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Abstract7

1. Neighborhood competition models are powerful tools to measure the effect of8

interspecific competition. Statistical methods to ease the application of these models9

are currently lacking.10

2. We present the forestecology package providing methods to i) specify neighbor-11

hood competition models, ii) evaluate the effect of competitor species identity using12

permutation tests, and iii) measure model performance using spatial cross-validation.13

Following Allen & Kim (2020), we implement a Bayesian linear regression neighbor-14

hood competition model.15

3. We demonstrate the package’s functionality using data from the Smithsonian Con-16

servation Biology Institute’s large forest dynamics plot, part of the ForestGEO global17

network of research sites. Given ForestGEO’s data collection protocols and data for-18

matting standards, the package was designed with cross-site compatibility in mind.19

We highlight the importance of spatial cross-validation when interpreting model re-20

sults.21

4. The package features i) tidyverse-like structure whereby verb-named functions22
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can be modularly “piped” in sequence, ii) functions with standardized inputs/outputs23

of simple features sf package class, and iii) an S3 object-oriented implementation of24

the Bayesian linear regression model. These three facts allow for clear articulation of25

all the steps in the sequence of analysis and easy wrangling and visualization of the26

geospatial data. Furthermore, while the package only has Bayesian linear regression27

implemented, the package was designed with extensibility to other methods in mind.28

Keywords: forest ecology, interspecific competition, neighborhood competition, tree growth,29

R, ForestGEO, spatial cross-validation30
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1 Introduction31

Repeat-censused forest plots offer excellent opportunities to test neighborhood models of32

the effect of competition on the growth of trees (Canham et al. 2004). Neighborhood mod-33

els of competition have been used to: test whether the species identity of a competitor34

matters [Uriarte et al. (2004); measure species-specific competition coefficients (Das 2012,35

Tatsumi et al. (2016)); test competing models to see what structures competitive interac-36

tions, e.g. traits or phylogeny (Allen & Kim 2020, Uriarte et al. 2010); and inform selective37

logging practices (Canham et al. 2006). Although these are well-described methods, few38

methods are currently available for easy application.39

We address this shortcoming with the forestecology R package providing methods40

and data for forest ecology model fitting and assessment, available on CRAN (https://41

cran.r-project.org/package=forestecology) and on GitHub (https://github.com/42

rudeboybert/forestecology). The package is written to model stem diameter growth43

between two censuses based on neighborhood competition, largely following the methods44

in Allen & Kim (2020).45

Let i = 1, . . . , nj index all nj trees of “focal” species j; let j = 1, . . . , J index all J focal46

species; and let k = 1, . . . , K index all K “competitor” species. The average annual growth47

in diameter at breast height (DBH) yij (in centimeters/year) of the ith tree of focal species48

j is modeled as49

yij = β0,j + βdbh,j · dbhij +
K∑
k=1

λjk · BAijk + εij (1)

where β0,j is the diameter-independent growth rate of species j; dbhij is the DBH of50

the focal tree at the earlier census and βdbh,j the slope of that species’s diameter-growth51

relationship; BAijk is the sum of the basal area of all trees of competitor species k and52

λjk quantifies the corresponding change in growth for individuals of group j from these53

competitors; and εij is a random error term distributed Normal(0, σ2). Allen & Kim (2020)54
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estimate all parameters via Bayesian linear regression, while exploiting Normal/Inverse55

Gamma conjugacy to derive closed-form solutions to all posterior distributions1. These56

closed-form solutions are not as computationally expensive as approximations from Markov57

Chain Monte Carlo algorithms.58

To evaluate whether competitor species identity matters, Allen & Kim (2020) run a per-59

mutation test where a null hypothesis of no species grouping-specific effects of competition60

is assumed, thus the species identity of all competitors can be permuted:61

H0 : λjk = λj for all k = 1, . . . , K (2)

vs. HA : at least one λjk is different

Furthermore, to account for the spatial autocorrelation in their estimates of out-of-62

sample model error, Allen & Kim (2020) use spatial cross-validation. Estimates of model63

error that do not account for this dependence tend to underestimate the true model error64

(Roberts et al. 2017).65

The package is designed with “tidy” design principles in mind (Wickham et al. 2019).66

Much like all tidyverse packages, forestecology has verb-named functions that can be67

modularly composed using the pipe %>% operator to sequentially complete all necessary68

analysis steps (Bache & Wickham 2020). Furthermore, the inputs and outputs of most69

functions use the same “simple features for R” data structures from the sf package, a70

package for standardized and tidyverse-friendly wrangling and visualizing of spatial data71

(Pebesma 2018).72

Currently the package only implements the Bayesian linear regression model detailed73

in Equation 1. As we demonstrate in Section 2.4 however, the fitting of this model is self-74

contained in a single function comp bayes lm() which returns an object of S3 class type75

1See S1 Appendix of Allen & Kim (2020), available at https://doi.org/10.1371/journal.pone.

0229930.s004
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comp bayes lm. This class has generic methods implemented to print, make predictions,76

and plot all results. Therefore the package can be modularly extended to fit other models as77

long as they are coded similarly to comp bayes lm() and have equivalent generic methods78

implemented.79

2 forestecology workflow: a case study80

We present a case-study of forestecology’s functionality on data from the Smithsonian81

Conservation Biology Institute (SCBI) large forest dynamics plot in Front Royal, VA,82

USA, part of the ForestGEO global network of research sites (Bourg et al. 2013, Anderson-83

Teixeira et al. (2015)). The 25.6 ha (640 x 400 m) plot is located at the intersection of three84

of the major physiographic provinces of the eastern US—the Blue Ridge, Ridge and Valley,85

and Piedmont provinces—and is adjacent to the northern end of Shenandoah National86

Park.87

The package has the following goals: to evaluate i) the effect of competitor species88

identity using permutation tests and ii) model performance using spatial cross-validation.89

We outline the four-step basic analysis sequence:90

1. Compute the growth of stems based on two censuses.91

2. Add spatial information:92

1. Define a buffer region of trees.93

2. Add spatial cross-validation block information.94

3. Identify all focal trees and their competitors.95

4. Apply model, which includes:96

1. Fit model.97

2. Compute predicted values.98

3. Visualize posterior distributions.99
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We start by loading all packages.100

library(tidyverse)

library(lubridate)

library(sf)

library(patchwork)

library(forestecology)

library(blockCV)

# Resolve conflicting functions

filter <- dplyr::filter

select <- dplyr::select

2.1 Step 1: Compute the growth of trees based on census data101

We first compute the growth of trees using data from two censuses. compute growth()102

computes the average annual growth based on census data that roughly follows ForestGEO103

standards. Despite such standards, minor variations will still exist between sites, thereby104

necessitating some data wrangling. For example, the SCBI site records all DBH values in105

millimeters (Bourg et al. 2013), whereas the Michigan Big Woods site used in Allen & Kim106

(2020) records them in centimeters (Allen et al. 2020).107

We load both 2008 and 2014 SCBI census .csv files as they existed on GitHub on108

2020/11/20 and perform minor data wrangling (Gonzalez-Akre et al. 2020). We then only109

consider a 9 ha subsection of the 25.6 ha of the site to speed up computation for this110

example: gx from 0–300 instead of 0–400 and gy from 300–600 instead of 0–640.111
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census_2013_scbi <- read_csv("scbi.stem2.csv") %>%

select(stemID, sp, date = ExactDate, gx, gy, dbh, codes, status) %>%

mutate(

# Convert date from character to date

date = mdy(date),

# Convert dbh to be in cm

dbh = as.numeric(dbh)/10

) %>%

filter(gx < 300, between(gy, 300, 600))

census_2018_scbi <- read_csv("scbi.stem3.csv") %>%

select(stemID, sp, date = ExactDate, gx, gy, dbh, codes, status) %>%

mutate(

date = mdy(date),

dbh = as.numeric(dbh)/10

) %>%

filter(gx < 300, between(gy, 300, 600))

These two data frames are then used as inputs to compute growth(), along with id112

specifying the variable that uniquely identifies each tree-stem. We also discard all resprouts113

with code == R in the later census, since we are only interested in the growth of surviving,114

and not resprouted, stems.115

growth_scbi <-

compute_growth(

census_1 = census_2013_scbi,

census_2 = census_2018_scbi %>% filter(!str_detect(codes, "R")),

id = "stemID"
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)

growth_scbi %>%

select(stemID, sp, dbh1, dbh2, growth, geometry)

## Simple feature collection with 7954 features and 5 fields

## geometry type: POINT

## dimension: XY

## bbox: xmin: 0.2 ymin: 300 xmax: 300 ymax: 600

## CRS: NA

## # A tibble: 7,954 x 6

## stemID sp dbh1 dbh2 growth geometry

## <dbl> <fct> <dbl> <dbl> <dbl> <POINT>

## 1 4 nysy 13.6 14.2 0.103 (14.2 428)

## 2 5 havi 8.8 9.6 0.150 (9.4 436)

## 3 6 havi 3.25 4 0.140 (1.3 434)

## 4 77 qual 65.2 66 0.141 (34.7 307)

## 5 79 tiam 47.7 46.8 -0.161 (40 381)

## # ... with 7,949 more rows

The output growth scbi is a data frame of class sf that includes among other variables116

the species variable sp converted to a factor, the average annual growth in DBH (cm ·117

y-1) for all stems that were alive at both time points, and the sf package’s encoding of118

geolocations of geometry type <POINT>. Given that growth scbi is of class sf, it can be119

easily plotted in ggplot2 using geom sf() as seen in Figure 1.120

ggplot() +

geom_sf(data = growth_scbi %>% sample_n(500), aes(size = growth)) +

scale_size_binned(limits = c(0.1, 1)) +

labs(size = expression(paste(Growth, " (cm ",y^{-1},’)’)) )
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Figure 1: Step 1 - Compute growth of trees based on census data. A map of the growth
of a random sample of 500 trees from a 9 ha subsection of the Smithsonian Conservation
Biology Institute (SCBI) forest plot.

2.2 Step 2: Add spatial information121

We then add spatial information to growth scbi. We first add a “buffer region” to the122

periphery of the study region. Since some of our model’s explanatory variables are cumula-123

tive, we must ensure that all trees being modeled are not biased to have different neighbor124

structures. This is of concern for trees at the boundary of the study region who will not125

have all their neighbors included in the census stems. To account for such edge effects,126

only trees that are not part of this buffer region, i.e. are part of the interior of the study127

region, will have their growth modeled (Waller & Gotway 2004).128

Our model of interspecific competition relies on a spatial definition of who competitor129

trees are: all trees within a distance comp dist of a focal tree. We set comp dist to 7.5m,130

a value informed by other studies (Canham et al. 2004, Uriarte et al. (2004), Canham et al.131

(2006)). We use comp dist and a manually constructed sf representation of the study132
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region’s boundary as inputs to add buffer variable() to add a buffer boolean variable133

to growth scbi. All trees with buffer equal to FALSE will be our focal trees whose growth134

will be modeled, whereas those with TRUE will only act as competitor trees.135

# Define competitive distance range

comp_dist <- 7.5

# Manually construct study region boundary

study_region_scbi <- tibble(x = c(0, 300, 300, 0, 0), y = c(300, 300, 600,

600, 300)) %>%

sf_polygon()

growth_scbi <- growth_scbi %>%

add_buffer_variable(size = comp_dist, region = study_region_scbi)

The second element of spatial information we add are blocks corresponding to folds136

of a spatial cross-validation algorithm. Conventional cross-validation algorithms assign137

individual observations to folds by randomly resampling them all while assuming they are138

statistically independent. In the case of forest census data however, observations exhibit139

spatial autocorrelation. We therefore incorporate this dependence into the cross-validation140

algorithm by resampling spatial blocks of trees (Roberts et al. 2017, Pohjankukka et al.141

(2017)).142

We first manually define an sf object defining four folds that partition the study region.143

We then use the output of the spatialBlock() function from the blockCV package to144

associate each tree in growth scbi to the correct foldID (Valavi et al. 2019). This foldID145

variable will be used in Section 2.6.146

Figure 2 illustrates the net effect of adding these two elements of spatial information to147

growth scbi.148
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# Manually define spatial blocks to act as folds

n_fold <- 4

fold1 <- cbind(c(0, 150, 150, 0), c(300, 300, 450, 450))

fold2 <- cbind(c(150, 300, 300, 150), c(300, 300, 450, 450))

fold3 <- cbind(c(0, 150, 150, 0), c(450, 450, 600, 600))

fold4 <- cbind(c(150, 300, 300, 150), c(450, 450, 600, 600))

blocks_scbi <- bind_rows(sf_polygon(fold1), sf_polygon(fold2), sf_polygon(fold3),

sf_polygon(fold4)) %>%

mutate(folds = c(1:n_fold) %>%

factor())

# Associate each observation to a fold

spatial_block_scbi <- spatialBlock(speciesData = growth_scbi, k = n_fold,

selection = "systematic", blocks = blocks_scbi, showBlocks = FALSE, verbose = FALSE)

growth_scbi <- growth_scbi %>%

mutate(foldID = spatial_block_scbi$foldID %>%

factor())

ggplot() +

geom_sf(data = blocks_scbi, fill = "transparent", linetype = "dashed") +

geom_sf_text(data = growth_scbi %>% sample_n(1000),

aes(label = foldID, col = buffer))
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Figure 2: Step 2 - Add spatial information. A buffer region and spatial cross-validation
blocks 1 through 4. The location of each tree is marked with its fold number where the
folds are delineated with solid lines. The color of each digit indicates whether the tree is
part of the buffer region (thus will only be considered as a competitor tree) or is part of
the interior of the study region (thus is a focal tree whose growth is of modeled interest).

2.3 Step 3: Identify all focal and corresponding competitor trees149

We then identify all focal trees and their corresponding competitor trees. More specifically,150

identify all trees that are not part of the buffer region, have a valid growth measurement,151

and have at least one neighbor within 7.5m. We do this using create focal vs comp(),152

which takes the previously detailed comp dist and id arguments as well as the sf represen-153

tation of the spatial cross-validation blocks and returns a new data frame focal vs comp scbi.154

focal_vs_comp_scbi <- growth_scbi %>%

create_focal_vs_comp(comp_dist, blocks = blocks_scbi, id = "stemID")

focal_vs_comp_scbi %>%

select(focal_ID, focal_sp, geometry, growth, comp)

## # A tibble: 6,296 x 5

## focal_ID focal_sp geometry growth comp

12
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## <dbl> <fct> <POINT> <dbl> <list>

## 1 4 nysy (14.2 428) 0.103 <tibble [20 x 4]>

## 2 5 havi (9.4 436) 0.150 <tibble [32 x 4]>

## 3 79 tiam (40 381) -0.161 <tibble [20 x 4]>

## 4 80 caca (38.7 422) 0.253 <tibble [12 x 4]>

## 5 96 libe (60 310) 0.262 <tibble [14 x 4]>

## # ... with 6,291 more rows

The resulting focal vs comp scbi has 6296 rows, representing the subset of the 7954155

trees in growth scbi that will be considered as focal trees. The variables focal ID and156

focal sp relate to tree-stem identification and species information. Most notably however157

is the variable comp, which contains information on all competitor trees saved in tidyr158

package list-column format (Wickham 2020). To inspect this information, we flatten the159

comp list-column for the tree with focal ID 4 in the first row, here a tibble [20 × 4],160

into regular columns using unnest() from the tidyr package.161

focal_vs_comp_scbi %>%

filter(focal_ID == 4) %>%

select(focal_ID, dbh, comp) %>%

unnest(cols = "comp")

## # A tibble: 20 x 6

## focal_ID dbh comp_ID dist comp_sp comp_basal_area

## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>

## 1 4 13.6 1836 7.48 tiam 0.0176

## 2 4 13.6 1847 2.81 nysy 0.00332

## 3 4 13.6 1848 1.62 nysy 0.00396

## 4 4 13.6 1849 2.62 nysy 0.00535

## 5 4 13.6 1850 2.98 havi 0.00472
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Figure 3: Step 3 - Identify all focal and corresponding competitor trees. The dashed circle
extends 7.5m away from the focal tree 4 while all 20 competitor trees are within this circle.

## # ... with 15 more rows

We observe 4 variables describing 20 competitor trees: the unique tree-stem ID, the162

distance to the focal tree (all ≤ 7.5 m), the species, and the basal area (in m2) calculated163

as π×(DBH/2)2

10000
for the DBH in cm from the earlier census. Saving competitor information in164

list-column format minimizes redundancy since we do not need to repeat information on165

the focal tree 20 times. We visualize the spatial distribution of these trees in Figure 3.166

2.4 Step 4: Fit model167

Lastly, we fit the competition Bayesian linear regression model for tree growth outlined in168

Equation 1 using comp bayes lm(). This function has an option to specify prior distribu-169

tions of all parameters, chosen here to be the defaults detailed in ?comp bayes lm.170

comp_bayes_lm_scbi <- focal_vs_comp_scbi %>%

comp_bayes_lm(prior_param = NULL)
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The resultingcomp bayes lm scbi is an object of S3 class type comp bayes lm contain-171

ing the posterior values of all parameters. Furthermore, this class includes generics for172

three methods. First, the generic for print() displays the names of all prior and posterior173

parameters and the model formula:174

comp_bayes_lm_scbi

## Bayesian linear regression model parameters with a multivariate Normal

## likelihood. See ?comp_bayes_lm for details:

##

## parameter_type prior posterior

## 1 Inverse-Gamma on sigma^2 a_0 a_star

## 2 Inverse-Gamma on sigma^2 b_0 b_star

## 3 Multivariate t on beta mu_0 mu_star

## 4 Multivariate t on beta V_0 V_star

##

## Model formula:

## growth ~ sp + dbh + dbh * sp + acne * sp + acru * sp + amar * sp + astr

## * sp + caca * sp + caco * sp + cade * sp + cagl * sp + caovl * sp + cato

## * sp + ceca * sp + ceoc * sp + chvi * sp + cofl * sp + crpr * sp + crsp

## * sp + divi * sp + elum * sp + fagr * sp + fram * sp + frni * sp + frpe

## * sp + havi * sp + ilve * sp + juci * sp + juni * sp + libe * sp + litu

## * sp + nysy * sp + pist * sp + pivi * sp + ploc * sp + prav * sp + prse

## * sp + qual * sp + quco * sp + qufa * sp + qumi * sp + qupr * sp + quru

## * sp + quve * sp + rops * sp + saal * sp + saca * sp + tiam * sp + ulam

## * sp + ulru * sp + unk * sp + vipr * sp

Next, the generic for predict() takes the posterior parameter values in comp bayes lm scbi175

and a newdata data frame, and outputs a vector growth hat of predicted DBH values ŷij176
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computed from the posterior predictive distribution.177

focal_vs_comp_scbi <- focal_vs_comp_scbi %>%

mutate(growth_hat = predict(comp_bayes_lm_scbi, newdata = focal_vs_comp_scbi))

focal_vs_comp_scbi %>%

select(focal_ID, focal_sp, dbh, growth, growth_hat)

## # A tibble: 6,296 x 5

## focal_ID focal_sp dbh growth growth_hat

## <dbl> <fct> <dbl> <dbl> <dbl>

## 1 4 nysy 13.6 0.103 0.0809

## 2 5 havi 8.8 0.150 0.112

## 3 79 tiam 47.7 -0.161 0.229

## 4 80 caca 5.15 0.253 0.121

## 5 96 libe 2.3 0.262 0.142

## # ... with 6,291 more rows

We can now compare the observed and predicted growths to compute the root mean178

squared error (RMSE) of our model:179

model_rmse <- focal_vs_comp_scbi %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

model_rmse

## [1] 0.128

Lastly, the generic for ggplot2::autoplot() allows us to visualize all posterior dis-180

tributions, as seen in Figure 4. Setting type to "intercepts" and "dbh slopes" returns181

species-specific posterior distributions for β0,j and βdbh,j respectively, while setting type =182

"competition" returns competition coefficients λj,k.183
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# Plot posteriors for only a subset of species

sp_to_plot <- c("litu", "quru", "cagl")

plot1 <- autoplot(comp_bayes_lm_scbi, type = "intercepts",

sp_to_plot = sp_to_plot)

plot2 <- autoplot(comp_bayes_lm_scbi, type = "dbh_slopes",

sp_to_plot = sp_to_plot)

plot3 <- autoplot(comp_bayes_lm_scbi, type = "competition",

sp_to_plot = sp_to_plot)

# Combine plots using the patchwork package

(plot1 | plot2) / plot3

For many users the visualizations of λj,k will be of particular interest as they provide184

insight into species-specific competitive interactions, where negative values indicate a com-185

petitor species which slows the growth of a focal species. Here, for example, we see that186

tulip poplars (litu) have a strong negative effect on the growth of conspecifics but relatively187

lesser effect on pignut hickory (cagl) and red oak (quru) neighbors.188

Currently the forestecology package can only fit the competition Bayesian linear189

regression model in Equation 1. However, it can be extended to any model as long as it is190

implemented in a function similar to comp bayes lm().191

2.5 Evaluate the effect of competitor species identity using per-192

mutation tests193

To evaluate the effect of competitor species identity, we use the above four steps along with194

the permutation test in Equation 2. Under a null hypothesis where competitor species195

identity does not matter, we can permute the competitor species identities within each196
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Figure 4: Step 4 - Fit model. Posterior distributions of all parameters. For compactness
we include only three species.
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focal tree, compute the RMSE test statistic, repeat this process several times to construct197

a null distribution, and compare it to the observed RMSE to assess significance. Going198

back to our example in Section 2.3 of focal tree with focal ID 4 and its 20 competitors,199

the permutation test only randomly resamples the comp sp variable without replacement,200

leaving all other variables intact. This resampling is nested within each focal tree in order201

to preserve neighborhood structure. We perform this permutation test once again using202

comp bayes lm() but by setting run shuffle = TRUE.203

comp_bayes_lm_scbi_shuffle <- focal_vs_comp_scbi %>%

comp_bayes_lm(prior_param = NULL, run_shuffle = TRUE)

focal_vs_comp_scbi <- focal_vs_comp_scbi %>%

mutate(growth_hat_shuffle = predict(comp_bayes_lm_scbi_shuffle,

newdata = focal_vs_comp_scbi))

model_rmse_shuffle <- focal_vs_comp_scbi %>%

rmse(truth = growth, estimate = growth_hat_shuffle) %>%

pull(.estimate)

model_rmse_shuffle

## [1] 0.131

The resulting permutation test RMSE of 0.131 is larger than the earlier RMSE of 0.128,204

suggesting that models that do incorporate competitor species identity better fit the data.205

2.6 Evaluate model performance using spatial cross-validation206

To evaluate model performance, we use spatial cross-validation. The model fit in Section207

2.4 uses the same data to both fit and assess model performance. Given the spatial-208

autocorrelation of our data, this can potentially lead to overfit models (Roberts et al.209
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Figure 5: Schematic of spatial cross-validation. Using the k = 1 fold (bottom-left) as the
test set, k = 2 through 4 as the training set, along with a ”fold buffer” extending outwards
from the test set to maintain spatial independence between it and the training set.

2017). To mitigate this risk, we use the spatial cross-validation blocking scheme encoded210

in the foldID variable from Section 2.2 and visualized in Figure 2.211

At each iteration of the cross-validation, one fold acts as the test set and the remaining212

three act as the training set. We fit the model to all focal trees in the training set, apply213

the model to all focal trees in the test set, compute predicted values, and compute the214

RMSE. Furthermore, to maintain spatial independence between the test and training sets,215

a “fold buffer” that extends 7.5m outwards from the boundary of the test set is considered;216

all trees within this “fold buffer” are excluded from the training set (see Figure 5).217

This process is repeated for each of the four folds acting as the test set, then the218

four RMSE’s are averaged to provide a single estimate of model error. This algorithm is219

implemented in run cv(), which acts as a wrapper function to both comp bayes lm() that220

fits the model and predict() that returns predicted values.221
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focal_vs_comp_scbi <- focal_vs_comp_scbi %>%

run_cv(comp_dist = comp_dist, blocks = blocks_scbi)

model_rmse_cv <- focal_vs_comp_scbi %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

model_rmse_cv

## [1] 0.14

The resulting RMSE of 0.14 computed using cross-validation is larger than the earlier222

RMSE of 0.128, suggesting that models that do not account for spatial autocorrelation223

generate model error estimates that are overly optimistic, i.e. RMSE values that are too224

low.225

3 Importance of spatial cross-validation226

run cv() also accepts the run shuffle argument in order to permute competitor species227

identity as described in Section 2.5. Figure 6 compares model performance for 49 permuta-228

tions of competitor species and RMSE calculations, both with and without cross-validation.229

Without cross-validation, competitor species identity does matter as the observed RMSE230

was significantly lower than the permutation null distribution of RMSE. However, once we231

incorporate spatial cross-validation, this improvement disappears. These results suggest232

that in this 9 ha subplot of the SCBI plot, competitive interactions do not depend on the233

identity of the competitor, which is the opposite of what has been observed in other loca-234

tions (Allen & Kim 2020, Uriarte et al. (2004)). This provides a striking example of the235

importance of cross-validation, as without it the over-fit model gives rise to an incorrect236

conclusion.237
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Figure 6: Comparison of root mean squared error of models for standard, permuted, and
spatially cross-validated error estimates. The dotted lines show observed RMSE while
the histograms show the null distribution of RMSE for 49 permutations under the null
hypothesis of no competitor species identity effects. The colors indicate whether spatial
cross-validation was used or not.
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4 Conclusion and future work238

The forestecology package provides an accessible way to fit and test models of neigh-239

borhood competition. The package follows the tidy data design principles, leverages the240

sf package for spatial data, and S3 open-oriented model implementation structure. We241

hope that the package will increase the use of neighborhood competition models to better242

understand what structures plant competition.243

While the package is designed with ForestGEO plot data in mind, we envision that it244

can be modified to work on any single large, mapped forest plot in which at least two mea-245

surements of each individual have been taken. Furthermore, we hope that future versions of246

the package will be flexible to other plot layouts, for example inventory plot-structure with247

many spatially separated plots like the US Forest Service Forest Inventory and Analysis248

plots (Smith 2002).249

We also hope to extend the forestecology package’s functionality to account for a250

larger variety of models for tree growth. One clear future direction would be to allow251

competition based on species trait values rather than species identity. There is evidence252

that traits predict competitive outcomes (Kunstler et al. 2012, Lasky et al. (2014), Uriarte253

et al. (2010)). Thus an extension of the model would allow λ values from Equation 1 to be254

a function of the traits of competing species.255

Lastly, the forestecology current uses the blockCV package behind the scenes to cre-256

ate the spatial blocks acting as folds for our spatial cross-validation algorithm detailed257

in Sections 2.2 and 2.6 (Valavi et al. 2019). This back-end functionality could be substi-258

tuted with the spatialsample package for spatial resampling infrastructure; a tidymodels259

package under active development as of 2021 (Silge 2021, Kuhn & Wickham (2020)).260
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8 Appendix276

This code replicates Figure 6: A comparison of root mean squared error of models for277

standard, permuted, and spatial cross- validated error estimates.278

library(tidyverse)

library(lubridate)
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library(here)

library(sf)

library(viridis)

library(forestecology)

library(blockCV)

library(tictoc)

# Compute growth of trees based on census data -------------------------

census_2013_scbi <- here("paper/scbi.stem2.csv") %>%

read_csv() %>%

select(stemID, sp, date = ExactDate, gx, gy, dbh, codes, status) %>%

mutate(date = mdy(date), dbh = as.numeric(dbh)/10) %>%

filter(gx < 300, between(gy, 300, 600))

census_2018_scbi <- here("paper/scbi.stem3.csv") %>%

read_csv() %>%

select(stemID, sp, date = ExactDate, gx, gy, dbh, codes, status) %>%

mutate(date = mdy(date), dbh = as.numeric(dbh)/10) %>%

filter(gx < 300, between(gy, 300, 600))

growth_scbi <- compute_growth(census_1 = census_2013_scbi, census_2 = census_2018_scbi %>%

filter(!str_detect(codes, "R")), id = "stemID")

# Add spatial information ----------------------------------------------
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# Define buffer region using competitive distance range

comp_dist <- 7.5

study_region_scbi <- tibble(x = c(0, 300, 300, 0, 0), y = c(300, 300, 600,

600, 300)) %>%

sf_polygon()

growth_scbi <- growth_scbi %>%

add_buffer_variable(size = comp_dist, region = study_region_scbi)

# Manually define spatial blocks to act as folds

fold1 <- rbind(c(0, 300), c(150, 300), c(150, 450), c(0, 450))

fold2 <- rbind(c(150, 300), c(300, 300), c(300, 450), c(150, 450))

fold3 <- rbind(c(0, 450), c(150, 450), c(150, 600), c(0, 600))

fold4 <- rbind(c(150, 450), c(300, 450), c(300, 600), c(150, 600))

n_fold <- 4

blocks_scbi <- bind_rows(sf_polygon(fold1), sf_polygon(fold2), sf_polygon(fold3),

sf_polygon(fold4)) %>%

mutate(folds = c(1:n_fold) %>%

factor())

# Associate each observation to a fold

SpatialBlock_scbi <- spatialBlock(speciesData = growth_scbi, k = n_fold,

selection = "systematic", blocks = blocks_scbi, showBlocks = FALSE, verbose = FALSE)
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growth_scbi <- growth_scbi %>%

mutate(foldID = SpatialBlock_scbi$foldID %>%

factor())

# Compute focal versus competitor tree information ---------------------

focal_vs_comp_scbi <- growth_scbi %>%

create_focal_vs_comp(comp_dist, blocks = blocks_scbi, id = "stemID")

# Fit model and make predictions ---------------------------------------

# Number of permutation shuffles:

num_shuffle <- 49

# Save results here

run_time <- 0

observed_RMSE <- 0

observed_RMSE_CV <- 0

shuffle_RMSE <- vector("list", 1)

shuffle_RMSE_CV <- vector("list", 1)

filename <- here("paper/simulation_results/") %>%

str_c("2021-03-03_scbi_", num_shuffle, "_shuffles")

# Run all simulations 0. Setup simulation for this species type ----

# Start clock

tic()
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# 1. Compute observed test statistic: RMSE with no cross-validation ----

# Fit model (compute posterior parameters)

comp_bayes_lm_scbi <- focal_vs_comp_scbi %>%

comp_bayes_lm(prior_param = NULL, run_shuffle = FALSE)

# Make predictions and compute RMSE

observed_RMSE <- focal_vs_comp_scbi %>%

mutate(growth_hat = predict(comp_bayes_lm_scbi, focal_vs_comp_scbi)) %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

# 2. Compute observed test statistic: RMSE with cross-validation -------

observed_RMSE_CV <- focal_vs_comp_scbi %>%

run_cv(comp_dist = comp_dist, blocks = blocks_scbi) %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

# 3. Permutation distribution: RMSE with no cross-validation -----------

# Compute num_shuffle permutation test statistics

shuffle_RMSE <- numeric(length = num_shuffle)

for (j in 1:num_shuffle) {

# Fit model (compute posterior parameters) with shuffling

comp_bayes_lm_scbi <- focal_vs_comp_scbi %>%

comp_bayes_lm(prior_param = NULL, run_shuffle = TRUE)

# Make predictions and compute RMSE
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shuffle_RMSE[j] <- focal_vs_comp_scbi %>%

mutate(growth_hat = predict(comp_bayes_lm_scbi, focal_vs_comp_scbi)) %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

}

# 4. Permutation distribution: RMSE with cross-validation --------------

# Compute num_shuffle permutation test statistics

shuffle_RMSE_CV <- numeric(length = num_shuffle)

# Compute num_shuffle permutation test statistics

for (j in 1:num_shuffle) {

# Compute and save RMSE

shuffle_RMSE_CV[j] <- focal_vs_comp_scbi %>%

run_cv(comp_dist = comp_dist, blocks = blocks_scbi, run_shuffle = TRUE) %>%

rmse(truth = growth, estimate = growth_hat) %>%

pull(.estimate)

# Status update

str_c("Shuffle with permutation ", j, " at ", Sys.time()) %>%

print()

}

# 5. Save results ----

clock <- toc(quiet = TRUE)

run_time <- clock$toc - clock$tic
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model_comp_tbl <- tibble(run_time = run_time, observed_RMSE = observed_RMSE,

observed_RMSE_CV = observed_RMSE_CV, shuffle_RMSE = shuffle_RMSE, shuffle_RMSE_CV = shuffle_RMSE_CV,

)

save(model_comp_tbl, file = filename %>%

str_c(".RData"))

# Visualize results ----------------------------------------------------

model_comp <- bind_rows(model_comp_tbl %>%

select(run_time, observed = observed_RMSE, shuffle = shuffle_RMSE) %>%

mutate(CV = FALSE), model_comp_tbl %>%

select(run_time, observed = observed_RMSE_CV, shuffle = shuffle_RMSE_CV) %>%

mutate(CV = TRUE)) %>%

gather(type, RMSE, -c(run_time, CV))

model_comp_observed <- model_comp %>%

filter(type == "observed") %>%

unnest(cols = c(RMSE))

model_comp_shuffle <- model_comp %>%

filter(type == "shuffle") %>%

unnest(cols = c(RMSE))

cv_plot <- ggplot() + geom_vline(data = model_comp_observed, aes(xintercept = RMSE,

col = CV), linetype = "dashed", show.legend = F) + geom_histogram(data = model_comp_shuffle,

aes(x = RMSE, fill = CV), bins = 50) + labs(fill = "Cross-validated?",

x = expression(paste("RMSE (cm ", y^{
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-1

}, ")"))) + scale_color_viridis(discrete = TRUE, option = "D") + scale_fill_viridis(discrete = TRUE) +

theme_light()

cv_plot

filename %>%

str_c(".pdf") %>%

ggsave(plot = cv_plot, width = 16/2, height = 9/2)
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stein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A.,352

Hartig, F. & Dormann, C. F. (2017), ‘Cross-validation strategies for data with temporal,353

spatial, hierarchical, or phylogenetic structure’, Ecography 40(8), 913–929.354

URL: http://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.02881355

Silge, J. (2021), spatialsample: Spatial Resampling Infrastructure. R package version 0.1.0.356

URL: https://CRAN.R-project.org/package=spatialsample357

Smith, W. B. (2002), ‘Forest inventory and analysis: a national inventory and monitoring358

program’, Environmental pollution 116, S233–S242.359

Tatsumi, S., Owari, T. & Mori, A. S. (2016), ‘Estimating competition coefficients in tree360

communities: a hierarchical bayesian approach to neighborhood analysis’, Ecosphere361

7, e01273.362

Uriarte, M., Condit, R., Canham, C. D. & Hubbell, S. P. (2004), ‘A spa-363

tially explicit model of sapling growth in a tropical forest: does the iden-364

tity of neighbours matter?’, Journal of Ecology 92(2), 348–360. eprint:365

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0022-0477.2004.00867.x.366

URL: http://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.0022-367

0477.2004.00867.x368

34



forestecology R package REFERENCES

Uriarte, M., Swenson, N. G., Chazdon, R. L., Comita, L. S., Kress, W. J., Erickson, D.,369
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