Literature Cited
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation Genetics,
17 (1), 1-17. doi:10.1007/s10592-015-0775-4
Bass, D., Stentiford, G. D., Littlewood, D. T. J., & Hartikainen, H.
(2015). Diverse Applications of Environmental DNA Methods in
Parasitology. Trends in Parasitology, 31 (10), 499-513.
doi:https://doi.org/10.1016/j.pt.2015.06.013
Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Griffiths, R. A.,
Foster, J., . . . Dunn, F. (2014). Analytical and methodological
development for improved surveillance of the Great Crested Newt.Defra Project WC1067 .
Borst, A., Box, A. T. A., & Fluit, A. C. (2004). False-Positive Results
and Contamination in Nucleic Acid Amplification Assays: Suggestions for
a Prevent and Destroy Strategy. European Journal of Clinical
Microbiology and Infectious Diseases, 23 (4), 289-299.
doi:10.1007/s10096-004-1100-1
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J.,
Kubista, M., . . . Wittwer, C. T. (2009). The MIQE Guidelines: Minimum
Information for Publication of Quantitative Real-Time PCR Experiments.Clinical Chemistry, 55 (4), 611-622.
doi:10.1373/clinchem.2008.112797
Carim, K. J., Padgett-Stewart, T. M., Wilcox, T. M., Young, M. K.,
McKelvey, K. S., & Schwartz, M. K. (2015). Protocol for
collecting eDNA samples from streams [Version 2.3] . Retrieved from
Cristescu, M. E., & Hebert, P. D. N. (2018). Uses and Misuses of
Environmental DNA in Biodiversity Science and Conservation. Annual
Review of Ecology, Evolution, and Systematics, 49 (1), 209-230.
doi:10.1146/annurev-ecolsys-110617-062306
Crossley, B. M., Bai, J., Glaser, A., Maes, R., Porter, E., Killian, M.
L., . . . Toohey-Kurth, K. (2020). Guidelines for Sanger sequencing and
molecular assay monitoring. Journal of Veterinary Diagnostic
Investigation, 32 (6), 767-775. doi:10.1177/1040638720905833
Darling, J. A., Jerde, C. L., & Sepulveda, A. J. (2021). What do you
mean by false positive? Environmental DNA, n/a (n/a).
doi:https://doi.org/10.1002/edn3.194
Erickson, R. A., Merkes, C. M., & Mize, E. L. (2019). Sampling Designs
for Landscape-level eDNA Monitoring Programs. Integrated
Environmental Assessment and Management, 15 (5), 760-771.
doi:https://doi.org/10.1002/ieam.4155
Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L., &
Kubista, M. (2017). Methods to determine limit of detection and limit of
quantification in quantitative real-time PCR (qPCR). Biomolecular
Detection and Quantification, 12 , 1-6.
doi:https://doi.org/10.1016/j.bdq.2017.04.001
Fulton, T. L., & Stiller, M. (2012). PCR Amplification, Cloning, and
Sequencing of Ancient DNA. In B. Shapiro & M. Hofreiter (Eds.),Ancient DNA: Methods and Protocols (pp. 111-119). Totowa, NJ:
Humana Press.
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P.
F., Murphy, M. A., . . . Taberlet, P. (2016). Critical considerations
for the application of environmental DNA methods to detect aquatic
species. Methods in Ecology and Evolution, 7 (11), 1299-1307.
doi:https://doi.org/10.1111/2041-210X.12595
Griffin, J. E., Matechou, E., Buxton, A. S., Bormpoudakis, D., &
Griffiths, R. A. (2020). Modelling environmental DNA data; Bayesian
variable selection accounting for false positive and false negative
errors. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 69 (2), 377-392.
doi:https://doi.org/10.1111/rssc.12390
Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A.
R., & Tingley, R. (2017). Dealing with false-positive and
false-negative errors about species occurrence at multiple levels.Methods in Ecology and Evolution, 8 (9), 1081-1091.
doi:https://doi.org/10.1111/2041-210X.12743
Hutchins, P. R., Sepulveda, A. J., Hartikainen, H., Staigmiller, K. D.,
Opitz, S. T., Yamamoto, R. M., . . . Okamura, B. (2021). Exploration of
the 2016 Yellowstone River fish kill and proliferative kidney disease in
wild fish populations. Ecosphere, 12 (3), e03436.
doi:https://doi.org/10.1002/ecs2.3436
Jerde, C. L. (2021). Can we manage fisheries with the inherent
uncertainty from eDNA? Journal of Fish Biology, 98 (2), 341-353.
doi:https://doi.org/10.1111/jfb.14218
Laramie, M. B., Pilliod, D. S., Goldberg, C. S., & Strickler, K. M.
(2015). Environmental DNA sampling protocol - filtering water to
capture DNA from aquatic organisms (2-A13). Retrieved from Reston, VA:
http://pubs.er.usgs.gov/publication/tm2A13
Minamoto, T., Miya, M., Sado, T., Seino, S., Doi, H., Kondoh, M., . . .
Uchii, K. (2021). An illustrated manual for environmental DNA research:
Water sampling guidelines and experimental protocols.Environmental DNA, 3 (1), 8-13.
doi:https://doi.org/10.1002/edn3.121
Moore, M. K., & Kornfield, I. L. (2012). Best Practices in Wildlife
Forensic DNA. Wildlife Forensics , 201-236.
doi:https://doi.org/10.1002/9781119953142.ch11
Parson, W., Gusmão, L., Hares, D. R., Irwin, J. A., Mayr, W. R.,
Morling, N., . . . Parsons, T. J. (2014). DNA Commission of the
International Society for Forensic Genetics: Revised and extended
guidelines for mitochondrial DNA typing. Forensic Science
International: Genetics, 13 , 134-142. doi:10.1016/j.fsigen.2014.07.010
Patrone, P. N., Romsos, E. L., Cleveland, M. H., Vallone, P. M., &
Kearsley, A. J. (2020). Affine analysis for quantitative PCR
measurements. Analytical and Bioanalytical Chemistry, 412 (28),
7977-7988. doi:10.1007/s00216-020-02930-z
R-Core-Team. (2014). R: A Language and Environment for Statistical
Computing: R Foundation for Statistical Computing. Retrieved from
http://www.R-project.org/
Sepulveda, A. J., Amberg, J. J., & Hanson, E. (2019). Using
environmental DNA to extend the window of early detection for dreissenid
mussels. Management of Biological Invasions, 10 (2), 342-342–358.
Sepulveda, A. J., Hutchins, P. R., Forstchen, M., McKeefry, M. N., &
Swigris, A. M. (2020). The Elephant in the Lab (and Field):
Contamination in Aquatic Environmental DNA Studies. Frontiers in
Ecology and Evolution, 8 , 440.
Sepulveda, A. J., Nelson, N. M., Jerde, C. L., & Luikart, G. (2020).
Are Environmental DNA Methods Ready for Aquatic Invasive Species
Management? Trends in Ecology & Evolution, 35 (8), 668-678.
doi:https://doi.org/10.1016/j.tree.2020.03.011
Serrao, N. R., Reid, S. M., & Wilson, C. C. (2018). Establishing
detection thresholds for environmental DNA using receiver operator
characteristic (ROC) curves. Conservation Genetics Resources,
10 (3), 555-562. doi:10.1007/s12686-017-0817-y
Smith, M. M., & Goldberg, C. S. (2020). Occupancy in dynamic systems:
accounting for multiple scales and false positives using environmental
DNA to inform monitoring. Ecography, 43 (3), 376-386.
doi:https://doi.org/10.1111/ecog.04743
Stratton, C., Sepulveda, A. J., & Hoegh, A. (2020). msocc: Fit and
analyse computationally efficient multi-scale occupancy models in r.Methods in Ecology and Evolution, 11 (9), 1113-1120.
doi:https://doi.org/10.1111/2041-210X.13442
Tingley, R., Coleman, R., Gecse, N., van Rooyen, A., & R. Weeks, A.
(2021). Accounting for false positive detections in occupancy studies
based on environmental DNA: A case study of a threatened freshwater fish
(Galaxiella pusilla). Environmental DNA, 3 (2), 388-397.
doi:https://doi.org/10.1002/edn3.124
US Fish and Wildlife Service. (2020). Quality Assurance Project
Plan: eDNA Monitoring of Bighead and Silver Carps . Retrieved from
Bloomington, MN:
Weyrich, L. S., Farrer, A. G., Eisenhofer, R., Arriola, L. A., Young,
J., Selway, C. A., . . . Cooper, A. (2019). Laboratory contamination
over time during low-biomass sample analysis. Molecular Ecology
Resources, 19 (4), 982-996.
doi:https://doi.org/10.1111/1755-0998.13011