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Abstract

In this paper, we prove that the following planar Schrödinger-Poisson system with

zero mass −∆u+ φu = f(u), x ∈ R2,

∆φ = 2πu2, x ∈ R2,

admits a nontrivial radially symmetric solution under weaker assumptions on f by using

some new analytical approaches.
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1 Introduction

Considered the following planar Schrödinger-Poisson system
−∆u+ V (x)u+ φu = f(u), x ∈ R2,

∆φ = 2πu2, x ∈ R2,

(1.1)

where V ∈ C(R2, [0,∞)) and f ∈ C(R,R). In the past several years, Alves and Figueiredo

[3], Cingolani and Weth [17], Du and Weth [18],Chen and Tang [11, 12, 14, 15] obtained

some interesting results on the existence of nontrivial solutions, ground state solutions and

infinitely many solutions for (1.1).
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System (1.1) is the special form for the Schrödinger-Poisson system of the type
−∆u+ V (x)u+ φu = f(u), x ∈ RN ,

∆φ = 2πu2, x ∈ RN ,
(1.2)

where N ≥ 2. It is well-known that the solutions of (1.2) are related to the solitary wave

solutions to the following nonlinear Schrödinger-Poisson system
−iψt −∆ψ + E(x)ψ + µφψ = f(ψ), x ∈ RN , t > 0,

∆φ = |ψ|2, x ∈ RN , t > 0,

(1.3)

where ψ : RN × R → C is the wave function, E(x) = V (x) − a with a ∈ R is a real-valued

external potential, φ represents an internal potential for a nonlocal self-interaction of the

wave function and the nonlinear term f describes the interaction effect among particles.

System (1.3) arises from quantum mechanics (see e.g. [8, 9, 24]) and in semiconductor

theory [7, 25, 26]. In the last decades, system (1.2) has attracted considerable attention, see

[4, 5, 10, 13, 19, 20, 27, 29, 30, 31, 33, 34, 35].

From the second equation in (1.1), we can obtain that φ(x) = 2π(Γ2 ∗ u2)(x), i.e., the

convolution of 2πu2 with the fundamental solution Γ2(x) = 1
2π ln |x| of the Laplacian. With

this formal inversion, system (1.1) is converted into an equivalent integro-differential equation

−∆u+ V (x)u+ 2π(Γ2 ∗ u2)u = f(u), x ∈ R2. (1.4)

Denote by φ2,u(x) = 2π(Γ2 ∗ u2)(x). Then at least formally, the energy functional associated

with (1.4) is

I(u) =
1

2

∫
R2

(
|∇u|2 + V (x)u2

)
dx+

1

4

∫
R2

φ2,uu
2dx−

∫
R2

F (u)dx,

here and in the sequel F (t) =
∫ t

0 f(s)ds.

In contrast with the case N = 3, the applicability of variational methods is not straight-

forward for N = 2, since the corresponding energy functional I is not well-defined on the

natural Sobolev space H1(R2) due to the appearance of the sign-changing and unbounded

logarithmic integral kernel ln |x|. This also exhibits some serious mathematical differences to

the case N = 3 (see [14, 15, 17, 18]). To overcome this obstacle, Cingolani and Weth [17],

inspired by Stubbe [28], developed a variational framework for the following equation

−∆u+ V (x)u+

(∫
R2

ln |x− y| u2(y)dy

)
u = |u|q−2u, x ∈ R2 (1.5)

within the smaller Hilbert space

X =

{
u ∈ H1(R2) :

∫
R2

[V (x) + ln(1 + |x|)]u2dx <∞
}
. (1.6)
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By using the Nehari manifold argument and a new strong compactness condition (Φ satisfies

the Cerami condition at arbitrary energy levels after suitable translation), they proved that

(1.5) has ground state solutions when q > 4 and V (x) is a positive 1-periodic function. In

the case where V (x) ≡ V0 > 0, they also obtained the existence of nonradial solutions which

have arbitrarily many nodal domains. Based on the strong compactness condition in [17]

and the Pohozaev type argument, Du and Weth [18] provided a counterpart of the results

of [17] in the case where V (x) ≡ V0 > 0 and 2 < q ≤ 4. In the papers [14] and [15],

Chen and Tang developed a new variational framework for system (1.4) in the space which

consists of axially symmetric functions. They established a new inequality and proposed a

new approach to recover the compactness for the (PS)-sequence. By using this approach,

they proved some existence results on nontrivial solutions and ground state solutions under

the following assumptions on V and f , which are much weaken than the ones in [17, 18].

(V1) V ∈ C1(R2,R), V (x) = V (|x1|, |x2|), lim inf |x|→∞ V (x) > 0, and there exists a constant

Θ0 > 0 such that |V (x)|+ |∇V (x) · x| ≤ Θ0 for all x ∈ R2;

(F1) f ∈ C(R,R), and there exist constants C0 > 0 and p ∈ (3,∞) such that

|f(t)| ≤ C0

(
1 + |t|p−1

)
, ∀ (x, t) ∈ R2 × R;

(F2) f(t) = o(t) as t→ 0;

(F3) F (t) ≥ 0 for all t ∈ R, and there exist constants α0, c0, R0 > 0 and κ > 1 such that

f(t)t− 3F (t) + α0t
2 ≥ 0, ∀ t ∈ R,

and ∣∣∣∣f(t)

t

∣∣∣∣κ ≤ c0

[
f(t)t− 3F (t) + α0t

2
]
, ∀ |t| ≥ R0.

We would like to point out that the condition lim inf |x|→∞ V (x) > 0 plays a crucial role

in verifying the Mountain Pass geometry for the energy functional associated with (1.1) in

the arguments of [14] and [15].

When V ≡ 0, (1.1) reduces to the following planar Schrödinger-Poisson system with zero

mass 
−∆u+ φu = f(u), x ∈ R2,

∆φ = 2πu2, x ∈ R2.

(1.7)

In the recent paper [16], Chen and Tang proved that system (1.7) has a nontrivial axially

symmetric solution provided f satisfies (F1) and the following two assumptions:

(F2′) f(t) = o(t2) as t→ 0;
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(F3′) F (t) ≥ 0, ∀ t ∈ R, and there exist µ > 4 and ν > 0 such that

f(t)t ≥ µF (t)− νt2, ∀ t ∈ R.

It is easy to see that (F3) is much weaker than (F3′). In the present paper, inspired by [14]

and [16], we will establish the existence of nontrivial radially symmetric solutions for (1.7)

under (F1), (F3) and the following condition:

(F2′′) limt→0
f(t)
|t|t = l ∈ [0,+∞).

Obviously, (F2′′) is weaker than (F2′). In particular, f(t) = a|t|p−2t with a > 0 and p ≥ 3

satisfies (F1), (F2′′) and (F3), but it does not satisfy (F2′) and (F3′) when p = 3 and

p ∈ [3, 4], respectively. Moreover, there are many functions satisfying (F1), (F2′′) and (F3).

For example,

i) f(t) =
(
|t|p−2 + b|t|q−2

)
t with b ≥ 0 and p > q ≥ 3;

ii) f(t) = a|t|t ln(1 + t2) with a > 0.

As in (1.4), system (1.7) can be converted into an equivalent integro-differential equation

−∆u+ 2π(Γ2 ∗ u2)u = f(u), x ∈ R2. (1.8)

Denote by φ2,u(x) = 2π(Γ2 ∗ u2)(x). Then at least formally, the energy functional associated

with (1.8) is

Φ(u) =
1

2

∫
R2

|∇u|2dx+
1

4

∫
R2

φ2,uu
2dx−

∫
R2

F (u)dx. (1.9)

Now we can state our result as follows.

Theorem 1.1. Assume that f satisfy (F1), (F2′′) and (F3). Then (1.7) has a radially

symmetric solution ū ∈ H1(R2) \ {0}.

The paper is organized as follows. In Section 2, we give the variational setting and

preliminaries. We complete the proof of Theorem 1.1 in Section 3.

Throughout the paper, we make use of the following notations:

• H1(R2) denotes the usual Sobolev space equipped with the inner product and norm

(u, v)H1 =

∫
R2

(∇u · ∇v + uv)dx, ‖u‖H1 = (u, u)1/2, ∀u, v ∈ H1(R2);

• Ls(R2)(1 ≤ s <∞) denotes the Lebesgue space with the norm ‖u‖s =
(∫

R2 |u|sdx
)1/s

;

• For any u ∈ H1(R2) and t > 0, ut(x) := u(tx) for t > 0;

• For any x ∈ R2 and r > 0, Br(x) := {y ∈ R2 : |y − x| < r};

• C1, C2, · · · denote positive constants possibly different in different places.
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2 Variational framework and preliminaries

In view of the Gagliardo-Nirenberg inequality, one has

‖u‖ss ≤ Cs‖u‖22‖∇u‖s−2
2 for s > 2, (2.1)

where Cs > 0 is a constant determined by s. In the sequel, we set Θ0 := e32(l+1)2C23 .

We define the following symmetric bilinear forms

(u, v) 7→ A1(u, v) :=

∫
R2

∫
R2

ln (Θ0 + |x− y|)u(x)v(y)dxdy, (2.2)

(u, v) 7→ A2(u, v) :=

∫
R2

∫
R2

ln

(
1 +

Θ0

|x− y|

)
u(x)v(y)dxdy, (2.3)

(u, v) 7→ A0(u, v) := A1(u, v)−A2(u, v) =

∫
R2

∫
R2

ln |x− y|u(x)v(y)dxdy, (2.4)

where the definition is restricted, in each case, to measurable functions u, v : R2 → R such

that the corresponding double integral is well defined in Lebesgue sense. Noting that 0 ≤

ln(1 + r) ≤ r for r ≥ 0, it follows from the Hardy-Littlewood-Sobolev inequality (see [22] or

[23, page 98]) that

|A2(u, v)| ≤ Θ0

∫
R2

∫
R2

1

|x− y|
|u(x)v(y)|dxdy ≤ S1‖u‖4/3‖v‖4/3 (2.5)

with a constant S1 > 0. Using (2.2), (2.3) and (2.4), we define the functionals as follows:

I1 : H1(R2)→ [0,∞], I1(u) := A1(u2, u2) =

∫
R2

∫
R2

ln (Θ0 + |x− y|)u2(x)u2(y)dxdy,

I2 : L8/3(R2)→ [0,∞), I2(u) := A2(u2, u2) =

∫
R2

∫
R2

ln

(
1 +

Θ0

|x− y|

)
u2(x)u2(y)dxdy,

I0 : H1(R2)→ R ∪ {∞}, I0(u) := A0(u2, u2) =

∫
R2

∫
R2

ln |x− y| u2(x)u2(y)dxdy.

Here I2 only takes finite values on L8/3(R2). Indeed, (2.5) implies

|I2(u)| ≤ S1‖u‖48/3, ∀ u ∈ L8/3(R2). (2.6)

We define, for any measurable function u : R2 → R

‖u‖2∗ =

∫
R2

ln (Θ0 + |x|)u2(x)dx ∈ [0,∞]. (2.7)

Then ‖u‖E := (‖∇u‖22 + ‖u‖2∗)1/2 is a norm on E := H1
loc(R2). In view of Rellich imbedding

theorem [32], E is continuously and compactly embedded in Ls(R2) for s ∈ [2,+∞). Since

ln(Θ0 + |x− y|) ≤ ln(Θ0 + |x|+ |y|) ≤ ln(Θ0 + |x|) + ln(Θ0 + |y|), ∀ x, y ∈ R2, (2.8)
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we have

|A1(uv,wz)| ≤
∫
R2

∫
R2

[ln(Θ0 + |x|) + ln(Θ0 + |y|)] |u(x)v(x)||w(y)z(y)|dxdy

≤ ‖u‖∗‖v‖∗‖w‖2‖z‖2 + ‖u‖2‖v‖2‖w‖∗‖z‖∗, ∀ u, v, w, z ∈ E. (2.9)

According to [17, Lemma 2.2], we have I0, I1 and I2 are of class C1 on E, and

〈I ′i(u), v〉 = 4Ai(u
2, v), ∀ u, v ∈ E, i = 0, 1, 2. (2.10)

Then, (F1), (F2′′) and (2.10) imply that Φ ∈ C1(E,R), and that

Φ(u) =
1

2

∫
R2

|∇u|2dx+
1

4
I0(u)−

∫
R2

F (u)dx (2.11)

and

〈Φ′(u), v〉 =

∫
R2

∇u · ∇vdx+A0(u2, uv)−
∫
R2

f(u)vdx. (2.12)

Hence, the solutions of (1.7) are the critical points of the reduced functional (2.11).

The following lemmas come from [14] which is very crucial for the proof of our theorem.

Lemma 2.1. ([14, Lemma 2.2]) There holds

A1(u2, v2) ≥ 1

4
‖u‖22‖v‖2∗, ∀ u, v ∈ E. (2.13)

Lemma 2.2. ([14, Corollary 2.3]) There holds

I1(u) ≥ 1

4
‖u‖22‖u‖2∗, ∀ u ∈ E. (2.14)

3 Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

Proposition 3.1. [21] Let H be a Banach space and let Λ ⊂ R+ be an interval. We consider

a family {Φλ}λ∈Λ of C1-functional on H of the form

Φλ(u) = A(u)− λB(u), ∀ λ ∈ Λ,

where B(u) ≥ 0, ∀u ∈ H, and such that either A(u)→ +∞ or B(u)→ +∞, as ‖u‖H →∞.

We assume that there are two points v1, v2 in H such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)}, (3.1)

where

Γ = {γ ∈ C([0, 1], H) : γ(0) = v1, γ(1) = v2} .

Then, for almost every λ ∈ Λ , there is a bounded (PS)cλ sequence for Φλ, that is, there exists

a sequence such that
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i) {un(λ)} is bounded in H;

ii) Φλ(un(λ))→ cλ;

iii) Φ′λ(un(λ))→ 0 in H∗, where H∗ is the dual of H.

Moreover, cλ is non-increasing on λ ∈ Λ.

To apply Proposition 3.1, inspired by [14], we introduce a family of functional on E defined

by

Φλ(u) =
1

2

∫
R2

|∇u|2dx+
1

2
‖u‖2∗ +

1

4
I0(u)− λ

[
1

2
‖u‖2∗ +

∫
R2

F (u)dx

]
, (3.2)

for λ ∈ [1/2, 1]. Let

A(u) =
1

2

∫
R2

|∇u|2dx+
1

2
‖u‖2∗ +

1

4
I0(u), B(u) =

1

2
‖u‖2∗ +

∫
R2

F (u)dx. (3.3)

Similar to the proof of [18, Lemma 2.4], we have the following lemma.

Lemma 3.2. Assume that (F1), (F2′′) and (F3) hold. Let u be a critical point of Φλ in E,

then we have the following Pohozaev type identity

Pλ(u) :=
1− λ

2

(
2‖u‖2∗ +

∫
R2

|x|
2 + |x|

u2dx

)
+I0(u) +

1

4
‖u‖42 − 2λ

∫
R2

F (u)dx = 0. (3.4)

For λ ∈ [0.5, 1], we set Jλ(u) := 2〈Φ′λ(u), u〉 − Pλ(u), then

Jλ(u) = 2‖∇u‖22 +
1− λ

2

(
2‖u‖2∗ −

∫
R2

|x|
2 + |x|

u2dx

)
+I0(u)− 1

4
‖u‖42 − 2λ

∫
R2

[f(u)u− F (u)]dx. (3.5)

In the following, we verify that (3.1) of Proposition 3.1 holds. To this end, we choose a

fixed function ŵ ∈ E \ {0}. Note that

I0

(
t2ŵt

)
= t4

∫
R2

∫
R2

ln |x− y|ŵ2(tx)ŵ2(ty)d(tx)d(ty)

= t4
∫
R2

∫
R2

(ln |x− y| − ln t) ŵ2(x)ŵ2(y)dxdy

= t4I0(ŵ)− t4 ln t‖ŵ‖42, ∀ t > 0. (3.6)

From (3.2) and (3.6), one has

Φλ

(
t2ŵt

)
=

t4

2
‖∇ŵ‖22 +

(1− λ)t2

2

∫
R2

ln(Θ0 + t−1|x|)ŵ2dx

+
t4

4
I0(ŵ)− t4 ln t

4
‖ŵ‖42 −

λ

t2

∫
R2

F
(
t2ŵ
)

dx
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≤ t4

2
‖∇ŵ‖22 +

t2

4
‖ŵ‖2∗ +

t4

4
I0(ŵ)− t4 ln t

4
‖ŵ‖42, ∀ t ≥ 1.

It follows that there exists T > 0 such that

Φλ

(
t2ŵt

)
< 0, ∀ λ ∈ [0.5, 1], t ≥ T. (3.7)

Lemma 3.3. Assume that (F1), (F2′′) and (F3) hold. Then there exists a positive constant

κ0 independent of λ such that for all λ ∈ [0.5, 1],

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) ≥ κ0 > max{Φλ(0),Φλ(T 2ŵT )}. (3.8)

Proof. Let H = E, Λ = [0.5, 1], v1 = 0 and v2 = T 2ŵT in Proposition 3.1 and let

Γ =
{
γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = T 2ŵT

}
. (3.9)

By (F1) and (F2′′), we have

|F (t)| ≤ (l + 1)|t|3 + C1|t|p+2, ∀ t ∈ R, (3.10)

which yields ∫
R2

F (u)dx ≤ (l + 1)‖u‖33 + C1‖u‖p+2
p+2, ∀ u ∈ E. (3.11)

Then it follows from (2.1) and Young inequality that

‖u‖48/3 ≤ C
3/2
8/3‖u‖

3
2‖∇u‖2 ≤ C

3/2
8/3

(
2

3
‖u‖9/22 +

1

3
‖∇u‖32

)
, (3.12)

‖u‖33 ≤ C3‖u‖22‖∇u‖2 ≤ (l + 1)C2
3‖u‖42 +

1

4(l + 1)
‖∇u‖22 (3.13)

and

‖u‖p+2
p+2 ≤ Cp+2‖u‖22‖∇u‖

p
2 ≤ Cp+2

(
1

3
‖u‖62 +

2

3
‖∇u‖3p/22

)
. (3.14)

Combining (2.6), (2.7), (2.11), (2.14), (3.11), (3.12), (3.13) and (3.14), we have

Φλ(u) =
1

2
‖∇u‖22 +

1− λ
2
‖u‖2∗ +

1

4
I0(u)− λ

∫
R2

F (u)dx

≥ 1

2
‖∇u‖22 +

1

4
[I1(u)− I2(u)]−

∫
R2

F (u)dx

≥ 1

2
‖∇u‖22 + 2(l + 1)2C2

3‖u‖42 −
S1

4
‖u‖48/3 − (l + 1)‖u‖33 − C1‖u‖p+2

p+2

≥ 1

2
‖∇u‖22 + 2(l + 1)2C2

3‖u‖42 −
S1C3/2

8/3

4

(
2

3
‖u‖9/22 +

1

3
‖∇u‖32

)
−(l + 1)

[
(l + 1)C2

3‖u‖42 +
1

4(l + 1)
‖∇u‖22

]
−C1Cp+2

(
1

3
‖u‖62 +

2

3
‖∇u‖3p/22

)
8



≥ 1

4
min{1, 4(l + 1)2C2

3}
[
‖∇u‖22 + ‖u‖42

]
− C3

(
‖u‖9/22 + ‖u‖62

)
−C4

(
‖∇u‖32 + ‖∇u‖3p/22

)
, ∀ u ∈ E. (3.15)

Let ρ(u) := ‖∇u‖22 + ‖u‖42. Then (3.15) gives

Φλ(u) ≥ 1

4
min{1, 4(l + 1)2C2

3}ρ(u)− C3

[
ρ9/8(u) + ρ3/2(u)

]
−C4

[
ρ3/2(u) + ρ3p/4(u)

]
, ∀ u ∈ E.

Therefore, there exist κ0 > 0 and ρ0 > 0 such that

Φλ(u) ≥ κ0, ∀ u ∈ S := {u ∈ E : ‖∇u‖22 + ‖u‖42 = ρ0}. (3.16)

(3.7), (3.9) and (3.16) show that Φλ satisfies all conditions of Proposition 3.1 with H = E

and Λ = [0.5, 1].

Lemma 3.4. Assume that (F1), (F2′′) and (F3) hold. Then cλ is non-increasing on λ ∈

[0.5, 1]. Moreover, for almost every λ ∈ [0.5, 1], there exists uλ ∈ E \ {0} such that

un → uλ in E, Φ′λ(uλ) = 0, Φλ(uλ) = cλ. (3.17)

Proof. Lemma 3.3 implies that Φλ(u) satisfies the assumptions of Proposition 3.1 with H = E

and Λ = [0.5, 1]. So cλ is non-increasing on λ ∈ [0.5, 1], and for almost every λ ∈ [0.5, 1],

there exists a sequence {un(λ)} ⊂ E (for simplicity, we denote {un} instead of {un(λ)}) such

that

‖un‖E ≤ C1, Φλ(un)→ cλ > 0, ‖Φ′λ(un)‖E∗ → 0. (3.18)

If δ0 := lim supn→∞ ‖un‖2 = 0, the from the Gagliardo-Nirenberg inequality (2.1), we derive

that un → 0 in Ls(R2) for s ≥ 2. Hence it follows from (F1), (F2′′) and (2.6) that I2(un)→ 0

and

lim sup
n→∞

∫
R2

∣∣∣∣12f(un)un − F (un)

∣∣∣∣ dx = 0. (3.19)

Now from (3.2), (3.8) and (3.19), one has

κ0 + o(1) ≤ cλ + o(1) = Φλ(un)− 1

2
〈Φ′λ(un), un〉

= −1

4
I1(un) +

1

4
I2(un) + λ

∫
R2

[
1

2
f(un)un − F (un)

]
dx

≤ o(1). (3.20)

This contradiction shows that δ0 > 0. Since {‖un‖E} is bounded, we may thus assume,

passing to a subsequence again if necessary, that un ⇀ uλ in E, un → uλ in Ls(R2), s ∈ [2,∞)

and un(x)→ uλ(x) a.e. on R2. Hence it follows from (F1), (F2′′) and (2.5) that

A2(u2
n, un(un − uλ)) = o(1), A2(u2

λ, un(un − uλ)) = o(1) (3.21)
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and ∫
R2

[f(un)− f(uλ)](un − uλ)dx = o(1). (3.22)

Since {‖un‖∗} and {‖un‖2} are bounded, it follows that∫
R2

ln(Θ0 + |y|)|uλ(y)||un(y)− uλ(y)|dy

≤ ln(Θ0 + |R|)‖uλ‖2‖un − uλ‖2 + ‖un − uλ‖∗

[∫
R2\BR(0)

ln(Θ0 + |y|)u2
λ(y)dy

]1/2

= on(1) + oR(1), as n→∞, R→∞, (3.23)

which implies ∫
R2

ln(Θ0 + |y|)|uλ(y)||un(y)− uλ(y)|dy = o(1). (3.24)

By (2.8), (3.24) and the fact that ‖un − uλ‖2 → 0, we have

A1(u2
n, uλ(un − uλ))

≤
∫
R2

∫
R2

[ln(Θ0 + |x|) + ln(Θ0 + |y|)]u2
n(x)|uλ(y)||un(y)− uλ(y)|dxdy

≤ ‖un‖2∗‖uλ‖2‖un − uλ‖2 + ‖un‖22
∫
R2

ln(Θ0 + |y|)|uλ(y)||un(y)− uλ(y)|dy

= o(1). (3.25)

Similarly, we have

A1(u2
λ, uλ(un − uλ)) = o(1). (3.26)

From (2.13), (3.2), (3.21), (3.22), (3.25) and (3.26), one has

o(1) = 〈Φ′λ(un)− Φ′λ(uλ), un − uλ〉

= ‖∇(un − uλ)‖22 + (1− λ)‖un − uλ‖2∗ +A1(u2
n, (un − uλ)2) +A1(u2

n, uλ(un − uλ))

−A1(u2
λ, uλ(un − uλ))−A2(u2

n, un(un − uλ)) +A2(u2
λ, uλ(un − uλ))

−λ
∫
R2

[f(un)− f(uλ)](un − uλ)dx

= ‖∇(un − uλ)‖22 + (1− λ)‖un − uλ‖2∗ +A1(u2
n, (un − uλ)2) + o(1)

≥ ‖∇(un − uλ)‖22 +
1

4
‖un‖22‖un − uλ‖2∗ + o(1),

which, together with δ0 = lim supn→∞ ‖un‖2 > 0, implies that un → uλ in E. Hence,

0 < cλ = limn→∞Φλ(un) = Φλ(uλ) and Φ′λ(uλ) = 0.

In view of Lemmas 3.2 and 3.4, there exist two sequences {λn} ⊂ [0.5, 1] and {uλn} ⊂ E,

denoted by {un} such that

λn → 1, Φ′λn(un) = 0, Φλn(un) = cλn ∈ [c1, c0.5], Jλn(un) = 0. (3.27)
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Lemma 3.5. Assume that (F1), (F2′′) and (F3) hold. Let {λn} ⊂ [0.5, 1] and {un} ⊂ E be

two sequences satisfying (3.27). Then {‖un‖H1} is bounded.

Proof. By (3.2), (3.5) and (3.27), one has

cλn = Φλn(un)− 1

4
Jλn(un)

=
1− λn

8

(
2‖un‖2∗ +

∫
R2

|x|
2 + |x|

u2
ndx

)
+

1

16
‖un‖42 +

λn
2

∫
R2

[f(un)un − 3F (un)]dx

≥ 1

16
‖un‖42 +

1− λn
4
‖un‖2∗ +

λn
2

∫
R2

[f(un)un − 3F (un)]dx, (3.28)

which, together with (F3), implies

cλn ≥
1

16
‖un‖42 −

α0

2
‖un‖22. (3.29)

From (3.28) and (3.29), one has

‖un‖2 ≤ C1,

∫
R2

[
f(un)un − 3F (un) + α0u

2
n

]
dx ≤ C2. (3.30)

Now, we prove that {‖un‖H1} is also bounded. Arguing by contradiction, suppose that

‖un‖H1 → ∞. Let vn := un
‖un‖H1

. Then ‖vn‖H1 = 1, and ‖vn‖2 → 0 due to (3.30). Set

κ′ = κ/(κ− 1). By the Gagliardo-Nirenberg inequality (2.1), one has

‖vn‖2κ
′

2κ′ ≤ C2‖vn‖22‖∇vn‖2κ
′−2

2 = o(1). (3.31)

Set

Ωn :=
{
x ∈ R2 : |un(x)| ≤ R0

}
.

Then by (F1) and (F2′′), we have∫
Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx ≤ C3‖vn‖22 = o(1). (3.32)

Moreover, by (F3), (3.30), (3.31) and the Hölder inequality, we have

∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx ≤

(∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣κ dx

)1/κ(∫
R2\Ωn

|vn|2κ
′
dx

)1/κ′

≤ c
1/κ
0

(∫
R2\Ωn

[
f(un)un − 3F (un) + α0u

2
n

]
dx

)1/κ

‖vn‖22κ′

= o(1). (3.33)

From (2.6), (3.30) and the Gagliardo-Nirenberg inequality, we have

I2(un) ≤ C1‖un‖48/3 ≤ C4‖un‖32‖∇un‖2 ≤ C5‖∇un‖2. (3.34)
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Thus, it follows from (2.11), (3.27), (3.32), (3.33) and (3.34) that

1 + o(1) =
‖∇un‖22 − 〈Φ′λn(un), un〉

‖un‖2H1

=
−I1(un) + I2(un)− (1− λn)‖un‖2∗ + λn

∫
R2 f(un)undx

‖un‖2H1

≤ C5

‖un‖H1

+ λn

∫
Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx+ λn

∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx = o(1),

which is a contradiction. Hence, {‖un‖H1} is bounded.

Proof of Theorem 1.1. In view of Lemmas 3.4 and 3.5, under assumptions of Theorem 1.1,

there exists two sequences {λn} ⊂ [0.5, 1] and {un} ⊂ E satisfying (3.27) and {‖un‖H1} is

bounded. It follows from (2.6), (3.2), (F1) and (F2′′) that I1(un) is bounded. Similar to

the proof of Lemma 3.4, we can show that lim supn→∞ ‖un||2 > 0. Applying Lemma 2.2, we

have {‖un‖∗} is bounded. Hence {un} is bounded in E. We may thus assume, passing to a

subsequence if necessary, that un ⇀ ū in E, un → ū in Ls(R2), s ∈ [2,∞) and un(x)→ ū(x)

a.e. on R2. Since λn → 1, by (2.11), (2.12), (3.2) and (3.27), we have

Φ′(un)→ 0, Φ(un)→ c∗ := lim
n→∞

cλn , J(un)→ 0. (3.35)

Similar to the proof of Lemma 3.4, we can deduce that un → ū in E. Hence, 0 < c∗ =

limn→∞Φ(un) = Φ(ū) and Φ′(ū) = 0. This completes the proof.
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and molecules, Comm. Math. Phys. 79 (1981) 167–180.

[9] I. Catto, P. Lions, Binding of atoms and stability of molecules in hartree and thomas-

fermi type theories, Comm. Partial Differ. Equ. 18 (1993) 1149–1159.

[10] G. Cerami, J.G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson

systems, J. Differ. Equ. 248 (2010) 521–543.

[11] S.T. Chen, J.P. Shi, X.H. Tang, Ground state solutions of Nehari-Pohozaev type for the

planar Schrödinger-Poisson system with general nonlinearity, Disc. Contin. Dyn. Syst.-A.

39 (2019) 5867–5889.

[12] S.T. Chen, X.H. Tang, Existence of ground state solutions for the planar axially sym-

metric Schrödinger-Poisson system, Disc. Contin. Dyn. Syst.-B. 24, (2019) 4685–4702.

[13] S.T. Chen, A. Fiscella, P. Pucci, X.H. Tang, Semiclassical ground state solutions for

critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ. 268 (2020)

2672-2716.

[14] S.T. Chen, X.H. Tang, On the planar Schrödinger-Poisson system with the axially sym-

metric potentials, J. Differ. Equ., 268 (2020) 945-976.

[15] S.T. Chen, X.H. Tang, Axially symmetric solutions for the planar Schrödinger-Poisson

system with critical exponential growth, J. Differ. Equ., 269 (2020) 9144-9174.

[16] S.T. Chen, X.H. Tang, On the planar Schrödinger-Poisson system with zero mass and

critical exponential growth, Adv. Differ. Equ., 25, (2020), 687-708.

[17] S. Cingolani, T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. H. Poincaré
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