[28] G. Papadopoulos, P.J. Edwards, and A.F. Murray. Confidence estimation methods

for neural networks: a practical comparison. IEEE Transactions on Neural Networks,

12(6):1278–1287, 2001.

[29] Burr Settles. Active learning literature survey. 2009.

[30] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya. Comprehensive review of

neural network-based prediction intervals and new advances. IEEE Transactions on

Neural Networks, 22(9):1341–1356, 2011.

[31] John R. Kitchin. Machine learning in catalysis. Nature Catalysis, 1(4):230–232, 2018.

[32] Jacob R. Boes and John R. Kitchin. Neural network predictions of oxygen interactions

on a dynamic Pd surface. Molecular Simulation, 43(5-6):346–354, 2017.

[33] Khosrow Shakouri, Jörg Behler, Jörg Meyer, and Geert-Jan Kroes. Accurate neural net-

work description of surface phonons in reactive gas-surface dynamics: N2 + Ru(0001).

The Journal of Physical Chemistry Letters, 8(10):2131–2136, 2017.

[34] Ryo Kobayashi, Daniele Giofré, Till Junge, Michele Ceriotti, and William A. Curtin.

Neural network potential for Al-Mg-Si alloys. Physical Review Materials, 1(5):053604,

2017.

[35] Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J. Cliffe, Rachel N.

Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott, and Gábor Csányi. Re-

24

Page 25 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

alistic atomistic structure of amorphous silicon from machine-learning-driven molecular

dynamics. The Journal of Physical Chemistry Letters, 9(11):2879–2885, 2018.

[36] J Behler. Representing potential energy surfaces by high-dimensional neural network

potentials. Journal of Physics: Condensed Matter, 26(18):183001, 2014.

[37] Jörg Behler. Constructing high-dimensional neural network potentials: A tutorial re-

view. International Journal of Quantum Chemistry, 115(16):1032–1050, 2015.

[38] Jörg Behler. First principles neural network potentials for reactive simulations of

large molecular and condensed systems. Angewandte Chemie International Edition,

56(42):12828–12840, 2017.

[39] Andrew A. Peterson, Rune Christensen, and Alireza Khorshidi. Addressing uncertainty

in atomistic machine learning. Physical Chemistry Chemical Physics, 19(18):10978–

10985, 2017.

[40] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E. Roit-

berg. Less is more: Sampling chemical space with active learning. The Journal of

Chemical Physics, 148(24):241733, 2018.

[41] Justin S Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers, Christian

Devereux, Kipton Barros, Sergei Tretiak, Olexandr Isayev, and Adrian Roitberg. Ap-

proaching coupled cluster accuracy with a general-purpose neural network potential

through transfer learning. 6 2019.

[42] Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular dynamics with

on-the-fly machine learning of quantum-mechanical forces. Physical Review Letters,

114(9):096405, 2015.

[43] Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework to ac-

25

Page 26 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

celerate ab initio molecular dynamics. International Journal of Quantum Chemistry,

115(16):1074–1083, 2014.

[44] Nongnuch Artrith and Jörg Behler. High-dimensional neural network potentials for

metal surfaces: A prototype study for copper. Physical Review B, 85(4):045439, 2012.

[45] Albert P. Bartok, James Kermode, Noam Bernstein, and Gabor Csanyi. Machine learn-

ing a general purpose interatomic potential for silicon. CoRR, 2018.

[46] Jonathan Vandermause, Steven B. Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M.

Kolpak, and Boris Kozinsky. On-the-fly active learning of interpretable bayesian force

fields for atomistic rare events. npj Computational Materials, 6(1):20, 2020.

[47] Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, and Boris Kozinsky.

Bayesian force fields from active learning for simulation of inter-dimensional transfor-

mation of stanene. npj Computational Materials, 7(1):40, 2021.

[48] Rune Christensen. Error Mitigation in Computational Design of Sustainable Energy

Materials. PhD thesis, Department of Energy Conversion and Storage, Technical Uni-

versity of Denmark, 2016.

[49] Mingjian Wen and Ellad B. Tadmor. Uncertainty quantification in molecular simulations

with dropout neural network potentials. npj Computational Materials, 6(1):124, 2020.

[50] Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, and Heather Kulik. A

quantitative uncertainty metric controls error in neural network-driven chemical discov-

ery. Chemical Science, 2019.

[51] Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric Xing, and

Zachary W Ulissi. Methods for comparing uncertainty quantifications for material prop-

erty predictions. Machine Learning: Science and Technology, 2020.

26

Page 27 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

[52] Félix Musil, Michael J. Willatt, Mikhail A. Langovoy, and Michele Ceriotti. Fast and

accurate uncertainty estimation in chemical machine learning. Journal of Chemical

Theory and Computation, page acs.jctc.8b00959, 2019.

[53] Yumeng Li, Weirong Xiao, and Pingfeng Wang. Uncertainty quantification of artificial

neural network based machine learning potentials. In Volume 12: Materials: Genetics

to Structures, 11 2018.

[54] V. Botu, R. Batra, J. Chapman, and R. Ramprasad. Machine learning force fields: Con-

struction, validation, and outlook. The Journal of Physical Chemistry C, 121(1):511–

522, 2016.

[55] autograd.

[56] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep

learning: Singularity and beyond. CoRR, 2016.

[57] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny

subspace. CoRR, 2018.

[58] Jeff Gill and Gary King. What to do when your hessian is not invertible. Sociological

Methods & Research, 33(1):54–87, 2004.

[59] Sheung Hun Cheng and Nicholas J. Higham. A modified cholesky algorithm based on

a symmetric indefinite factorization. SIAM J. MATRIX ANAL. APPL, 1998.

[60] PyTorch: http://pytorch.org/.

[61] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neu-

ral network potentials. The Journal of Chemical Physics, 134(7):074106, 2011.

[62] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand. Wacsf-

weighted atom-centered symmetry functions as descriptors in machine learning poten-

tials. The Journal of Chemical Physics, 148(24):241709, 2018.

27

Page 28 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

[63] Mingjie Liu and John R. Kitchin. Singlenn: Modified behler-parrinello neural net-

work with shared weights for atomistic simulations with transferability. The Journal of

Physical Chemistry C, 124(32):17811–17818, 2020.

[64] Jacob R. Boes and John R. Kitchin. Modeling segregation on aupd(111) surfaces with

density functional theory and monte carlo simulations. The Journal of Physical Chem-

istry C, 121(6):3479–3487, 2017.

28

Page 29 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

5 Appendix

The delta method is based on regression, and gives a standard error of prediction by linearly

approximating the model. We are doing a regression with data {xi, yi}. Our model predicts

y (xi | θ), and the theory of the delta method assumes that the data output is the sum of

the model prediction and some Gaussian error.

yi = y (xi | θ) + εi

with εi ∼ N(0, σi), yi as data output, xi as data input, and θ as model parameters.

The log likelihood of the data given the model, ln, is

ln = log P ({yi} | θ)

Since we assumed εi was Gaussian,

ln ∝ −
1

2

∑
i

(
yi − y(xi | θ)

σi

)2

The above term includes the sum of squared errors which is common as the loss or

regression objective function during training. In least squares regression, we minimize the

sum squared errors to get the maximum likelihood estimate of parameters, θ̂.

The standard error of θ̂

se(θ̂) ≈ 1√
In(θ)

where In(θ) is the Fisher information matrix defined as

In(θ) = −Eθ
[
∂2 ln({yi} | θ)

∂θ2

]
The standard error of θ̂ is obtained from doing a Taylor’s series expansion around l′n(θ)3.

29

Page 30 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

We are able to obtain this standard error by assuming θ̂ is centered and Gaussian around

the true parameters θ.

In the Fisher information, note that ln is the same log likelihood defined earlier, so

the Fisher information is proportional to the Hessian of the loss with respect to model

parameters, and thus can be readily obtained.

Now we will obtain the standard error of model prediction. For some function g(θ̂),

se(g(θ̂)) ≈
√

(g′)T I−1n g′

and g′(θ̂) is nonzero. The standard error of g(θ̂) is obtained by doing a Taylor’s series

around g(θ) and using se(θ̂) obtained previously3.

The standard error depends on the training data because the Fisher information depends

on the training data. The standard error also depends on the model, its parameters, and

the point we are predicting, because these determine g′.

In this work, we assume the error εi is independent of the data point xi. This allows the

simplification

ln ∝ −
1

2

∑
i

(
yi − y(xi | θ)

σi

)2

= − 1

2σ2

∑
i

(yi − y(xi | θ))2

We estimate σ2 as

σ2 ≈ 1

n

n∑
i

(yi − y(xi | θ))2

Once obtaining standard errors for a prediction, we can construct confidence intervals.

We use tα
2
· se(g(θ̂)) for (1 − α)% confidence intervals. The confidence interval indicates

confidence of fit. The prediction standard error has an additional term

prediction se(g(θ̂)) =
√

(g′)T I−1n g′ + σ2
r

30

Page 31 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For peer review only

where σ2
r is residual variance and approximated by

σ2
r ≈

1

n

n∑
i

(gi − g(xi | θ))2

A (1 − α)% prediction interval is then tα
2
· (pred. se(g(θ̂))). The prediction interval

represents how often a new point would fall in the interval.

31

Page 32 of 32

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

