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Abstract

In this paper, we prove that the following planar Schrodinger-Poisson system with

Zero mass
~Au+ ¢u = f(u), x¢€R?
A¢ = 2mu?, r € R?,
admits a nontrivial radially symmetric solution under weaker assumptions on f by using
some new analytical approaches.
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1 Introduction

Considered the following planar Schrodinger-Poisson system

—Au+V(z)u+ ¢u= f(u), z¢€R? 1)

A¢ = 2mu?, x € R?,
where V € C(R?,[0,00)) and f € C(R,R). In the past several years, Alves and Figueiredo
[3], Cingolani and Weth [17], Du and Weth [18],Chen and Tang [11, 12], 14, [I5] obtained
some interesting results on the existence of nontrivial solutions, ground state solutions and

infinitely many solutions for (1.1J).
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System ([1.1]) is the special form for the Schrédinger-Poisson system of the type

~Au+V(z)u+¢u= f(u), xRV, 1.2)
1.2
A¢ = 2mu?, zeRY,

where N > 2. It is well-known that the solutions of (1.2)) are related to the solitary wave
solutions to the following nonlinear Schrodinger-Poisson system
—ityy — Ay + E(z)Y + pop = f(v), zeRN, >0,

Ap = |9)?, reRN, >0,

(1.3)

where ¢ : RN x R — C is the wave function, E(z) = V() — a with a € R is a real-valued
external potential, ¢ represents an internal potential for a nonlocal self-interaction of the
wave function and the nonlinear term f describes the interaction effect among particles.
System arises from quantum mechanics (see e.g. [8, O, 24]) and in semiconductor
theory [7), 25, 26]. In the last decades, system has attracted considerable attention, see
[4, 5 10, [13], 19, 20} 27, 29, 30}, 31, 33} 34, 35].

From the second equation in (1.1)), we can obtain that ¢(z) = 2m(I's * u?)(x), i.e., the

1

convolution of 27u? with the fundamental solution I's(z) = 5= In|z| of the Laplacian. With

this formal inversion, system ((1.1)) is converted into an equivalent integro-differential equation

—Au+V(z)u+ 27Ty u?)u = f(u), xR (1.4)
Denote by ¢9.,(7) = 27(T'y x u?)(z). Then at least formally, the energy functional associated
with (1.4]) is
1

1
Z(u) = = / (\Vu|2 + V(m)u2) de+ > | ¢ouuide — F(u)de,
2 Jp2 4 Jg2 "7 R2

here and in the sequel F(t) = fg f(s)ds.

In contrast with the case N = 3, the applicability of variational methods is not straight-
forward for N = 2, since the corresponding energy functional Z is not well-defined on the
natural Sobolev space H'(R?) due to the appearance of the sign-changing and unbounded
logarithmic integral kernel In |z|. This also exhibits some serious mathematical differences to
the case N = 3 (see [14} [I5] 17, [18]). To overcome this obstacle, Cingolani and Weth [17],

inspired by Stubbe [2§], developed a variational framework for the following equation

—Au+V(z)u+ </ In |z — y u2(y)dy> u=|ul"%u, zcR? (1.5)
R2
within the smaller Hilbert space

= u 1 2: X n s U/QIE 0 . .
X—{ c H'(R?) /R2[V()+1(1+| Du2dz < } (1.6)
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By using the Nehari manifold argument and a new strong compactness condition (® satisfies
the Cerami condition at arbitrary energy levels after suitable translation), they proved that
has ground state solutions when ¢ > 4 and V(x) is a positive 1-periodic function. In
the case where V(x) = Vp > 0, they also obtained the existence of nonradial solutions which
have arbitrarily many nodal domains. Based on the strong compactness condition in [I7]
and the Pohozaev type argument, Du and Weth [18] provided a counterpart of the results
of [I7] in the case where V(z) = Vp > 0 and 2 < ¢ < 4. In the papers [14] and [15],
Chen and Tang developed a new variational framework for system in the space which
consists of axially symmetric functions. They established a new inequality and proposed a
new approach to recover the compactness for the (PS)-sequence. By using this approach,
they proved some existence results on nontrivial solutions and ground state solutions under
the following assumptions on V and f, which are much weaken than the ones in [17, [18].

(V1) V € CHR?,R), V(z) = V(|z1], [z2]), liminf ;) V(z) > 0, and there exists a constant

©¢ > 0 such that |V (z)| + |[VV(z) - 2| < O for all x € R

(F1) f € C(R,R), and there exist constants Cy > 0 and p € (3,00) such that
FOI<Co(1+ LY, V(z,t) eR® X R;
(F2) f(t)=o(t) ast — 0;
(F3) F(t) > 0 for all t € R, and there exist constants ay, co, Ry > 0 and x > 1 such that
f)t =3F(t) +apt> >0, VteR,

and

<o [f(t)t —3F(t) + aot®], V¥ [t| > Ry.

We would like to point out that the condition liminf|,_,., V() > 0 plays a crucial role
in verifying the Mountain Pass geometry for the energy functional associated with (1.1) in
the arguments of [14] and [15].

When V =0, reduces to the following planar Schrédinger-Poisson system with zero

mass
—Au+ ¢u = f(u), x€R2?
(1.7)
A¢ = 21mu?, x € R?.
In the recent paper [16], Chen and Tang proved that system (1.7)) has a nontrivial axially

symmetric solution provided f satisfies (F1) and the following two assumptions:

(F2') f(t) = o(t?) as t — 0;



(F3') F(t) >0, VteR, and there exist u > 4 and v > 0 such that

f)t > pF(t) —vt?, VteR.

It is easy to see that (F3) is much weaker than (F3’). In the present paper, inspired by [14]
and [I6], we will establish the existence of nontrivial radially symmetric solutions for (|1.7))

under (F1), (F3) and the following condition:

(F2") Timy 0 57 =1 € [0, +00).

Obviously, (F2”) is weaker than (F2'). In particular, f(t) = a|t|P=?t with @ > 0 and p > 3
satisfies (F1), (F2”) and (F3), but it does not satisfy (F2') and (F3') when p = 3 and
p € [3,4], respectively. Moreover, there are many functions satisfying (F1), (F2”) and (F3).

For example,
i) f(t) = (|¢tP~2+b|t|72) t with b> 0 and p > ¢ > 3;
ii) f(t) = alt|tn(l + %) with a > 0.

As in ([1.4)), system ([1.7)) can be converted into an equivalent integro-differential equation

—Au+ 27Ty xu?)u = f(u), =R (1.8)
Denote by ¢9.,(x) = 2m(T'y x u?)(z). Then at least formally, the energy functional associated
with ([L.8]) is
1 1
D(u) = / |Vu|*dz + / ®2 uqux—/ F(u)dx. (1.9)
2 Jre 4 Jp2 "7 R2
Now we can state our result as follows.

Theorem 1.1. Assume that [ satisfy (F1), (F2"”) and (F3). Then (1.7) has a radially
symmetric solution u € H'(R?) \ {0}.

The paper is organized as follows. In Section 2, we give the variational setting and

preliminaries. We complete the proof of Theorem [I.1]in Section 3.

Throughout the paper, we make use of the following notations:

e H'(R?) denotes the usual Sobolev space equipped with the inner product and norm
(u,v) g = / (Vu- Vo4 w)de, ||ullg = (u,w)?, Yu,v e H (R?);
R2

L*(R?*)(1 < s < 00) denotes the Lebesgue space with the norm |[u|s = ( [zo |ul*dz) Vs,

9

For any v € H'(R?) and t > 0, uy(w) := u(tx) for t > 0;

e Foranyz € RZand r > 0, B,(z) :={y e R?: |y — x| < r};

C1,C5, - -+ denote positive constants possibly different in different places.
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2 Variational framework and preliminaries
In view of the Gagliardo-Nirenberg inequality, one has

lullf < Callull3IVul3™  for s >2, (2.1)

where C; > 0 is a constant determined by s. In the sequel, we set ©g := 320+1)%C3

We define the following symmetric bilinear forms

(u,v) = Ay (u,v) := /R2 /R? In (©¢ + |z — y|) u(x)v(y)dzdy, (2.2)

(1, 0) > Ag(u, v) = /R 2 /]R In (1 + (%y‘) w(@)o(y)dzdy, (2.3)

|z —

(u,v) — Ao(u,v) = A1 (u,v) — Az(u,v) = /R2 /R2 In |z — y|u(z)v(y)dady, (2.4)

where the definition is restricted, in each case, to measurable functions u,v : R?> — R such
that the corresponding double integral is well defined in Lebesgue sense. Noting that 0 <
In(1+7r) <r for r > 0, it follows from the Hardy-Littlewood-Sobolev inequality (see [22] or
[23, page 98]) that

1
| Asu,v)] < / / fu(yo(y)|dady < Sulullyslvllas (2.5)
R2 JR2 \37 - y\

with a constant §; > 0. Using (2.2)), (2.3)) and (2.4)), we define the functionals as follows:

L HY®?) = [0,0], L) i= Ay(u?,0?) = /}R 2 /R (80 + | — ) w ()l (y)dady,

Oo
|z —y

L L¥B3(R?) = [0,00), Ip(u) := Ay(u?,u?) = /R2 /]R2 In (1 + > w?(z)u? (y)dzdy,

Ip: HY(R?) - RU{oo}, Ip(u) := Ao(u? u?) = / / In|z — y| v?(z)u?(y)dzdy.
Rz JR2
Here I, only takes finite values on L8/ 3(R?). Indeed, (2.5 implies
L) < Silulllys, ¥ ue LY3R?). (2.6)
We define, for any measurable function v : R? — R
|ul|? = / In (0¢ + |z|) u?(z)dz € [0, ). (2.7)
R2

Then ||ul|g := (|Vul3 + ||ul|?)}/? is a norm on F := H}}

(R?). In view of Rellich imbedding

theorem [32], E is continuously and compactly embedded in L*(R?) for s € [2, +00). Since

In(Og + |z — y[) < (O + |of + |y|) < (O + |z]) + (O + [y]), V¥ a,y €R%  (2.8)



we have

| A1 (uv, wz)]

IA

/11{2 /1R2 (O + |z]) + In(Og + |y|)] |u(z)v(z)||w(y)z(y)|dzdy

< ullllolllwlizlizlle + llullzllvlzllwlzle, ¥ w,vw,2€ B (2.9)

VAN

According to [I7, Lemma 2.2], we have Iy, I; and I3 are of class C! on E, and
(Il(u),v) = 44;(u*v), VYu,v€E, i=0,1,2. (2.10)
Then, (F1), (F2") and (2.10) imply that ® € C'(E,R), and that

O(u) = ;/RQ |Vul|*da + i[o(u) - /R? F(u)dz (2.11)

and

(@ (u),v) = Vu - Vodz + Ag(u?, uv) — f(u)vde. (2.12)
R2 R2

Hence, the solutions of (1.7 are the critical points of the reduced functional (2.11)).

The following lemmas come from [I4] which is very crucial for the proof of our theorem.

Lemma 2.1. ([I4, Lemma 2.2]) There holds
1
A2 2 Tl Ve B (2.13)
Lemma 2.2. ([I4, Corollary 2.3]) There holds

1
Ii(u) > ZIIUI@IIUHE, VuekE. (2.14)

3 Proof of Theorem [I.1]

In this section, we give the proof of Theorem
Proposition 3.1. [21] Let H be a Banach space and let A C RT be an interval. We consider
a family {®)}aen of Cl-functional on H of the form

Dy (u) = A(u) — AB(u), VYV X€EA,

where B(u) >0, Yu € H, and such that either A(u) — +oco or B(u) — +00, as ||u|lg — oo.
We assume that there are two points vi,ve in H such that
cx == inf max ®5(y(t)) > max{®y(v1), Pr(v2)}, (3.1)
vel te[0,1]
where

I'={y€C([0,1], H) : 7(0) = v1,7(1) = v2}.

Then, for almost every A € A, there is a bounded (PS)., sequence for ®y, that is, there ezists

A

a sequence such that



i) {un(N\)} is bounded in H;
i) ®x(un(N)) = cn;

iii) @) (un(X)) = 0 in H*, where H* is the dual of H.

Moreover, ¢y is non-increasing on A € A.

To apply Proposition inspired by [14], we introduce a family of functional on E defined
by
1 ) 1, 5 1 1,
Pa(u) =5 | [Vul"dz + Sulli+ Jlo(u) = A | Sllulli + [ F(u)dz|, (3.2)
2 Jpo 2 4 2 R?

for A € [1/2,1]. Let

1 1 1 1
Aw) =5 [ IVaPde+ Sl + . B = glulE+ [ Feode. (@3)

Similar to the proof of [18, Lemma 2.4], we have the following lemma.

Lemma 3.2. Assume that (F1), (F2") and (F3) hold. Let u be a critical point of @y in E,

then we have the following Pohozaev type identity
1—A 2 lz| o
= — (2 ——ud
Pa) = 5 (2l [ et
1
+h@)+JW%—2A/‘Fme:0 (3.4)
R2

For A € [0.5,1], we set J)(u) := 2(®) (u),u) — Px(u), then

1 T
) = 2HWH2+< ful = [ i)

2 2+ |z|
+o() = el =2 [ [f(w)u - Plalde. (35)

In the following, we verify that (3.1) of Proposition holds. To this end, we choose a
fixed function w € E \ {0}. Note that

L (Pa) = /R 2 /R I — [ ()i () () ()

= o [ [ ule = o] - o) @2(@)? () dady
R2 JR2
= t'Iy(w) — t*Int|w|3, Vt>0. (3.6)

From and (| -, one has
t 1—\)t?
@Nﬁm)::va@+(2)(/1m@wulmp2m:

# o ttnt o, A 5.
+ o no) - S g - 752/R2F(t ) da




12 o ttInt,
< fIIVng H ||*+4lo(w) 1 [KallE

It follows that there exists 7" > 0 such that

Py (i) <0, VAe0.5,1], t>T.

Vi>1.

(3.7)

Lemma 3.3. Assume that (F1), (F2") and (F3) hold. Then there exists a positive constant

ko independent of X\ such that for all X € [0.5,1],

¢y := inf max ®y(y(t)) > Ko > max{®,(0), ®(T%wr)}.

y€eT te[0,1]

Proof. Let H=E, A =[0.5,1], v; = 0 and vy = T%ir in Proposition and let

I = {yeC([0,1], E) : 7(0) = 0,%(1) = T*dr} .
By (F1) and (F2"), we have
|F(t)| < (I4+ D[t + Ch|tPT2,  VieR,

which yields
[ Fde < @+ Dl + Crlullf3, VueE.
R

Then it follows from (2.1) and Young inequality that

3/2 3/2 9/2 1
lallys < CE/aNuIgITal < c3fs (Gl + 5Ivul )

lull3 < Cllull3]|Vull2 < (1 +1)C3||ull; + Va3

(l+1)

and

2 1 3p/2
Il 3 < CorallalBITulE < Gpea (3l + 51Vl

Combining (2-6), 2.7), @11), @.14), B-11), (3.12), (3.13) and (3.14)), we have

1-—
Ba(w) = 3IVulf+ 52l + how - A [ Fla
> 5||Vuu%+1[fl<u>—12<u>1— / F(u)da
R2
1 S
> SlIVuld + 20+ 1°C fulld = T lulliys — 0+ Dfjul -
3/2
1 SCSB 1
> SIVul3 20+ 1°C ullf - —* (u o + 31V

4+ [<Z+1>c§uu\%+ I

_cch( ul§ + 219 r|3”/2>

8

Ciull

1)

p+2
p+2

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



1 .
> min{L, 40+ 1?C3} [IVul + Julld] - Cs (Jlully”® + 1ul3)

—C, (kug + kugm) , YuckE. (3.15)
Let p(u) := [Vul3 + ul. Then [ET3) gives
i) > pminf1, 40+ 1°CEhp(w) — Cs [p7/5(u) + p*(w)
0y [p?’/?(u) n p3p/4(u)} . VuckE.
Therefore, there exist kg > 0 and pg > 0 such that
Oy(u) > ko, VueS:={uckE:|Vul3+ ||luls=po}. (3.16)

13.7), (3.9) and (3.16)) show that @) satisfies all conditions of Proposition with H = FE
and A = [0.5,1].
O

Lemma 3.4. Assume that (F1), (F2") and (F3) hold. Then cy is non-increasing on \ €
[0.5,1]. Moreover, for almost every A € [0.5,1], there exists uy € E \ {0} such that

up —uy in B, ®\(uy) =0, Py(uy)=cy. (3.17)

Proof. Lemmaimplies that ®y(u) satisfies the assumptions of Propositionwith H=F
and A = [0.5,1]. So c) is non-increasing on A € [0.5,1], and for almost every A € [0.5,1],
there exists a sequence {u,(A\)} C E (for simplicity, we denote {u,} instead of {u,()\)}) such
that

||un||E < (Cq, <I>,\(un) —cy > 0, Hq)/)\(un)”E* — 0. (3.18)

If 0o := limsup,,_, ||un|l2 = 0, the from the Gagliardo-Nirenberg inequality (2.1f), we derive
that u, — 0 in L*(R?) for s > 2. Hence it follows from (F1), (F2”) and (2.6) that I3(u,) — 0

and

1
lim sup/ —f(up)up — F(up)
n—oo JRr2 |2

Now from (3.2)), (3.8) and (3.19)), one has

ko +o(l) < c,\+o(1):<I>,\(un)—%(<l)'/\(un),un>

— i)+ () 3 [ |3 - P as

< o(1). (3.20)

dz = 0. (3.19)

This contradiction shows that dop > 0. Since {||u,|/g} is bounded, we may thus assume,
passing to a subsequence again if necessary, that u, — wuy in E, u, — uy in L*(R?), s € [2, 00)

and u,(x) — uy(z) a.e. on R2. Hence it follows from (F1), (F2”) and (2.5) that

Ao (2, up (ty — uy)) = 0(1),  Aa(u3, tn(un — uy)) = o(1) (3.21)



and
[ t) = )l = w)de = of0). (322

Since {||un||«} and {||uy||2} are bounded, it follows that

[, (@0 + yDlur )l () — )

1/2
< In(©g + |R|)Jurll2llun — uall2 + lun — uall« [/ (O + [y|)u3 (y)dy
R2\Bg(0)
= op(l)+or(1), asn — oo, R — oo, (3.23)
which implies
/R2 In(O0 + [y[)[ur()|[un(y) — ur(y)|dy = o(1). (3.24)

By (2.8), (3.24) and the fact that ||ju, — uy||2 — 0, we have

Ay (ul, up(un — uy))

/W /R (In(Og + |]) + (O + [y])] u () [ur(y)|[un(y) — ua(y)|dzdy

IN

A

< NunlZlluxli2llun — ullz + w13 /R2 In(©o + [yN[ur(y)lunly) — ua(y)ldy

Similarly, we have

Ay (u3, up(un — uy)) = o(1). (3.26)

From (2.13)), (3.2), (3.21), (3.22), (3.25) and (3.26)), one has

o(1) = (®)\(un) — )\ (unr), un —uy)
= [IV(up — w3+ (1 = M)un — uall2 + A1 (u, (un — ur)?) + A1 (u, ur(u, — uy))
— A (63, un(un — un)) — Ao (ud, un(uy — wn)) + Az (u3, ur(un — wy))

A / [ tn) — F (3]t — )z
RQ
=V — )B4 (1= )t — a4 Ay (2, (1 — un)?) + 0(1)

1
> [ V(un — w3 + leunllgllun —ulZ +o(1),

which, together with §y = limsup,,_, ||un|l2 > 0, implies that u, — w) in E. Hence,

0 < ¢y = limpo0 Pa(un) = Pr(uy) and ) (uy) = 0. [

In view of Lemmas |3.2| and there exist two sequences {\,} C [0.5,1] and {uy,} C E,
denoted by {u,} such that

A =1, @) (up) =0, @y, (up) =cy, €ler,co5], I, (un) =0. (3.27)
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Lemma 3.5. Assume that (F1), (F2") and (F3) hold. Let {\,} C [0.5,1] and {u,} C E be
two sequences satisfying (3.27). Then {||uy|| g1} is bounded.

Proof. By (3.2)), (3.5) and (3.27)), one has

1

1—A ||
= 2 2funll ad

1 An
g+ 22 / [ (i)t — 3F ()]l
16 2 Jeo
1 1, A,
> —unllz + —unllZ + F / Uf (un)un — 3F (uy,)]dz, (3.28)
16 4 2 Jao
which, together with (F3), implies
enn > [lunlld — 22 2. (3.29)
"~ 16 2
From (3.28)) and (3.29), one has
unlls < C1, / [ (tn)ttn — 3F(uy) + agu2] d < Co. (3.30)
]R2

Now, we prove that {||u,| g1} is also bounded. Arguing by contradiction, suppose that

lunllgn — oo. Let v, := —2—. Then |v,||gn = 1, and ||v,]l2 — 0 due to (3.30]). Set

||u'ﬂ||H1

k' = k/(k — 1). By the Gagliardo-Nirenberg inequality (2.1]), one has
lonli3r < Colloall3IVunll3™ 2 = o(1). (3.31)

Set
Q= {z € R : |u,(z)| < Ry} .

Then by (F1) and (F2"), we have

/ f(un)

Moreover, by (F3), (3.30), (3.31)) and the Holder inequality, we have

/1 1/k 1/K’
/ / dz / v |2 da
R2\ 2, R2\Q, R2\Qp,

1/k
< ctl)/k” / [f(un)un —3F(up) + aouﬂ dz ||vn||%,§,
R2\Q,,

— o(1). (3.33)

v2de < C3|v,||3 = o(1). (3.32)

Un,

Un

2
v, dx

IN

From (2.6, (3.30) and the Gagliardo-Nirenberg inequality, we have
Iy(un) < Cillunllss < Callunl3 Vunllz < Cs||Vn|l2. (3.34)

11



Thus, it follows from (2.11)), (3.27)), (3.32)), (3.33)) and (3.34) that

IVun |3 — (@4, (un), un)

1+o0(1)
. —I1(un) + Ia(up) — (1 — /\n)”unnz +An fR2 f(un)updz
[
Cs + )\n/ f(un) vidr + An/ f(un) v2dz = o(1),
[[wn | Qn n R2\Q, | Un
which is a contradiction. Hence, {||u,||z1} is bounded. O

Proof of Theorem[1.1]. In view of Lemmas [3.4] and under assumptions of Theorem [I.1
there exists two sequences {\,} C [0.5,1] and {u,} C E satisfying and {||un|| g1} is
bounded. It follows from (2.6), (3.2), (F1) and (F2”) that I;(u,) is bounded. Similar to
the proof of Lemma we can show that limsup,,_, ||un|l2 > 0. Applying Lemma we
have {|up|/«} is bounded. Hence {uy} is bounded in E. We may thus assume, passing to a
subsequence if necessary, that u, — @ in E, u,, — @ in L*(R?), s € [2,00) and uy,(z) — @(z)

a.e. on R2. Since \, — 1, by [2.11), (2.12), (3.2) and (3.27)), we have

O (up) =0,  P(uy) — ce:= lim ¢y, J(uy) — 0. (3.35)

n—o0

Similar to the proof of Lemma [3.4], we can deduce that u, — @ in E. Hence, 0 < ¢, =

limy, 00 P(uy) = (@) and ®’(a) = 0. This completes the proof. O

References

[1] S. Adachi, K. Tanaka, Trudinger type inequalities in R" and their best exponents, Proc.
Amer. Math. Soc. 128 (2000) 2051-2057.

[2] Adimurthi, S.L. Yadava, Multiplicity results for semilinear elliptic equations in a bound-
ed domain of R? involving critical exponents, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)

17 (1990) 481-504.

[3] C.O. Alves, G.M. Figueiredo, Existence of positive solution for a planar Schrodinger-
Poisson system with exponential growth, J. Math. Phys. 60 (2019) 011503, 13.

[4] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem,
Commun. Contemp. Math. 10 (2008) 391-404.

[5] A. Azzollini, Concentration and compactness in nonlinear Schrédinger-Poisson system

with a general nonlinearity, J. Differ. Equ. 249 (2010) 1746-1763.

12



[6]

[10]

[11]

A. Azzollini, A. Pomponio, On a “zero mass” nonlinear Schrodinger equation, Adv.

Nonlinear Stud. 7 (2007) 599-628.

V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled

with Maxwell equations, Rev. Math. Phys. 14 (2002) 409-420.

R. Benguria, H. Brezis, E. Lieb, The Thomas-Fermi-von Weizsécker theory of atoms

and molecules, Comm. Math. Phys. 79 (1981) 167-180.

I. Catto, P. Lions, Binding of atoms and stability of molecules in hartree and thomas-

fermi type theories, Comm. Partial Differ. Equ. 18 (1993) 1149-1159.

G. Cerami, J.G. Vaira, Positive solutions for some non-autonomous Schrédinger-Poisson

systems, J. Differ. Equ. 248 (2010) 521-543.

S.T. Chen, J.P. Shi, X.H. Tang, Ground state solutions of Nehari-Pohozaev type for the
planar Schrodinger-Poisson system with general nonlinearity, Disc. Contin. Dyn. Syst.-A.

39 (2019) 5867-5889.

S.T. Chen, X.H. Tang, Existence of ground state solutions for the planar axially sym-
metric Schrodinger-Poisson system, Disc. Contin. Dyn. Syst.-B. 24, (2019) 4685-4702.

S.T. Chen, A. Fiscella, P. Pucci, X.H. Tang, Semiclassical ground state solutions for
critical Schrodinger-Poisson systems with lower perturbations, J. Differ. Equ. 268 (2020)
2672-2716.

S.T. Chen, X.H. Tang, On the planar Schrodinger-Poisson system with the axially sym-
metric potentials, J. Differ. Equ., 268 (2020) 945-976.

S.T. Chen, X.H. Tang, Axially symmetric solutions for the planar Schrédinger-Poisson
system with critical exponential growth, J. Differ. Equ., 269 (2020) 9144-9174.

S.T. Chen, X.H. Tang, On the planar Schrédinger-Poisson system with zero mass and
critical exponential growth, Adv. Differ. Equ., 25, (2020), 687-708.

S. Cingolani, T. Weth, On the planar Schrodinger-Poisson system, Ann. Inst. H. Poincaré
Anal. Non Linéaire 33 (2016) 169-197.

M. Du, T. Weth, Ground states and high energy solutions of the planar Schrodinger-
Poisson system, Nonlinearity 30 (2017) 3492-3515.

X.M. He, W.M. Zou, Existence and concentration of ground states for Schrodinger-

Poisson equations with critical growth, J. Math. Phys. 53 (2012) 023702.

13



[20]

[21]

[22]

[26]

[27]

Y.S. Jiang, H.S. Zhou, Schrodinger-Poisson system with steep potential well, J. Differ.
Equ. 251 (2011) 582-608.

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a

Landesman-Lazer-type problem set on RY | Proc. R. Soc. Edinb. A 129 (1999) 787-8009.

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev inequality and related in-
equalities, Ann. of Math. 118 (1983) 349-374.

E. Lieb, M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd ed., Amer-

ican Mathematical Society, Providence, RI, 2001.

E. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys.

53 (1981) 263-301.

P. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys.

109 (1984) 33-97.
P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor equations (1990) x+248.

D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J.

Funct. Anal. 237 (2006) 655-674.

J. Stubbe, Bound states of two-dimensional Schrédinger-Newton equations, eprint arX-

iv:0807.4059.

J.J. Sun, S.W. Ma, Ground state solutions for some Schrédinger-Poisson systems with

periodic potentials, J. Differ. Equ. 260 (2016) 2119-2149.

X.H. Tang, S.T. Chen, Ground state solutions of Nehari-Pohozaev type for Schrodinger-
Poisson problems with general potentials, Disc. Contin. Dyn. Syst. 37 (2017) 4973-5002.

7.P. Wang, H.S. Zhou, Sign-changing solutions for the nonlinear Schrodinger-Poisson

system in R3, Calc. Var. Partial Differ. Equ. 52 (2015) 927-943.

M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their

Applications, 24, Birkhauser Boston Inc., Boston, MA, 1996.

J. Zhang, On the Schrodinger-Poisson equations with a general nonlinearity in the critical

growth, Nonlinear Anal. 75 (2012) 6391-6401.

J.J. Zhang, The existence and concentration of positive solutions for a nonlinear

Schrodinger-Poisson system with critical growth, J. Math. Phys. 55 (2014) 031507.

14



[35] L.G. Zhao, F.K. Zhao, Positive solutions for Schrédinger-Poisson equations with a critical

exponent, Nonlinear Anal. 70 (2009) 2150-2164.

15



	Introduction
	Variational framework and preliminaries
	Proof of Theorem 1.1

