6. References

Altwegg, R., Collingham, Y. C., Erni, B., & Huntley, B. (2013). Density-dependent dispersal and the speed of range expansions. Diversity and Distributions, 19(1), 60–68. https://doi.org/10.1111/j.1472-4642.2012.00943.x
Andrade-Restrepo, M., Champagnat, N., & Ferrière, R. (2019). Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion. Ecology Letters, 22(5), 767–777. https://doi.org/10.1111/ele.13234
Bartelt, R. J., Cossé, A. A., Zilkowski, B. W., Wiedenmann, R. N., & Raghu, S. (2008). Early-summer pheromone biology of Galerucella calmariensis and relationship to dispersal and colonization. Biological Control, 46(3), 409–416. https://doi.org/10.1016/j.biocontrol.2008.05.010
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using {lme4}. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bean, D., & Dudley, T. (2018). A synoptic review of Tamarix biocontrol in North America: tracking success in the midst of controversy. BioControl, 63(3), 361–376. https://doi.org/10.1007/s10526-018-9880-x
Bean, D. W., Dalin, P., & Dudley, T. L. (2012). Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evolutionary Applications, 5(5), 511–523. https://doi.org/10.1111/j.1752-4571.2012.00262.x
Bean, D. W., Dudley, T. L., & Keller, J. C. (2007). Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Environmental Entomology, 36(1), 15–25. https://doi.org/10.1603/0046-225X(2007)36[15:STODIL]2.0.CO;2
Bean, D. W., Wang, T., Bartelt, R. J., & Zilkowski, B. W. (2007). Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.). Environmental Entomology, 36(3), 531–540. https://doi.org/10.1603/0046-225x(2007)36[531:ditlbd]2.0.co;2
Berger, D., Olofsson, M., Friberg, M., Karlsson, B., Wiklund, C., & Gotthard, K. (2012). Intraspecific variation in body size and the rate of reproduction in female insects - adaptive allometry or biophysical constraint? Journal of Animal Ecology, 81(6), 1244–1258. https://doi.org/10.1111/j.1365-2656.2012.02010.x
Berthouly-Salazar, C., van Rensburg, B. J., Le Roux, J. J., van Vuuren, B. J., & Hui, C. (2012). Spatial sorting drives morphological variation in the invasive bird, acridotheris tristis. PLoS ONE, 7(5), 1–9. https://doi.org/10.1371/journal.pone.0038145
Bitume, E. V., Bean, D., Stahlke, A. R., & Hufbauer, R. A. (2017). Hybridization affects life-history traits and host specificity in Diorhabda spp. Biological Control, 111(May), 45–52. https://doi.org/10.1016/j.biocontrol.2017.05.009
Bitume, E. V., Bonte, D., Ronce, O., Bach, F., Flaven, E., Olivieri, I., & Nieberding, C. M. (2013). Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecology Letters, 16(4), 430–437. https://doi.org/10.1111/ele.12057
Bonte, D., & Dahirel, M. (2017). Dispersal: a central and independent trait in life history. Oikos, 126, 472–479. https://doi.org/10.1111/oik.03801
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2), 205–225. https://doi.org/10.1017/S1464793104006645
Brommer, J. E., Merilä, J., & Kokko, H. (2002). Reproductive timing and individual fitness. Ecology Letters, 5(6), 802–810. https://doi.org/10.1046/j.1461-0248.2002.00369.x
Brooks, M. E., Kristensen, K., Darrigo, M. R., Rubim, P., Uriarte, M., Bruna, E., & Bolker, B. M. (2019). Statistical modeling of patterns in annual reproductive rates. Ecology, 100(7), 1–7. https://doi.org/10.1002/ecy.2706
Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, M., & Bolker, B. M. (2017). glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal, 9(2), 378–400. http://orbit.dtu.dk/files/154739064/Publishers_version.pdf
Brown, G. P., Kelehear, C., & Shine, R. (2013). The early toad gets the worm: Cane toads at an invasion front benefit from higher prey availability. Journal of Animal Ecology, 82(4), 854–862. https://doi.org/10.1111/1365-2656.12048
Burton, O. J., Phillips, B. L., & Travis, J. M. J. (2010). Trade-offs and the evolution of life-histories during range expansion. Ecology Letters, 13(10), 1210–1220. https://doi.org/10.1111/j.1461-0248.2010.01505.x
Chuang, A., & Peterson, C. R. (2016). Expanding population edges: Theories, traits, and trade-offs. Global Change Biology, 22(2), 494–512. https://doi.org/10.1111/gcb.13107
Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12(3), 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x
Cossé, A. A., Bartelt, R. J., Zilkowski, B. W., Bean, D. W., & Petroski, R. J. (2005). The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.): Identification of two behaviorally active components. Journal of Chemical Ecology, 31(3), 657–670. https://doi.org/10.1007/s10886-005-2053-2
De Bona, S., Bruneaux, M., Lee, A. E. G., Reznick, D. N., Bentzen, P., & López-Sepulcre, A. (2019). Spatio-temporal dynamics of density-dependent dispersal during a population colonisation. Ecology Letters, 22(4), 634–644. https://doi.org/10.1111/ele.13205
DeLoach, C. J., Lewis, P. A., Herr, J. C., Carruthers, R. I., Tracy, J. L., & Johnson, J. (2003). Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) from Asia, a biological control agent for saltcedars (Tamarix: Tamaricaceae) in the Western United States. Biological Control, 27(2), 117–147. https://doi.org/10.1016/S1049-9644(03)00003-3
Endriss, S. B., Vahsen, M. L., Bitume, E. V., Grey Monroe, J., Turner, K. G., Norton, A. P., & Hufbauer, R. A. (2019). The importance of growing up: juvenile environment influences dispersal of individuals and their neighbours. Ecology Letters, 22(1), 45–55. https://doi.org/10.1111/ele.13166
Fronhofer, E. A., & Altermatt, F. (2015). Eco-evolutionary feedbacks during experimental range expansions. Nature Communications, 6. https://doi.org/10.1038/ncomms7844
Fronhofer, E. A., Gut, S., & Altermatt, F. (2017). Evolution of density-dependent movement during experimental range expansions. Journal of Evolutionary Biology, 30(12), 2165–2176. https://doi.org/10.1111/jeb.13182
Fronhofer, E. A., Nitsche, N., & Altermatt, F. (2017). Information use shapes the dynamics of range expansions into environmental gradients. Global Ecology and Biogeography, 26(4), 400–411. https://doi.org/10.1111/geb.12547
Hartig, F. (2020). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. (R package version 0.3.1).
Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B. A., Moore, K., Taylor, C., & Thomson, D. (2005). The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 8, 91–101. https://doi.org/10.1111/j.1461-0248.2004.00687.x
Herrera, A. M., Dahlsten, D. D., Tomic-Carruthers, N., & Carruthers, R. I. (2005). Estimating Temperature-Dependent Developmental Rates of Diorhabda elongata (Coleoptera: Chrysomelidae), a Biological Control Agent of Saltcedar (Tamarix spp.). Environmental Entomology, 34(4), 775–784. https://doi.org/10.1603/0046-225x-34.4.775
Hill, J. K., Griffiths, H. M., & Thomas, C. D. (2011). Climate change and evolutionary adaptations at species’ range margins. Annual Review of Entomology, 56, 143–159. https://doi.org/10.1146/annurev-ento-120709-144746
Hillaert, J., Boeye, J., Stoks, R., & Bonte, D. (2015). The evolution of thermal performance can constrain dispersal during range shifting. Journal of Biological Dynamics, 9(1), 317–335. https://doi.org/10.1080/17513758.2015.1078503
Hughes, C. L., Hill, J. K., & Dytham, C. (2003). Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proceedings of the Royal Society B: Biological Sciences, 270(SUPPL. 2), 147–150. https://doi.org/10.1098/rsbl.2003.0049
Jamison, L. R., Johnson, M. J., Bean, D. W., & Riper, C. van. (2018). Phenology and Abundance of Northern Tamarisk Beetle, Diorhabda carinulata Affecting Defoliation of Tamarix. Southwestern Entomologist, 43(3), 571–584. https://doi.org/10.3958/059.043.0302
Jan, P. L., Lehnen, L., Besnard, A. L., Kerth, G., Biedermann, M., Schorcht, W., Petit, E. J., Le Gouar, P., & Puechmaille, S. J. (2019). Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proceedings of the Royal Society B: Biological Sciences, 286(1906). https://doi.org/10.1098/rspb.2019.0384
Joe, H., & Zhu, R. (2005). Generalized poisson distribution: The property of mixture of poisson and comparison with negative binomial distribution. Biometrical Journal, 47(2), 219–229. https://doi.org/10.1002/bimj.200410102
Kelehear, C., & Shine, R. (2020). Tradeoffs between dispersal and reproduction at an invasion front of cane toads in tropical Australia. Scientific Reports, 10(1), 1–7. https://doi.org/10.1038/s41598-019-57391-x
Klopfstein, S., Currat, M., & Excoffier, L. (2006). The Fate of Mutations Surfing on the Wave of a Range Expansion. Molecular Biology and Evolution, 23(3), 482–490. https://doi.org/10.1093/molbev/msj057
Kokko, H., & López-Sepulcre, A. (2006). From individual dispersal to species ranges: Perspectives for a changing world. Science, 313, 789–791. https://doi.org/10.1126/science.1128566
Kubisch, A., Holt, R. D., Poethke, H. J., & Fronhofer, E. A. (2014). Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos, 123(1), 5–22. https://doi.org/10.1111/j.1600-0706.2013.00706.x
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). {lmerTest} Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://cran.r-project.org/package=emmeans
Lewis, P. A., DeLoach, C. J., Knutson, A. E., Tracy, J. L., & Robbins, T. O. (2003). Biology of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae), an Asian leaf beetle for biological control of saltcedars (Tamarix spp.) in the United States. Biological Control, 27(2), 101–116. https://doi.org/10.1016/S1049-9644(03)00002-1
Li, X. Y., & Kokko, H. (2019). Sex-biased dispersal: a review of the theory. Biological Reviews, 94(2), 721–736. https://doi.org/10.1111/brv.12475
Lombaert, E., Estoup, A., Facon, B., Joubard, B., Grégoire, J. C., Jannin, A., Blin, A., & Guillemaud, T. (2014). Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. Journal of Evolutionary Biology, 27(3), 508–517. https://doi.org/10.1111/jeb.12316
Maes, S., Massart, X., Grégoire, J. C., & De Clercq, P. (2014). Dispersal potential of native and exotic predatory ladybirds as measured by a computer-monitored flight mill. BioControl, 59(4), 415–425. https://doi.org/10.1007/s10526-014-9576-9
Merwin, A. C. (2019). Flight capacity increases then declines from the core to the margins of an invasive species’ range. Biology Letters, 15, 20190496.
Minter, M., Pearson, A., Lim, K. S., Wilson, K., Chapman, J. W., & Jones, C. M. (2018). The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecological Entomology, 43(4), 397–411. https://doi.org/10.1111/een.12521
Monty, A., & Mahy, G. (2010). Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae). Oikos, 119(10), 1563–1570. https://doi.org/10.1111/j.1600-0706.2010.17769.x
Muller-Scharer, H., Lommen, S. T. E., Rossinelli, M., Bonini, M., Boriani, M., Bosio, G., & Schaffner, U. (2014). Ophraella communa, the ragweed leaf beetle has successfully landed in Europe. Weed Research, 54, 109–119.
Mustin, K., Benton, T. G., Dytham, C., & Travis, J. M. J. (2009). The dynamics of climate-induced range shifting; perspectives from simulation modelling. Oikos, 118(1), 131–137. https://doi.org/10.1111/j.1600-0706.2008.17025.x
Ozsoy, A. Z., Stahlke, A. R., Jamison, L., & Johnson, M. J. (2019). Genetic Identification and 892 Hybrid Analysis of Tamarisk Leaf Beetle (Diorhabda spp.). and Tamarisk Weevil (Coniatus 893 spp.) along the Rio Grande River NM watershed. Army Corps of Engineers Contract No. W912PP-14-P-0041.
Peischl, S., Dupanloup, I., Kirkpatrick, M., & Excoffier, L. (2013). On the accumulation of deleterious mutations during range expansions. Molecular Ecology, 22, 5972–5982. https://doi.org/10.1111/mec.12524
Peischl, S., & Excoffier, L. (2015). Expansion load: Recessive mutations and the role of standing genetic variation. Molecular Ecology, 24(9), 2084–2094. https://doi.org/10.1111/mec.13154
Peischl, S., Kirkpatrick, M., & Excoffier, L. (2015). Expansion Load and the Evolutionary Dynamics of a Species Range. The American Naturalist, 185(4), E81–E93. https://doi.org/10.1086/680220
Phillips, B. L. (2015). Evolutionary processes make invasion speed difficult to predict. Biological Invasions, 17(7), 1949–1960. https://doi.org/10.1007/s10530-015-0849-8
Phillips, B. L., Brown, G. P., & Shine, R. (2010a). Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. Journal of Evolutionary Biology, 23(12), 2595–2601. https://doi.org/10.1111/j.1420-9101.2010.02118.x
Phillips, B. L., Brown, G. P., & Shine, R. (2010b). Life-history evolution in range-shifting populations. Ecology, 91(6), 1617–1627. https://doi.org/10.1890/07-1861.1
Phillips, B. L., Brown, G. P., Travis, J. M. J., & Shine, R. (2008). Reid’s Paradox Revisited: The Evolution of Dispersal Kernels during Range Expansion. The American Naturalist, 172(S1), S34–S48. https://doi.org/10.1086/588255
Phillips, B. L., Brown, G. P., Webb, J. K., & Shine, R. (2006). Invasion and the evolution of speed in toads. Nature, 439(7078), 803. https://doi.org/10.1038/439803a
R Core Team. (2018). R: A language and environment for statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org
Ronce, O., & Clobert, J. (2012). Dispersal syndromes. In J. Clobert, M. Baguette, T. G. Benton, J. M. Bullock, & S. Ducatez (Eds.), Dispersal ecology and evolution (pp. 119–138). Oxford University Press.
Saastamoinen, M., Bocedi, G., Cote, J., Legrand, D., Guillaume, F., Wheat, C. W., Fronhofer, E. A., Garcia, C., Henry, R., Husby, A., Baguette, M., Bonte, D., Coulon, A., Kokko, H., Matthysen, E., Niitepõld, K., Nonaka, E., Stevens, V. M., Travis, J. M. J., … del Mar Delgado, M. (2018). Genetics of dispersal. Biological Reviews, 93(1), 574–599. https://doi.org/10.1111/brv.12356
Schumacher, P., Weyeneth, A., Weber, D. C., & Dorn, S. (1997). Long flights in Cydia pomonella L. (Lepidoptera: Tortricidae) measured by a flight mill: Influence of sex, mated status and age. Physiological Entomology, 22(2), 149–160. https://doi.org/10.1111/j.1365-3032.1997.tb01152.x
Shine, R., Brown, G. P., & Phillips, B. L. (2011). An evolutionary process that assembles phenotypes through space rather than through time. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5708–5711. https://doi.org/10.1073/pnas.1018989108
Simmons, A. D., & Thomas, C. D. (2004). Changes in Dispersal during Species’ Range Expansions. The American Naturalist, 164(3), 378–395.
Stahlke, A. R., Bitume, E. V, Ozsoy, A. Z., Bean, D. W., Veillet, A., Clark, M. I., Clark, E. I., Moran, P., Hufbauer, R. A., & Hohenlohe, P. A. (2021). Hybridization and range expansion in tamarisk beetles (Diorhabda spp.) introduced to North America for classical biological control. Evolutionary Applications, 00, 1–18. https://doi.org/10.1111/eva.13325
Stearns, S. C. (1976). Life-history tactics: A review of the ideas. The Quarterly Review of Biology, 51(1), 3–47. https://doi.org/10.1086/409052
Stearns, S. C. (1989). Trade-offs in life-history evolution. Function Ecology, 3, 259–268.
Stevens, V. M., Trochet, A., Blanchet, S., Moulherat, S., Clobert, J., & Baguette, M. (2013). Dispersal syndromes and the use of life-histories to predict dispersal. Evolutionary Applications, 6, 630–642.
Szűcs, M., Melbourne, B. A., Tuff, T., Weiss-Lehman, C., & Hufbauer, R. A. (2017). Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecology Letters, 20(4), 436–444. https://doi.org/10.1111/ele.12743
Szűcs, M., Vercken, E., Bitume, E. V., & Hufbauer, R. A. (2019). The implications of rapid eco-evolutionary processes for biological control - a review. Entomologia Experimentalis et Applicata, 167(7), 598–615. https://doi.org/10.1111/eea.12807
Tabassum, S., & Leishman, M. R. (2018). Have your cake and eat it too: greater dispersal ability and faster germination towards range edges of an invasive plant species in eastern Australia. Biological Invasions, 20(5), 1199–1210. https://doi.org/10.1007/s10530-017-1620-0
Therry, L., Bonte, D., & Stoks, R. (2015). Higher investment in flight morphology does not trade off with fecundity estimates in a poleward range-expanding damselfly. Ecological Entomology, 40(2), 133–142. https://doi.org/10.1111/een.12170
Travis, J. M. J., & Dytham, C. (2002). Dispersal evolution during invasions. Evolutionary Ecology Research, 4(8), 1119–1129.
Travis, J. M. J., Munkemuller, T., Burton, O. J., Best, A., Dytham, C., & Johst, K. (2007). Deleterious Mutations Can Surf to High Densities on the Wave Front of an Expanding Population. Molecular Biology and Evolution, 24(10), 2334–2343. https://doi.org/10.1093/molbev/msm167
Travis, J. M. J., Mustin, K., Benton, T. G., & Dytham, C. (2009). Accelerating invasion rates result from the evolution of density-dependent dispersal. Journal of Theoretical Biology, 259(1), 151–158. https://doi.org/10.1016/j.jtbi.2009.03.008
Tung, S., Mishra, A., Shreenidhi, P. M., Sadiq, M. A., Joshi, S., Sruti, V. R. S., & Dey, S. (2017). Simultaneous evolution of multiple dispersal components and kernel. Oikos. https://doi.org/10.1111/oik.04618
Van Klinken, R. D., & Edwards, O. R. (2002). Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecology Letters, 5(4), 590–596. https://doi.org/10.1046/j.1461-0248.2002.00343.x
Van Petegem, K. H. P., Boeye, J., Stoks, R., & Bonte, D. (2016). Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion. The American Naturalist, 188(5), 485–498. https://doi.org/10.1086/688666
Wolz, M., Klockmann, M., Schmitz, T., Pekár, S., Bonte, D., & Uhl, G. (2020). Dispersal and life-history traits in a spider with rapid range expansion. Movement Ecology, 8, 2.
Wright, M. G., & Bennett, G. M. (2018). Evolution of biological control agents following introduction to new environments. BioControl, 63(1), 105–116. https://doi.org/10.1007/s10526-017-9830-z