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Abstract

20 Machine learning (ML) models are valuable research tools for making accurate pre-
dictions. However, ML models often unreliably extrapolate outside their training data.
We propose an uncertainty quantification method for ML models (and generally for
other nonlinear models) with parameters trained by least squares regression. The un-
25 certainty measure is based on the multiparameter delta method from statistics, which
26 gives the standard error of the prediction. The uncertainty measure requires the gradi-
27 ent of the model prediction and the Hessian of the loss function, both with respect to
28 model parameters. Both the gradient and Hessian can be readily obtained from most
29 ML software frameworks by automatic differentiation. We show that the uncertainty
measure is larger for input space regions that are not part of the training data. There-
fore this method can be used to identify extrapolation and to aid in selecting training
33 data or assessing model reliability.
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1 Introduction

Machine learning (ML) models are used in many fields of science and engineering. They can
decrease computational time, make predictions and forecasts, and improve insights of com-
plex and high dimensional datasets. Models are more useful when they provide a prediction
with its uncertainty, and in some applications it may be critical to provide a reliable uncer-
tainty estimate'?. The uncertainty estimate should also help identify input data regions that
lead to extrapolation. Overall, ML models can be used more reliably when robust uncer-
tainty quantification is available. In the simple case of low dimensional linear regression, an
analytical prediction interval is available®, and that can be used to calculate the uncertainty
intervals in many statistical software packages. The analytical prediction interval for linear
regression requires (X7 X) to be invertible, where X € R™*? is the design matrix with n data
points and d feature dimensions. In general for more complex (nonlinear) models and higher
dimension datasets, analytical prediction intervals do not exist and alternative methods are
required.

Uncertainty quantification methods for ML models are an active area of research* ®. Some
common methods are model ensembling and training models with built in uncertainty such as
Gaussian process (GP) regression and quantile regression”®. If we already have a model with
trained parameters, we may want to avoid training a different model type or additional model
ensemble. In these cases, this paper presents a simple uncertainty quantification method for
parameterized models trained on minimizing the summed squared error between a model
and a dataset. The method exploits automatic differentiation to calculate the Hessian of
the loss function based on summed squared errors, and provides an uncertainty estimate
which depends on the prediction point, model training data, and model itself. We show how
the uncertainty can identify if extrapolation is occurring and aids in dataset selection for
an example application of molecular simulation. In the remaining sections, we review the

background on uncertainty quantification and an application of ML models for molecular
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simulation, describe the method called the delta method, and show its use in an example

neural network that predicts energies from atomic structures.

1.1 Uncertainty Quantification Methods

An ML model is defined by its mathematical definition and training dataset. In complex
models, the mathematical definition may be best defined with a computing program (code)
and includes the model structure, parameters, and hyperparameters. The training data is
most likely preprocessed and modified to normalize and standardize them. The ML models
are fitted to the training data, usually by minimizing an error function. In parameterized
models, the training process determines the model parameters. We take the model parame-
ters, the error function, exact training dataset with its modifications, and all aspects of the
model’s mathematical definition to be the ML model.

Here we describe the motivation and need for the uncertainty estimate. When we use
a trained ML model to predict on another dataset, the prediction accuracy depends on the
training data used. If the new data is in an extrapolation region, the accuracy is not expected
to be good?. Tt is nonobvious when the model is predicting in an extrapolation region if the
ML model has a high dimension input space. A motivation for an uncertainty measurement
is to help determine when the model is extrapolating, or is simply not reliable. Knowledge of
the uncertainty helps identify when a model is reliable and indicates confidence in a model
prediction.

Uncertainty quantification methods for models include bootstrap, ensembling, using
model-specific uncertainty, and the delta method. Bootstrap, ensembling, and the delta
method can be used for parametric models and neural networks (NNs). Bootstrap uncer-
tainty is based on statistical theory, has some different variations, and requires training
multiple models on different bootstrap samples of the data or residuals®'?. With the dif-
ferent models, the uncertainty on predictions can be estimated.

Ensemble methods require training multiple models on the entire dataset, and the differ-
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13715 " The uncertainty estimate quantitatively improves as

ent models give the uncertainty
the ensemble size increases, so the optimal number of ensemble models is unknown and must
be user determined!®. Some studies used bootstrap uncertainty for NN models and showed
that it gave more reliable uncertainties than the delta method!'™'®, but training multiple
models is computationally expensive and time consuming.

Model-specific uncertainty include Gaussian process regression'’, dropout for NNs2,
and Bayesian NNs?1"2%, Obtaining uncertainties in this way limits the possible mathematical
forms of the model. Dropout and Bayesian NNs are also more difficult to train than standard
NNs. Section 1.2 describes specific instances in which ensembling, bootstrap, and Gaussian
process methods were used for molecular simulation. In another method, the posterior of
model parameters can be approximated by the Laplace approximation, which is the second-
order Taylor series expansion around the optimal model parameters®*25. Hence the Hessian
of the log likelihood contains relevant information about uncertainty:.

This work focuses on the delta method, a method which also uses the Hessian of the log
likelihood. The method is based on linearly approximating the model and uses an estimate
of the standard error of model parameters assuming maximum likelihood estimation (MLE).
Therefore, the method applies to models with parameters trained by minimizing squared
error, and the model structure could be a simple linear regression to complex nonlinear re-
gression including NNs. Different variants of the method use approximations of the Hessian,

and experiments tested the delta method on NN models!”?63° We further describe the

method in Section 2 with theoretical details in the Appendix (Section 5).

1.2 Addressing Uncertainty in Molecular Simulation

We examine uncertainty quantification using the example application of molecular simula-
tion, an area which has benefited from ML. Here we describe the background of ML for
molecular simulation. Simulations allow researchers to obtain materials’ physical properties
and quickly screen materials. Molecular dynamics (MD) and Monte Carlo simulations re-
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quire a model of the potential energy surface (PES) which predicts energies and forces from
atomic configurations. The options for the PES model include first principles methods such
as density functional theory (DFT), physical potentials, and ML potentials. ML potentials
aim to achieve the high accuracy of DFT at a significantly faster computational time. ML
potentials are also more systematically improvable than physical potentials3!. Many studies
have successfully used ML potentials in simulations®?3°.

Uncertainty quantification is useful for ML potentials. Commonly used ML potentials
such as NNs will usually unreliably extrapolate on inputs much different from their training
data. A consequence of extrapolation during a molecular simulation is that it likely gives
wrong or unphysical results. The best ways to select enough of the relevant training space
are nonobvious, since the space of atomic structures is often large, not well understood, and
not possible to enumerate. Further, atomic structures are translated into fingerprints which
are high dimensional and less human-interpretable than the original atomic configurations.
Hence, we require a method to determine the uncertainty of a prediction from a ML potential,
and the quantitative uncertainty helps us avoid extrapolation and identify sparse regions in
the training dataset.

Current methods developed to address uncertainty are ensemble of potentials, on-the-
fly methods, and using ML models with built-in uncertainty. Ensemble methods indepen-
dently train two or more ML potentials, and check for agreement between them. In Behler’s
approach, they trained NNs with different architectures, and atomic structures whose pre-
dictions’ differ significantly across NNs are added to the training set3°3%. Peterson et al.
trained an ensemble of 50 NN potentials and found that ensemble spread was a good indi-
cator for prediction error across the space®’. Smith et al. also used ensemble disagreement
to approximate prediction error and select a small training set*%4!

In MD simulations, on-the-fly methods use a ML potential augmented with quantum

mechanical (QM) calculations??. There is a query if the ML prediction can be used. If it

fails, a QM calculation is run and added to a database, and the ML model can be retrained. A
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simple query is if the fingerprint is out of the minimum and maximum bounds in the current
database®3. This is a minimum requirement that the ML model is not extrapolating; however,
guaranteeing that the fingerprint is within bounds of training data does not guarantee a low
error 4.

Another approach is training Gaussian process regressions*?#> or other ML models with
built-in uncertainty estimates. Vandermause and Xie et al. used GP uncertainty to train
potentials on-the-fly 647, Many ML models, such as NNs, do not have theoretical guarantees
for uncertainty of a prediction. Perturbation of NN weights could provide some range of
uncertainty*®. Other work used dropout in NN training as a Bayesian approximation and
thereby calculating uncertainties for interatomic potentials*®. Janet et al. used the distance

50 Tran et

in values of the last layer of NNs (or latent space) as an uncertainty measure
al. compared GP, Bayesian NN, dropout NN, and ensembles of different NN structures and
found more conservative uncertainties for GP and overconfident uncertainties for Bayesian
NN, dropout, and NN ensemble®!.

Musil et al. compared GP, ensembling with random subsets of the data, and bootstrap
methods for obtaining uncertainties of predicting formation energies on molecular datasets®?.
They found that random sampling was easier to implement than bootstrapping, computa-
tionally faster than GP for uncertainty estimates, and matches the true error and uncertainty
from GP. Li et al. trained NN potentials with different NN structures (number of nodes),
weight initialization, and learning rates, and compared the resulting prediction accuracies®.
Their work showed a quantitative uncertainty arising from some NN hyperparameters, but
it required training several NN potentials for a new system, and does not provide confidence
or prediction intervals. In an alternative approach, Botu et al. fitted an empirical function
to an uncertainty estimate as a function of fingerprint distance between input and reference
training fingerprints®®. Their uncertainty estimation approach requires a larger training set

size.

Overall, there is not a clear consensus on the best uncertainty quantification method, and
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its selection usually depends on the model form used, e.g. built-in uncertainty from GPR or
ensembles when using NNs. The delta method provides a simple alternative for providing
quantitative uncertainty when a pretrained model exists, without the necessity of training

additional models. That is the focus of this work.

2 Methods

The delta method applies to regression problems of a model with parameters g(6). The
residuals of model prediction are assumed to be Gaussian distributed and centered around
zero. We assume the model parameters § were obtained by minimizing a function of the
summed squared errors, although the method can be extended to maximize a posteriori
estimation and cross-entropy loss. We obtain an approximate standard error of a model
prediction g(é, x) by using a Taylor series approximation and an approximate standard error

of 6. Equation 1 shows the standard error g(é, x) for a point x, following the delta method.

. \/ag(é,x) ]7139(‘9: z) (1)

se(g(0,x)) = ~ 2
(9(6,2)) 50 50

% is the gradient of the model with respect to parameters at the point z

for which we are calculating uncertainty, %

where
nonzero, and I, is the Fisher information
matrix, defined as the expectation of the Hessian of the negative log likelihood. The Fisher
information is related to the Hessian of the loss, usually the sum of squared errors, by
a scaling factor. Equation 1 shows that the model prediction of the standard error is a
function of the training data, model, and point for which the uncertainty is calculated.

For small to medium models, the delta method is faster and easier to implement compared
to ensembling, and the Hessian and gradients of the model are readily obtained with auto-
matic differentiation that is included in most machine learning packages. To demonstrate
the ease of use, we show a simple code example using the autograd® package in Section 2.2.

The delta method is limited by model size since the Hessian will be m xm where m is number
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of parameters, and the Hessian needs to be inverted. For very large models, approximations
to the Hessian are required for the method, and for large NNs, Kronecker-factored Hessian
is an option?.

The uncertainties are calculated after the model has finished training, and the Fisher
information inverse only needs to be calculated once per model and training data set. In
previous tests, a model with 861 parameters and 1900 training data points required around
five minutes to calculate the inverse Fisher information with Intel Core i7-7820HQ CPU
@ 2.9GHz using autograd. Using more modern automatic differentiation frameworks are
expected to be faster. Calculating the uncertainties after obtaining the inverse Fisher infor-
mation requires much less time. Theoretically, calculation of the Fisher information matrix
scales quadratically with number of parameters and linearly with number of training data
points. In fact, the Hessian of the loss can be linearly separated by training data since the
loss is a sum over training data points.

The quality of standard errors calculated using the delta method depends on the fit
of the model. We found that well fitted models have better uncertainty measures, and our
assumptions required residuals to be independent, and identically distributed normal around

zero. Poorly fitted models have uncertainty measures that are less quantitatively accurate.

2.1 Practical Modifications to the Inverse Fisher Matrix

There are a few steps or best practices to modify how the inverse Fisher information matrix

is computed.

1. We start with H, the Hessian of the sum squared errors loss function. For some models,
such as NNs, the Hessians of the loss functions with respect to parameters are often

56,57

nearly singular with some eigenvalues much larger than the others , and the optimal

parameters may be at a saddle point.

2. Add a small number € to Hessian diagonal. Adding € to the diagonals makes the matrix

7
AIChE Journal

Page 8 of 32



Page 9 of 32

oNOYTULT D WN =

The final inverse Fisher information I, used in Equation 1 is @ max(A,0)Q

AIChE Journal

better conditioned for taking its inverse. € should be larger in magnitude than the most
negative eigenvalue. We used ¢ = max(le — 5,1.05 - abs(Apin(H))), where A\yin(H) is
the smallest eigenvalue of H. Modifying the Hessian of objective function with respect
to NN parameters has been suggested in literature and is justified because the top
eigenvalues are a few orders of magnitude larger than the other eigenvalues?457:58,

Also note the Hessian conditioning suggests that the number of parameters of the NN

is much larger than the actual degrees of freedom of the NN.

. We take the Moore-Penrose pseudoinverse (H + €I)~!. If the inverse exists, which is

most cases following step 2, it is the same as the true inverse.

. Multiply (H + eI)~! by a scaling factor o.. This is done to calibrate the uncertainties

to be near the residuals. We set a to be mean squared error (MSE) in most cases. To
select o, we suggest trying n® - M'SE where n is number of training data points and 3
is any nonnegative number, but usually in range [0, 1]. The « should be chosen so that
uncertainties are the same order of magnitude as the residual errors for the training

dataset.

. Force the scaled inverse P := a(H +¢lI)™! to be positive semi-definite. For eigendecom-

position P = QAQ™!, the closest positive semi-definite matrix in terms of Frobenius

norm is @ max(A,0)Q ™!, where max is element-wise max®.

-1

2.2 Code Example

We show a simple code implementation of the delta method in Listing 46 using the autograd
package®. Note that obtaining the required gradients is a single line for the Hessian (line 24)
and gradients (line 30) , demonstrating the ease of automatic differentiation. Similar codes

would apply in PyTorch® or other machine learning packages. In this simple example we fit
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a quadratic function to some slightly noisy data, and show the resulting confidence intervals

on the fit. The Hessian in this case was well-conditioned, so the modifications described
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above were not necessary.

import autograd.numpy as np

from autograd import elementwise_grad , hessian
from scipy.optimize import minimize

import matplotlib.pyplot as plt

from scipy.stats.distributions import t

x = np.array ([0.1, 0.3, 0.5, 0.7, 0.9]) # {x, y} data
y = np.array ([0.0, 0.1, 0.3, 0.5, 0.8])

def g(theta, x):

"77function with parameters thetha’’’ #

return theta [0] * x**2 + theta[l] % x + theta[2]

def sse(theta):

"7 ’Summed squared error objective function

return np.sum((g(theta, x) — y)*%2)

initial_guess = np.array ([0.1, 0.5, 0.2])
sol = minimize(sse, initial_guess) # minimize sse
theta = sol.x

ypred = g(theta, x)

h = hessian(sse)(theta) # obtain Hessian of

9
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# sse using autograd

inverse and scale

RIS

p = sse(theta) / len(x) * np.linalg.pinv(h)

oNOYTULT D WN =

# Hessian
10 uncerts = |[]
12 for xi in x:

14 gprime = elementwise_grad(g, 0)(theta, xi) # obtain gradient

o
=

using autograd
18 uncerts += [np.sqrt(gprime @ p @ gprime )| # delta method

20 uncerts = np.array (uncerts)
24 tval = t.ppf(0.975, len(x)) # t—value

28 plt.plot(x, y, ’0’) # plot the data, fit and
30 # confidence intervals
32 plt.plot(x, ypred)

34 plt.plot(x, ypred + tval % uncerts, '——r17)

36 plt.plot(x, ypred — tval % uncerts, '——r’)

)

('x’
40 plt.ylabel ("y ")
(

b

38 plt . xlabel

4 plt .legend (| 'Data’, ’Prediction’, '95% confidence ’])
44 plt.savefig (’simple—code—ex.png’)

46 Listing 1: Autograd example of the delta method.

This simple example shows all the pieces of the delta method. There is data, and a
function (line 11) with parameters that are fitted to the data. The regression here is done by
optimization (line 20); this problem is linear and could be solved analytically, but we show
the optimization approach for generality). We used automatic differentiation to obtain the

Hessian (line 24) and gradient of the function (line 30) with respect to the parameters. The

59 10
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081 ® Data -
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=== 95% confidence 24
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004{ €7

01 02 03 04 05 06 07 D08 09
Figure 1: Result from Listing 46.

rest is conventional linear algebra.

In calculating the t-value (line 35), technically the degrees of freedom should be used in-
stead of number of datapoints. However for large NNs, the model degrees of freedom is much
smaller than the number of model parameters, and the effective degrees of freedom is un-
known. For simplicity, we used the number of datapoints to estimate the t-value throughout

our results.

3 Results

We show examples of using the delta method on different models to demonstrate how the
uncertainty behaves. We begin with a simple 1-D NN, and build in complexity in subsequent

examples.

3.1 One Dimension Input NN

This example is a one dimension input NN. We start with one dimension input for clearer
intuition and visualization. We generated synthetic data from the one dimensional Lennard
Jones (LJ) function and added some Gaussian noise. We fitted this data to a neural network
with structure [1, 4, 1] (one input, one hidden layer with four nodes, and one output) using

scipy.optimize.minimize. The NN had 13 total parameters.
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1
2
2 We test how the standard error changes with different training data sets. We generated
Z two sets of training data to fit the NN, and Fig. 2 shows the fits. These sets of training data
; were from the same LJ function and had the same variance of Gaussian noise added. We
?O expect the true function to be within the confidence interval 95% of the time. In Fig. 2a,
:; the uncertainty increases for large and small x, which is desirable because we do not know
12 how the NN will behave in those regions outside the training data. In Fig. 2b, there is a
12 region of missing data in the middle, and the confidence interval expands in the region of
1; missing data. These cases demonstrate that the uncertainty depends on the training data
;g in a useful way. The uncertainty generally increases in regions with less data, which makes
;; sense because we are less certain of our model in a space with less training data.
23
24
25 :
26 1 ® Data
41 4

27 0 \‘ 1 —— NN ,:’
28 214 1% f(x) /
29 W p W -—-- 95% confidence ,/
30 —4 W i 4 W

> 1 L A\
31 P

_10_ T S

37 0.350 0.375 0.400 0.425 0.450 0.475 0.350 0.375 0.400 0.425 0.450 0.475
38 X X

49 (a) (b)

Figure 2: One dimension input NN and confidence intervals. a): 23 training data points, and
confidence interval wider at the edges. b): Region of missing data in middle, and confidence
45 interval expands in region of missing data.

49 3.2 High Dimensional NN Potential

52 3.2.1 Trained NN Potential

This example applies the delta uncertainty method to a high dimensional NN potential. We

use the SingleNN (implemented in PyTorch) and weighted Behler-Parinello style symmetry

59 12
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functions® 9. The data are DFT energy and force calculations based on atomic configura-
tions, specifically the dataset used in Boes 2017%. The dataset contains 3907 unique AuPd
slabs, and example configurations are shown in Fig. 3. The symmetry functions transform
the atomic configuration information into a vector of numbers, or ”fingerprint”, and we used
four weighted G, symmetry functions. For the NN, we used two hidden layers with 11 nodes

each; thus the NN architecture is [4, 11, 11, 1], which is 211 total parameters.

Figure 3: Three example atom configurations from dataset.

To demonstrate the usefulness of the uncertainty method, we start by training on a
subset of the data. This mimics the iterative approach often used in training these models.
We then check for extrapolation on the remaining data using the delta method. For this
first potential, 572 configurations with a 3.934 lattice constant were randomly split into
64%, 16%, 20% train, validation, test sets, respectively. The NN was trained on energies
and atomic forces using SingleNN, and uncertainties were calculated in the same PyTorch
framework.

Fig. 4 shows the energy parity plots of the training, validation, and test sets. The
parity is good in all cases, and root mean squared errors (RMSEs) are 0.003, 0.0023, 0.003
eV/atom for train, validation, and test, respectively. Fig. 5 shows the distributions of
standard errors of confidence for the three datasets. These distributions are very similar
and mostly overlapping. Fig. 6 shows the parity plot of the test-set with 95% prediction
intervals. The true values are within the prediction intervals for 98% of the dataset, which is

close to 95% and shows the delta method provides quantitatively reasonable uncertainties in

13
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will have similar distributions of uncertainties.
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Figure 4: Parity plot of SingleNN.
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Figure 5: Distribution of uncertainties (standard error confidence).
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Figure 6: Parity plot with 95% prediction intervals for test set.

Next we use the same potential to predict on a new dataset. If the new dataset is
dissimilar from the training data, we expect the uncertainties to be high. While the training-
set all had 3.934 lattice constants, the new dataset has 4.034 and 4.134 lattice constants,
which we will refer to as predict-4.0 and 4.1 datasets. As a result, we expect the fingerprints
to differ from those of the train set, i.e. we know we are extrapolating here. Fig. 7 shows
the energy parity plots for the predict-sets with 95% prediction intervals. The predictions
are offset with an error, and the uncertainties are clearly much larger than those for the
test-set from Fig. 6. Table 1 shows the average standard error of confidence/prediction
for the datasets. Training and test-sets have around the same standard error confidence of
0.002 eV/atom, and predict-4.0 and 4.1 sets have higher uncertainties of 0.023 and 0.034
eV /atom, respectively, which are one order of magnitude larger than training and test.
Since this uncertainty is much larger, it could indicate that the model is extrapolating on
the predict-sets, and the parity plots (Fig. 7) seem to indicate this.

We examine the fingerprints, and Fig. 8 shows an example fingerprint for the train and
predict datasets. There are regions where the predict-4.0 and 4.1 atoms’ fingerprints are
outside of the training distributions, which is suggestive of extrapolation. For predict-4.0,
the true values are within the prediction intervals for 75% of the dataset, which is not that
close to 95%, however for predict-4.1, the true values were within the prediction intervals

for 0% of the dataset. This seems to indicate that the prediction interval becomes less

15
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quantitatively accurate as the extrapolation increases.
much larger than the training uncertainties, the model is likely extrapolating, and we should
not trust the prediction. Therefore this uncertainty method helps identify the data regions
where a model extrapolates. Fig. 9 shows the standard error confidence vs. absolute energy
error, and their distributions for test and predict datasets. Fig. 9 shows the general trend

that uncertainty from the delta method increases when true error increases. The trend is

most obvious in a heterogeneous dataset.

Dataset Average
standard error
confidence (eV/atom)

Average
standard error
prediction (eV/atom)

Test 0.0020
Predict 4.0 0.0234
Predict 4.1 0.0336

0.0036
0.0235
0.0337

Table 1: Average standard errors confidence of datasets.

I Predict 4.0, 95% prediction : + Predict 4.1, 95% prediction
£ 55
g i T
> 7 gt
i ',1::' #
> —4.01 i #+
5 e L F
c 5 .II#
2 — g e
Z -45 s #
T+
—4.5 —4.0 -3.5 —4.5 —4.0 -35

DFT Energy (eV/atom)

Figure 7: Prediction on new lattice datasets, uncertainty may be much larger in an extrap-

olation region.
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Figure 8: The predict-4.0 and 4.1 datasets have fingerprints outside of range of training
distribution (fingerprint example shown is eta=0 with Pd center atoms).
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Figure 9: Standard error from delta method vs. absolute error and their distributions.

3.2.2 Uncertainties After Retraining

Next we retrain the potential with some of the predict-4.0 and 4.1 data and check how

uncertainties are affected. We expect the uncertainties to decrease after retraining. We

added 64% of each predict-4.0 and 4.1 dataset, or 365 datapoints each, and retrained. Fig.

17
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10 shows the energy parity plots of the new training and predict sets. After retraining,
the predict set is on parity and no longer offset. The true values are within the prediction
intervals for 98.7% of the training data and 98.5% of the predict data, which are close
to the theoretical 95% and show the uncertainties calculated from the delta method are
quantitatively reasonable. Fig. 11 shows the updated standard error confidence vs. absolute
energy error, and their distributions for test and predict datasets. After retraining, the
standard errors across datasets are mostly overlapping, and the average standard errors are
the same for the datasets. The average standard error confidence and predict are 0.002 and
0.003 eV /atom, respectively. Since we retrained on the predict-4.0 and 4.1 datasets, we are
no longer extrapolating on that data and the uncertainties updated to reflect this: they are
no longer an order of magnitude larger than the train-sets’ as was the case before retraining.
We can use this uncertainty method to iteratively retrain a potential by adding data with

high uncertainties. This is sometimes called active learning.

-3.0
I Train, 95% prediction e I Predict 4.0, 4.1, 95% prediction
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Figure 10: Parity plot after retraining.
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Figure 11: Distribution of uncertainties after retraining.

In the calculation of the Fisher information matrix, we used the errors of energies only,
although we trained on energies and forces. From a theoretical perspective, the Fisher infor-
mation should include some information about force errors, but exactly how much to include
is nonobvious. By using only loss of energies, we save computational time for calculating the
Fisher information, and the uncertainty measurement still accomplishes the objective and
is quantitatively reasonable. Therefore in practice, using only the loss of energies for the
Fisher information works well.

We can also extend uncertainty to other properties such as forces. For this case, in

~ ~

Equation 1, g(6) is force, which is —%, where F represents energy. We obtain ¢'(0)
through automatic differentiation by taking the derivative of —5 9E__ with respect to model
position

parameters. In this way, we use the delta method to calculate uncertainties for other quan-
tities of interest. Further work can be done to investigate the quality and methods for force
uncertainties of NN potentials.

There is a possibility for fast approximations of the Fisher information after retraining. If
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we retrain by adding one or a few new training points, we may want a cheaper calculation of
the Fisher information matrix. If the parameters of the model did not change from retraining,
then the new Fisher information is the summation of the original Fisher information and the
Fisher information for the new training points, because the loss is a sum over training points.
Since retraining likely alters the model parameters, the previous Fisher information from old
model parameters is an approximation. If only a few training points are added and model
parameters do not change much, taking the Fisher information of the new training points
and adding it to the original can be a fast approximation of the true Fisher information.

Further work is required to determine when this approximation is adequate.

4 Conclusions

The delta method is a fast and easy way to estimate uncertainty. It requires the Hessian of
the loss and gradient with respect to model parameters, and these are obtainable with most
machine learning packages using automatic differentiation. The delta method is applicable
to most models that are parametric and have nonzero gradients with respect to parameters.
The uncertainty estimate will depend on the training data, model, and input (point) for
which the uncertainty is calculated. The delta method is an alternative to ensemble or
bootstrapping methods for obtaining uncertainty estimates, and uncertainty estimates are
important because they can help determine when a model is extrapolating and increase
model reliability.

We showed an application of the delta method to a high-dimensional NN potential in
molecular simulation. We illustrated how we can iteratively retrain a model by adding data
with high uncertainties to improve it. This could also be done on the fly, e.g., while running
an MD simulation with a ML potential. The uncertainty can determine the longest timescale
MD simulation that is valid for a potential, or to identify when additional data should be

added to the training data to improve it. The utility of the delta method shown here extends
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far beyond molecular simulation, and it can also be applied to many other applications that

rely on linear or nonlinear regression models.
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5 Appendix

The delta method is based on regression, and gives a standard error of prediction by linearly
approximating the model. We are doing a regression with data {z;,y;}. Our model predicts
y (x; | 9), and the theory of the delta method assumes that the data output is the sum of

the model prediction and some Gaussian error.

vi=y(x|0)+e¢

with ¢; ~ N(0,0;), y; as data output, z; as data input, and 6 as model parameters.

The log likelihood of the data given the model, [, is

In = log P({yi} | 0)

Since we assumed ¢; was Gaussian,

o3 3 (U LELDY

i
The above term includes the sum of squared errors which is common as the loss or

regression objective function during training. In least squares regression, we minimize the

~

sum squared errors to get the maximum likelihood estimate of parameters, 6.

The standard error of

~ 1
se(f) ~ "G

where 1,,(0) is the Fisher information matrix defined as

1,(6) = —E, [M]

062

The standard error of 6 is obtained from doing a Taylor’s series expansion around I, (6)3.

29
AIChE Journal



Page 31 of 32

oNOYTULT D WN =

AIChE Journal

We are able to obtain this standard error by assuming 6 is centered and Gaussian around
the true parameters 6.

In the Fisher information, note that [, is the same log likelihood defined earlier, so
the Fisher information is proportional to the Hessian of the loss with respect to model
parameters, and thus can be readily obtained.

Now we will obtain the standard error of model prediction. For some function g(é),

se(9(0)) = /(¢TI g

~ ~

and ¢'(0) is nonzero. The standard error of ¢(#) is obtained by doing a Taylor’s series
around ¢(#) and using se(d) obtained previously?.

The standard error depends on the training data because the Fisher information depends
on the training data. The standard error also depends on the model, its parameters, and
the point we are predicting, because these determine ¢'.

In this work, we assume the error ¢; is independent of the data point x;. This allows the

simplification

I _% 3 <w) _ _% ~ (i~ yla | 0))

- o]
(A (A

We estimate o2 as

SR o VRN
g anz:(yz y<$1|9)>

Once obtaining standard errors for a prediction, we can construct confidence intervals.

~

We use ta - se(g(f)) for (1 — a)% confidence intervals. The confidence interval indicates

confidence of fit. The prediction standard error has an additional term

prediction se(g(0)) = /(¢)T1;1g + 02
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2

where o

is residual variance and approximated by

n

ol ~ =Y (i —glai | 6))°

A (1 — a)% prediction interval is then ta - (pred. se(g())). The prediction interval

represents how often a new point would fall in the interval.
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