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Abstract. This paper deals with an initial-boundary value problem of the planar compressible
Hall-magnetohydrodynamic (for short, Hall-MHD) equations. For the fixed shear viscosity and
Hall coefficients, it is shown that the strong solutions of Hall-MHD equations and corresponding
MHD equations are global. As both the shear viscosity and the Hall coefficients tend to zero, the
convergence rate for the solutions from Hall-MHD equations to MHD equations is given. The
thickness of boundary layer is discussed by spatial weighted estimation and the characteristic of
boundary layer is described by constructing a boundary layer function.
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1 Introduction

In this paper, we consider the vanishing limits of the shear viscosity and Hall coefficients for
the planar compressible Hall-magnetohydrodynamic system, which is governed by the following
equations:

(lot + (pU)z = 07
1
(pu); + [pu® + P + 5(b% + )] = Use,
(pv)e + (puv — b2)y = U4y,
(pw)t + (Puw - b&):): = HWgy,

b3e
b2t + (UbQ - U)w - H(i)x = b2:v$7

(1.1)

b3t + (UbS - w)x + K(%)x = b3mc’

where p is the density of the fluid, v and (v, w) are the longitudinal velocity and the transverse
velocity, by and (b, b3) are longitudinal magnetic field and the transverse magnetic field, respec-
tively. P(p) = Ap” is the pressure, where v > 1 and A is a positive constant. The parameter p
denotes the shear viscosity coefficient and « is the Hall coefficient.

The Hall-MHD system (1.1) can be derived from fluid mechanics with appropriate mod-
ifications to account for electrical forces and Hall effects. Since the Hall effect restores the
influence of the electric current in the Lorentz force occurring in Ohms law, Hall-MHD system
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plays an important role in many physical fields such as magnetic reconnection in space plasmas,
star formulation, neutron stars and geo-dynamo (see e.g., [2, 12, 16, 21, 24, 28]). When the
Hall term is neglected, the system (1.1) is reduced to the classical MHD system. It is known
that the MHD system has been studied widely, the global existence and asymptotic behavior of
solutions can be found in [6, 7, 11, 15, 17, 18, 22, 27] and the references therein. Especially, The
vanishing shear viscosity limit and the behavior of boundary layer for planar MHD equations
were described in [11, 23, 30].

In the past few years, the Hall-MHD system has been studied by some authors (cf.[1, 3,
4, 5,8, 9, 13, 19, 20]), For the compressible isentropic case, the local strong solutions with
large data, the global strong solutions with small data, the global existence and asymptotic
behavior under the initial data sufficiently close to the equilibrium, and the low Mach number
limit of smooth solution were proved in [9, 13, 20]. Tao and his coauthors derived the global
existence of solutions for the planar compressible Hall-MHD equations with Dirichlet boundary
or free boundary in [25, 26]. Xiang [29] established the smooth solution of the compressible
Hall-magnetohydrodynamics system converges to the solution of the compressible magneto-
hydrodynamics system as the Hall coefficient to zero. For the compressible non-isentropic case,
local well-posedness and blow-up criteria and the time decay of smooth solutions were established
in [10, 14]. Then, Lai-Xu-Zhang proved the global existence and the optimal decay rates of
solutions with the initial data sufficiently close to the non-vacuum equilibrium in H!, and the
vanishing limit of Hall coefficient is also justified in [19].

Motivated by the results as in [19, 23, 29, 30], the aim of this paper is to study the vanishing
limits of the shear viscosity and Hall coefficients for the planar compressible Hall-MHD system
(1.1) on (0.1) x (0,7T") with the following initial and boundary conditions:

(p,u,v,w, b, b3)|i=0 = (po, uo, Vo, wo, bay, b3y ) (),
(v, 0)]z=0 = (vi,w1)(t), (v, W)]|z=1 = (v2,w2)(2), (1.2)
(u, b2, b3)|z=0,1 = (0,0,0),

For the convenience of statement below, we rewrite the system (1.1)-(1.2) with 4 =0, x = 0,
i.e., the MHD system without the shear viscosity:

p

+
(p0)¢ + (puv — ba)y = 0, (1.3)
+

and

{(pauu v w762763)’t:0 = (p()?u()?vO?wOabQ())bSo)(x)a (1 4)

(ﬂ, [_)2, 53)‘120,1 = (0, 0, 0).
Our main results are as follows:

Theorem 1.1 For any T > 0, assume that
0< Po € HQ(Q)7 (u07v07w07b207b30) € HZ(Q)v (vl(t)av2<t)vwl(t)an(t)) € Cl([OaTD (15)



Then,
(i) for each fixed p > 0 and small Kk > 0, the following estimates on the solution of the
problem (1.1)-(1.2) hold uniformly in p and k:

0<Cy <pla,t) <1/Cy, (x,t) €10,1] x [0, 7],

sup (11061, b2, b) 3 + 10, w) 32 + /20 2) |32 + 11 (0, 10) |10 )
0<t<T

T
+ / (a1 + 22 (s waz) 32 + 1| Bots bar) 132 + 1| B, bso) I3 ) dt <

Here and in what follows, these letters C and Ci(i = 1,1) denote constants independent of p
and K.
(1) the following global estimates hold for the solution of the problem (1.3)-(1.4),

0<Cy < pla,t) <1/Cy,  (x,t) €1]0,1] x [0, 7], (1.6)

T
S (7, @, 0, @, b2, bs) |72 +/ (It b2w, b3o) 1772 + [1 (e, boe, bae)l[72) dt < C. (1.7)
<t< 0

Theorem 1.2 Assume that (p,u,v,w,bs, bs) and (p,u, v, w, by, b3) are the solutions of the prob-
lem (1.1)-(1.2) and (1.3)-(1.4), respectively, then

()

sup (Jlv - 0|72 + llw — @7 + o — pll3p + lu— @l 3 + b2 — ball7 + [lbs — bsF)

T
+/O (1w = @212+ 1(b2 — b2)all22 + [|(bs — bs)all32) dt < C(p/? + £?).

(i) To simplify the explanation, we assume k < p/*, there exists a boundary-layer-thickness
function 6(u) satisfying

)
u(f/g_mo and 0(p) =0 as p—0,
such that
. o~ a7 2 =
lll% (v —v,w = w)(O) ¢, =0,
and

.. e - 2
th_:lr)lfH(v v,w—w)(t)|[e@) >0

with Qs = (6,1 — 0)(0 < & < 1/2), provided the boundary values (v;,w;)(i = 1,2) are not
identically equivalent to the boundary values of (U, W) on the boundaries x =0, 1.



Theorem 1.3 Suppose k < p/4, let v* and w* be the solutions to the following two initial-
boundary value problems, respectively:

*

UCﬂI — ok *
vf = + uv,, v (x,t)|t=0 =0,
P e s
v (2, t)|p=0 = v1(t) — 01(t), v (x,t)|z=1 = v2(t) — V2(t)
and
wy = 'uw%z +aw), w*(x,t))=0 =0,
p (1.9)
W (2, 1)|z=0 = wi(t) —w1(t), W (2, 1)|z=1 = wa(t) — wa(t).
Then under the conditions of Theorem 1.1, we have
sup (||v — 0 — v*||pe + Jw — @ — w*|| o) < Cpl/B. (1.10)
0<t<T

Remark 1.1 Compared the results in Theorem 1.1 with those in [26], the derivative estimates
of the global solution to Hall-MHD system (1.1)-(1.2) obtained in [26] depend on p and k, while
our estimates obtained in Theorem 1.1 are independent of p and k.

Remark 1.2 Theorem 1.2-(i) implies that the solution (p,u,ba,bs) of Hall-MHD system (1.1)-
(1.2) converges uniformly to the solution of the corresponding MHD system (1.3)-(1.4). However,
the appearance of the boundary layer for (v,w) leads to that (v,w) can’t converge uniformly to
(v,w) in the whole domain.

Remark 1.3 If we only consider the vanishing limits of the Hall coefficient for Hall-MHD
system, since the diffusion terms of pvg, and pwy, are good terms in this case, it can be proved
that the solution (p,u,v,w,ba,bs) of Hall-MHD system (1.1)-(1.2) converges uniformly to the
solution of the corresponding MHD system (1.3)-(1.4) as the Hall coefficient k — 0 in the whole
domain.

We now make some comments on the key ideas used in this paper. First, due to strong
interaction between the velocity field and the magnetic field in the system (1.1), it is hard
to estimate the first-order derivative of the solution. To overcome this difficulty, motivated
by [30], we multiply (1.1)s, (1.1)g by the material derivative by (i.e. by = boy + ubs,) and bs,
respectively, instead of the usual by, b3, (see(2.7)), then we only need to deal with [|uz|| zoo (o 7;12)-
By utilizing the “effective viscous” flux and the construction of equations, we obtain the expected
estimates(see (2.19)). Second, in the process of showing the convergence rate of be, and b3, in
L?, we use a similar method as above to solve the difficulty caused by the presence of
and 0, in magnetic field(see (3.1)), that is, multiply (3.1)5 and (3.1)g by bor + ubsy and by +
ubsa, respectively (see 3.13). Third, the priori hypotheses method is used to overcome the
difficulties brought by the Hall term, we establish the global estimates under the assumption
that ”2||b2mHL2(0,T;L2) <1 and I€2Hb3xx||L2(07T;L2) < 1, then using the smallness condition of the
Hall coefficient x to close the priori hypotheses.

The rest of this paper is organized as follows. In section 2, we show the uniform estimates
on the global smooth solutions of Hall-MHD and MHD system with respect to the shear viscosity
and the Hall coefficients, namely, Theorem 1.1. In section 3, it is devoted to verify Theorem 1.2,
in which, we first give the convergence rate for the solutions from Hall-MHD systems to MHD
system as both the shear viscosity and the Hall coefficients tend to zero, then the boundary
layer thickness is discussed. In section 4, Theorem 1.3 is proved by constructing boundary layer
function.



2 Proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. To do this, we will establish the global
estimates on the solutions to the problems (1.1)-(1.2) and (1.3)-(1.4), respectively. Throughout
this section, for any T > 0, assume that

0<po€ HQ(Q), (UO,Uo,wo,bzo,bgo) S H2(Q), (Ul(t),’Ug(t),wl(t),’LUQ(t)) S Cl(t).

2.1 Global estimates on Hall-MHD system

Now we show the global estimates independent of p and & for the solutions to Hall-MHD system
(1.1)-(1.2).
First, for small x, we give the following a priori estimate.

Proposition 2.1 Assume that (p,u,v,w,ba,bs) be a smooth solution of (1.1)-(1.2) on (0,1) X
[0,T), and satisfy

T
& [ el + Dbseel) e < 1 1)
0
then one has
T
2 /0 (Ibase 2 + lbseal%2) dt < 172, (2.2)

provided

K < i/t min{l/\/2M1, 1//2Ms, 1} ,

here M;(i = 1,2) are positive constants independent of k and p.

The proof of Proposition 2.1 comprises the following four lemmas. First of all, we give
the following L2-estimate of (/P> u, v, w, ba, b3, p), the positive lower and upper bounds of the
density, which can be proved similar to the method in [26], and the details are omitted here for
simplicity.

Lemma 2.1 ([26]) Let (p,u, v, w,be,bs) be a smooth solution of (1.1)-(1.2) on (0,1) x [0,T).
Then it holds that,

Sup (el + IVeulZe + IVevlz: + IVewlze + b2 + [bs]1Z2)

T
+/0 (lualZe + pllvelZe + pllwallZe + b2z l72 + [1bsel72) dt < C (2.3)
and
0<C ! <p(a,t) <C, sup ||pzl32 < C. (2.4)
0<t<T



Lemma 2.2 Under the conditions of Proposition 2.1, let (p,u,v,w,ba,bs) be a smooth solution
of (1.1)-(1.2) on (0,1) x [0,T), then,

sup (luall3a + DbaelZa + bsall2s + llvallZs + pllell32)
0<t<T
T . .
+ [ (il + Wl + sl + i2lowele + lwselfa) e <€ (25)

here, f £ f, + uf, denote the derivative of material.

Proof. Multiplying (1.1)5 by bo in L? and integrating it by parts, we obtain

1d . 1 . L U bgw o 1
= —||b2z||22 + ||b2]|2e = —/ umbgbgdm—i-/ vmbgd:v+n/ (S)xbgdl'-i-/ bowgbazdi.
2dt 0 0 0o P 0
(2.6)
Definition of the derivative of material implies that
I 1 d [t 1
/ vgbodr = / Vg (bot + ubsy)dx = —/ vbozdx —I—/ Vbozd. (2.7)
0 0 dt Jo 0

Inserting (2.7) into (2.6) and integrating by parts again, using (2.4), Cauchy-Schwarz, Sobolev
and Poincaré inequalities, we have

dt
<C <Hb2HL°°||uxHL2”b2HL2 + b2l 210l 22 + ([ bsaz | L2

bzl + 2 [ vbaeda + o]l
0

+ |lbsallzoe [l pall z2) B2l 2 + ||U9cHL°°||b2xH%2>
<C (Hbe‘|%2‘|um|’%2 + Hb2xH%2 + "*'ZHbeH?'{l + ”UIHLO"”[)ZJCHQL?)
1 . .
+ 7 (1902 + 2132
1/, :
< C ([Ibazll72 + lluallze + &2 ll7n + luellfe +1) + 1 (||UH%2 + ||52||%2) : (2.8)

Similarly, it follows that

d P d !
%Hb&vHL? + ||b3||L2 + 2% 0 wbzzdx

1/, . :
< O (bselts + ualifs + K200 3 + el +1) + 7 (I3 + lbsl3:) . (29)

Rewrite the equation (1.1)3 as

1/ 1/2

P20 — pup ™ Pugy = p~ by,

it is easy to deduce

d o b
posleale+ [ pliPde i [ g v s
0 0

6



1 1
=1 —
= Q,u(vtvx)(x,t)‘;zo—&—Zu/ uvxvmdx—i—/ p~ Y bow|*da. (2.10)
0 0
To deal with the boundary term in (2.10), integrating (1.1)3 about x over (0, x) yields
T
v (0,t) = pog(z,t) — / podzx + ba(z,t).
0

Integrating the above equation about = over (0,1), we get

1 rzx 1
pvg(0,8) = w(va(t) — vi(t)) — /0 /0 po(n, t)dndx —|—/0 ba(z,t)dx. (2.11)

Similarly,

1,1 1
v (1,t) = p(vr(t) — va(t)) —l—/ / po(n, t)dndx —l—/ ba(z,t)dx. (2.12)
0 Jzx 0
Hence, from (1.5), (2.11) and (2.12), it holds that
=1 1 .
2p(vvvs) . )[72h < LoV 201, + €
which, combining with (2.4) and (2.10), we arrive at
d 2 b 24 S 24
'udtH,Ux”LQ + p|U| T+ P |'Uacm‘ X
0 0

< C (plluallzsllvallZs + llb2el72 +1)
< C (luallzoe + #2llvallze + b2z 72 + 1) (2.13)

In a similar manner,
d 2 - S 2
Ma“waLz +/ pli)*dx + p / P was | da
0 0
< C (luzlie + p?lwallza + Ibsal72 + 1) (2.14)

Summing up the estimates of (2.8), (2.9), (2.13) and (2.14), we obtain from (2.4) that

d 2 2 2 2

7 (b2ell2 + 1032l + pllvelza + pllwellz:)

+ (222 + Noall3 + 101132 + o132

d 1
12 vmaZa 4 w20 + 25 / (whss + vbay )
0

dt
< C (lb2allz2 + lbsallze + lualzz + 5% (lb2a 70 + lbsall)
+ luallZoe + 1 (Jwallze + llvallz2) +1) - (2.15)

Now we deal with ||Vul|[z~. Define

(b3 + b3)

F(z,t) 2 ug(z,t) — P(z,t) — (z,t).



By (1.1)2, we have
it = Fy. (2.16)
According to the definition of F(z,t), (2.3), (2.4) and (2.16), we deduce
1122 < C (ualZa + [bali2 + Wosl2: + 1) < € (ol + lbzallzz + lbsallzz +1)  (217)
and
17212 < Cllvpilz.. (2.18)
We infer from (2.17) and (2.18) that
luzllzee < C (I Fllzoe + | Pllzoe + [[b2l7e + I3l Z<)
< C (IFllz2 + NF I IEN L + 102el3 + bsel3 +1)
< %H\/WHB + O (luallz2 + 1b2l72 + [IbsallZ2 + 1) - (2.19)
Substituting (2.19) into (2.15), we obtain

d

1
g1 (100al 4 Tone e + el -+ s+ 2 [ (b -+ obac)i
0

+ l1b2ll72 + lIbsll7z + 003 + 1ill3> + pPllveallFe + 4|l wealF
<C (Hb?m”i? + Hb?wH%? + ”UxHi2 + ”2(”172:8”%{1 + ”bS:r:H%{l)
1 .
+ 12 (lwell 72 + lvall72) + 1) + ZIIWUII%z- (2.20)

To control H\/ﬁuH%Q, multiplying (1.1)2 by 4, integrating the resulting equality by parts, using
(2.3), (2.4) and Sobolev inequality, we get

1d ' 1 1 1 . 1
——|lugllFs + lv/pil3e = —/ P,udx — / (b3 + b3)uda —|—/ Ugg Ul dT
< C (llpallfz + b2l Zoe 1b22 172 + 1bs]|7o0 I3z ][72)
1 .
+ 5llvpEl: + Clusllpellue7:
1 .
< C (14 [Ibaallze + bsallzz + uallioe + lluallzz) + 5ol

we observe from the above equality and (2.19) that

d .
iz + Vpullze < C (14 Ibawllzz + [1bssllze + lluallz2) (2.21)

this, together with (2.20), we get

d
77 (Ib2zlIZ2 + [1bszllZz + pllvallZe + pllwel72 + lluallZ2)

+ 12 [[vaa 2 + 12|l waal|Z2 + (1272 + [lbsl 72 + 191172



d 1
il + pilEe) +25; [ (b + vbar)ds

< C ([Ib2zll72 + b3l 72 + lluall 72 + 52 (Ib22 71 + 1bsell71)
+ NQ(”wa:H%? + HUxH%Q) + 1) .

(2.22)

Thus, using the above inequality, the estimates of (2.5) readily follows from Gronwall inequality,

(2.1) and (2.3).

Lemma 2.3 Under the conditions of Proposition 2.1, let (p,u,v,w,ba,bs) be a smooth solution

of (1.1)-(1.2) on (0,1) x [0,T). Then,
T
sup ([[oflze + [lwlze) <€ and / (IIb2z [ + b3z 7o) dt < C.
0<t<T 0

Proof. Multiplying (1.1)3 by |v|"2v and integrating by parts, we have

1d (!

1 1
1d mmm+u/\%ﬂmwwm+mn—m/ﬂmwawgwx
n dt 0 0 0

1
_ =1 -
= p [(va]v]"?v) (2, 1)] ‘zo+/ bo |v|" 2vdx
0
. -1
< C(IVpillze + 1+ [lbaell ool 2:") -
In order to estimate ||ba;||zn, we give the definition

”ibe
p

G2 by +v+

then from (1.1)s, G satisfies the following equation:
by + uzby = Ga.
In view of (2.5), (2.25), (2.26) and Sobolev inequality, direct calculation yields that
1Gllze < € (b2l 2 + o]z + llbsel2) < ©
and
IGallze < € (oellze + sl 2llbell = ) < € (Jlbal2 +1) -
Due to (2.5), (2.6), (2.27) and (2.28), it follows that

lb2s]| e < C (G Ln + llvlln + ll5p™ baal2n)
< OG> + 1Galle + [[olln + & (1bsall 2 + b3z £2))

< C (llballze + llollzn + #llbsaellzz +1)

Substitute it into (2.24), we obtain

/ pv"d$—|—,u/ lvg [2|v|" 2 dx

9

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



< C (Ivpil2s + (bl ze + kllbgaallz2 +1) (lol2 +1))
which, by Gronwall inequality, we infer from (2.1), (2.5) that

sup |[p"/ "l zn < (nC)M™.
0<t<T

Taking n — oo, from (2.4), we deduce that

sup ||v||pe < C. (2.30)
0<t<T

From (2.29) and (2.30), it is easy to get

T
| eelfit < c.
0

In the same manner, we obtain

T
sup ||w|[zee < C  and / D32 ]|3 s dt < C.
0<t<T 0

Lemma 2.4 Under the conditions of Proposition 2.1, let (p,u,v,w, by, bs) be a smooth solution
of (1.1)-(1.2) on (0,1) x [0,T). Then,

T
W2 sup (feslfe o+ loala) + 6 [ (el + umlf) de < 0 (23)
0<t<T 0
Proof. Multiplying (1.1)3 by pv,, and integrating it by parts, we have

d 1 3 1 1 3 _
bl i [ o unalde = [ wvsvaads [ bnstsade + l(wrv) o, 0] 22
0 0 0

£ E;. (2.32)

Now we estimate Es and Ej3, from integrating by parts, (2.4), (2.5), (2.23) and Cauchy-Schwarz
inequality imply that
1 1
Ey=—p / P~ pebagvadr + 1 / P~ baaveds — p(p bopvy) 520
0 0
< O (ullpallp2lb2el| oo [|vall 2 + pllb2eall 2 llvall L2 + pllb2e|l oe lv2]l L) - (2.33)

By (1.1)4, (2.3), (2.4) and (2.23), we have

(
Ibasall 2 < € (llballzs + llucbally + lloalzz + #2116~ bso)ell 12 )

< O (lbellze + vellze + w2 llosll 2 bsell e + K2 lbsacllz + 1)

< C (Iballg + lloale + 52 bsaallzs +1) (2.34)

10



which, putted into (2.33), we find

1/2 1/2
8y < C (Ut [ o) 3 + pllbal3 ol + gl el s |22 + )
< (llbale + (Lt [b2al3) 0030 + B3+ 172) + eploallZe. (2:35)
It follows from (1.5) and Cauchy-Schwarz inequality that
2 1/2 2 2
B, < Culordlz= el < C (llvsls + 172 + ep? osel 2. (2.36)

Substituting (2.35) and (2.36) into (2.32), choosing ¢ > 0 sufficiently small, we have

2 dt
which, by Gronwall inequality, we infer from (2.5), (2.18) and (2.19) that

L ale + 12 vealZe < O (ulallelivalZa + ol + pleeliZa + pslbsalli +u72)

T
posup sl i [ o ede < Ot/ (2.37)
0<t<T 0
Similarly, we have
T
posup s+ [ e et < O/ (2.38)
0<t<T 0

The inequalities (2.34), (2.37) and (2.38) indicate that

T T
MW/|mm@mSMmduW/|mm@ﬁsm. (2.39)
0 0
here, M;(i = 1,1) are positive constants independent of u and k.

Proof of Proposition 2.1. Thanks to (2.39), just choosing x < p'/* min{1/\/2M;, 1//2M }
it is easy to deduce that (2.2) hold. Hence we finish the proof of Proposition 2.1.

Proof of Theorem 1.1-(i). Frist, the local existence of regular solution can be obtained by
the Banach theorem and the contractivity of the operator defined by the linearized the problem
(1.1). Second, by virtue of the global a priori established in Lemma 2.1-2.4, we can extend the
local solutions to global strong solution of (1.1)-(1.2).

2.2 Global estimates on MHD system

This subsection is devoted to the global estimates for the solution of the initial-boundary value
problem (1.3)-(1.4). Due to these estimates in Lemmas 2.1-2.4 independent of y and k, hence
the lemmas 2.1-2.4 still hold for the solution of the problem (1.3)-(1.4), we summarize them in
the following lemma.

ba, b3) be a smooth solution of (1.3)-(1.4) on (0,1)x[0,T), then

Lemma 2.5 Assume (p,u,v,w,
0<Cy<p(z,t)<Ci,  (2,1) € (0,1) x [0,7), (2.40)

T
S (I19lZ2 + @Iz + 16l + la@lzn + 1b2lF + 1bsl7) + /O (117

t [1B2e 72 + [1B2z 3o + IBall32 + [Baall32 + [[Bacll + HBsHLz) dt < C. (2.41)

11



In order to discuss the convergence rate of the solution and the boundary layer, we need
stronger regularity of the solution of (1.3)-(1.4) on (0,1) x [0, 77, so we give the following higher
order estimates.

Lemma 2.6 Assume that (p,,v,w,be,b3) be smooth solution of (1.3)-(1.4) on (0,1) x [0,T),
then

T
OiugT (HE:EH%? + waH%2 + H@tH%? + Hth%?) +/ (HbZMH%Q + ||b3m‘|3:2) dt < C. (2.42)
<t< 0

Proof.  First, we rewrite (1.3)3 into the form

bas
By + Uy — % =0. (2.43)

Differentiating (2.43) with respect to x, multiplying it by @, in L?, after integrating by parts,
by (2.40), (2.41), Sobolev and Cauchy-Schwarz inequalities, we have

[0all72 < Clltallzoll0al72 + €llb2aall 72 + Cllbae | Zec 121172 + CllvaIZ:

< C [zl lloalze + 10zl72 + 1) + ellb2zalZe, (2.44)

=
dt
we have from (1.3)5 that
[Bazall3e < € (IBal3e + N |22 lBl e + 152132 )
which, adding (2.44), by Gronwall inequality and (2.41), we get

T
sup [l + [ [baaslFat < C. (2.45)
0<t<T 0

In a similar manner, we have
T -
sup o+ [ [Basalffadt < C.
0<t<T 0
which, together with (1.3)3, (1.3)4, (2.40), (2.41) and (2.45), we also have
sup ([|9]172 + lwil|72) < C.
0<t<T

Lemma 2.7 Assume that (p,,,w, by, b3) be a smooth solution of (1.3)-(1.4) on (0,1) x[0,T),
then

T
sup (IIvae]2s + ae]22) + / izt |22t < C. (2.46)
0<t<T 0

Proof. Differentiating (1.3)2 with respect to ¢, and multiplying it by %, in L?, in view of (2.40),
(2.41), Sobolev and Cauchy-Schwarz inequalities, we deduce

1d

1 1
p VAR + sl == | sz — [ pusfu s
0 0

12



1 1 1
_ 1 o
— 2/ ﬁﬂﬂxtﬂtd$+/ Piigdz + 2/ (b3 + b3) g da
0 0 0
< C (lIpell g2 1l oo el poe el 22 + 11t || Lo |2 72 + 2] Foo |17 2
+ 1156172 + 12l oo 126172 + 131 Foc (13611 72) + €]l 72

< C (|talfoo + llaelZs + 1wl o ell 72 + b2l 72 + 13l 72 + 1) + elltiat] 7.

From the above equality, by Gronwall inequality and (2.41), one has

T
sup ([l + | a3t < C. (2.47)
0<t<T 0

By (2.40), (2.41) and (2.47), we have

sup HﬂmH%g <C.
0<t<T

The proof of Lemma 2.7 is therefore completed. O

Lemma 2.8 Assume that (p,,,w,bs,b3) be a smooth solution of (1.3)-(1.4) on (0,1) x[0,T),
then

T
SllpT (HthH%Q + ”b3tH%2 + HbQQHZH%? + Hb3xx‘|%2) +/ (Han:tH%z + Hb3xt”%2) dt < C. (248)
0<t< 0

Proof. Differentiating (1.3)5 with respect to t, and multiplying it by by in L2, by (2.41), we
deduce

1d

1 1
_ _ o 1 _
§£Hb2t”%2 + ||b2ut] 32 = —/0 Ugtbobordx — 2/0 Uy |boy|*d

1 1
- / Utbogbordr + / Vyeborda
0 0

< C (b2l 7o 120l 72 + Nt |22 + 1| oo 12|22
+ 1b2al|Tec B2t 72 + el Z2 + 15el172) + €llb2ae |22
< C (b2l 2 + laatl gz + el oo llbaelZ2 + B2 lFoo 12 72

- l[aelZ + 1orl13) + ellBaae 22 (2.49)

Similarly, we have

d . - _ _ ) ) _
T BsellZ2 + 1Bsalz2 < C (IlbaillZe + 1Tael72 + 17l poelballZ2
+ [[bazl[Foo lb5el|72 + Nl 72 + ll@el72) + ellbsat 72 (2.50)

Collecting (2.49) and (2.50) together, and choosing ¢ small enough, we get

d - _ B B
o7 (b2l 72 + [1b3ell72) + [1b2etll72 + l|bset]l72

< C (Ibaell72 + 1b3ell 72 + tiatl|7 2 + Il [l Lo ([[b2t |72

13



+ 11Bsell72) + el 7o + 10ellZ + [1De1Z2) (2.51)
which, by Gronwall inequality, we deduce from (2.41) and (2.42) that
— — T — —
sup ([1b2el|72 + [1Bsll72) +/ (IIb2ztl72 + llbaaell72) dt < C. (2.52)
0<t<T 0

In view of (2.41), (2.42), (2.52), it follows (1.3)5 and (1.3)¢ that

sup (HBMIH%Q + HEBMH%Q) <C.
0<t<T

Hence, we finish the proof of the Lemma 2.8. U

Lemma 2.9 Assume (p,u,,w,bs,b3) be a solution of (1.3)-(1.4) on (0,1) x [0,T), then

T
OEUET (H@mH%? + |’wm||%2 + HﬁmHQL2> +/ (Hamm”%2 + Hb2m$‘|i2 + HbSmxH%Q) <C, (2.53)
<t< 0

sup (||77:EH%2 + ||w:vH%2) <C. (2-54)
0<t<T

Proof. Applying 0., to (2.43), and multiplying it by 9., in L?, and integrating by parts, by
(2.40), (2.41) and (2.46), Sobolev and Cauchy-Schwarz inequalities, we obtain

d 3 B B 3 _ _
@Hvxﬂc||%2 <C (HU:UHL‘”HUMHLQ + |tz || 2|z | Lo + ||b22aa | 22

+ ||l_)2:m:HL°°||ﬁz||L2 + HEZ:UHLOO”/_’MHLQ) ||ﬁm:t||L2
<C (HT)MH%Z =+ ||b2a:m:”%2 + Hb2x||§{1”ﬁx”%{1 + 1) : (2'55)

To deal with ||bages| 2, from (1.3)4, (1.3)s5, (2.40) and (2.46), we obtain

||62mmH%2 <C (Hi)?xtH%? + HQBQHH2 + HT)MH%Q)
< C (IBaatl2e + B2z 3 + 922 +1) - (2.56)

Putting (2.56) into (2.55), we get

d . _ B _ B _
—aalTe < C (19aalz2 + (lb2allz + Dozl + [b2uelz2 + 1) (2.57)

similarly,

d _ _
S l@aallie < C ([@aalza + (Ibsell7 + Dllpel + [Bsanll72 +1) - (2.58)

Applying 0., to (1.3)1, multiplying it by p,. in L?, and integrating by parts, due to Sobolev
and Cauchy-Schwarz inequalities, (2.41), (2.46), we deduce

d . _ _ _ _ _ _ _
&HPMH%? <C (Hux”L"OHwaH%Z + ”PIH%OOHUMH%? + HUM:EH%2 + HP:E:EH%2)
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< C (HﬁzmxH%Q + Hﬁ:va:”%ﬁ + 1) . (259)
To estimate ||tigzz| 2, from (1.3)2, Sobolev inequality, (2.40), (2.41) and (2.46) imply that

ltzalze < C (I15uel7n + NputelFp + 1 Pollp + 1021172 + 115s]172)
< C (1paollz> + 1Tt 72 + 102172 + b3l72) - (2.60)

Substituting (2.60) into (2.59), we arrive at

d . _ B _ _
ﬁllpmlliz < C (Ipz2l7z + latl72 + Nb2slFn + [1B3all7) - (2.61)

Combining with (2.57), (2.58) and (2.61), with the help of (2.41), (2.46), (2.48), by Gronwall
inequality, one can derive

sup (H@xﬂc”%? + meHiz + ||ﬁxx||%2) <C. (2.62)
0<t<T
Taking operator d, to (1.3)3, and multiplying it by #, in L?, integrating by parts, we have

- T 7 _ 1 -
[92]l72 < C (1b20all72 + b2zl Zoe 172 ]I72) + QH%H%»
From the above inequality, using (2.41), (2.48), we get

sup ||9z]|2. < C. (2.63)
0<t<T

Similar to the analysis process of (2.63), we receive

sup |2, < C. (2.64)
0<t<T
Therefore, collecting (2.56), (2.60), (2.62), (2.63) and (2.64) together finishes the proof of Lemma
2.9.

Proof of Theorem 1.1-(ii). Combining the local existence result, which can be estab-
lished similar to the local regular solution of problem (1.1) and the global a priori established in
Lemma 2.5-2.9, the existence of global strong solution for (1.3)-(1.4) is obtained and the global
solution satisfies the regularity result in (ii)-Theorem 1.1.

3 Proof of Theorem 1.2

In this section, our goal is to prove Theorem 1.2. We first discuss the vanishing limits of shear
viscosity and Hall term coefficients, then give the thickness of boundary layer.

3.1 The vanishing limits of shear viscosity and Hall term coefficients

In order to investigate the limits as both the shear viscosity and Hall term coefficients tend to
zero, let ﬁép—ﬁ, GEu—u, 02 v—0,WEw—w, by £ by — by, b3 £ by — bs. Then equations
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(1.1) and (1.3) imply that (3, @, 0,0, by, b3) satisfies the following equations on (0,1) x [0, T):

(51 + (pit)a + (pu)e =0,
Pty + puily + Py — ity = —pily — pility, — piiiiy — %[(bQ + b2)bo + (b3 + b3)bs].,
POt + puly = Ugy — PO — PUVy — PUV; + wa;N
Pt + pully = pWzy — Pt — PUWy — PUWy + b3z,
bar + (ubs)y + (ib2)y — Uy — K (ng> = b,
e

p

- - _ bos -
bt + (ubs)y + (Ub3)y — Wy — K <,20) = b3y

\

Multiplying (3.1); by p, from (2.40) and (2.41), we have

d, e o _ _
16172 < C (I7allz2ll@l o= l1pll L2 + 1l s 1 | L2161 22 + [l o< 1611 72)
< C (1 lluglloe) 16172 + elliia 7.

Multiplying (3.1)2 by 4, from (2.4), (2.5), (2.41) and (2.46), we get

d ~ ~ o ~ ~ a ~ _ ~
IVPullZe + |7, < C (IIPHLzl\uxlle + 1Al 2l g2 l|ll oo + lla]| oo | v/pal 7

+ (12l oo + 1Bl 2oo) 1Dl 22l | L2 + (1|3l e~ + ||53||L°°)||53||L2||ﬂz||L2)
<O (L+ Jl72) (17132 + NBalfe + 1Bsl172 + VA2 ) + el Fa:
Multiplying (3.1)3 by 0, by (2.4), (2.42) and Poincaré inequality, we arrive at
d - . . - _ _ -
%le/ﬁv!\iz < C([vllze=llpllczlloll L2 + ol zoe |12l L2 |1l Lo 0] L2
+ [[boz | 22119 22 + MH@mHLzllﬁl\Lz)
< C (1013181172 + 181172 + 121802 l172) + ell@all72 + ellbazll72-
Similarly,
d - - - - - . =
ZIVPOllT: < C (1017 16172 + 10Tz + 1| @asllZz) + elliellZe + ellbssl|Z:

Multiplying (3.1)4 by bg, from (2.4), (2.5) and (2.41), then it holds that

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

5 ool + 3 < © (HualloelBals + ol Wl 2lielze + il Ioae 2ol
+ (19 g2 b 22 + %Ilb:’)zp_lHLzHsz\le’)
< ((luallzee + DIBIZ: + 19122 +52) + ellbaallZs +ellzels (3.6)
and
1d

2 dt

16
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Hence, collecting with (3.2)-(3.7), by Gronwall inequality, (2.19)

( (2.46), (2.54), it is easy
to get the L2-convergence rate from (p, u,v,w, b, b3) to (p, @, v,

);

sup (117122 + Nalls + 19132 + 11132 + B3 + bo3: )
0<t<T

, (2.31),
U_), bg, b3

T
[ (Wl + 1Bacla + Bas ) e < €62 + %), (35)

Next, we estimate the L2-convergence rate of (pz, Uz, bag, b32) t0 (pz, liz, bog, b3z ). Differen-
tiating (3.1)1 respect to x, multiplying it by j, in L? and integrating by parts, using Cauchy-
Schwarz inequality, (2.41) and (2.54), we have

d, . _ - . _ - ~
@llpx\liz < C([|pzzllz2ll@ll oo 1Pzl L2 + P2l Loc |G | 2]l P | 2

H 1ol laaoll 2 Mozl 22 + lusllzoollpall7e + l1llzoe uzsll z21lAell22)
< C ()72 + (luallfp + D) + elltaellZ.- (3.9)

Multiplying (3.1); by @; and integrating by parts, in view of (2.4), (2.5), (2.41) and (2.46), we
get

d . _ 5 B 5 ~ ~

—laalie + lallze < Cllalz + 1615 + lballz + 1bsllZm), (3.10)
then, thanks to (3.1)2, (2.4), (2.5), (2.41) and (2.46), we obtain

[l > < C (||ﬂt||L2 + @l + 170+ 162l + ||53||H1) : (3.11)

Collecting with (3.9)-(3.11), in view of (2.5), choosing ¢ sufficiently small, we deduce
2 2 g 2 2 2, ,1/2
sup ([|Aallzz + [l l72) +/ (1el172 + laal72) dt < C(x* + u'7?). (3.12)
0<t<T 0

Now, in order to obtain the convergence rate of (521«, 531«) in L?, multiplying (3.1) by (;215 + ’U/EQQ;,
using Sobolev inequality, (2.3), (2.5) and (2.41), we obtain

d, - - - i Lo
Bl B+ b B2 < © (ol + 1) Bl + 30 ) + [ 2B + by
0
(3.13)

Using (3.1)3, we can get the following equation
1 : d [t 1 3
/ Vg (bt + uboy )dx = —/ Vbogdr + / (0 + udy)boydx
0 dt Jo 0

1
= —%1}b2xd$ + / P_l(’ivx:c - ﬁfv — puly + bag)baed,
0

which inserted into (3.13), with the help of (2.4), (2.31) and (2.42), we have

d - d (' .- - -
%Hb%”; + dt/ Doy dr + [|bay + ubay 3
0
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< O (UluallF + DlBolEn + 1@l + 615 +#'72)

from this and (3.8), using Gronwall inequality, we have
~ T ~ ~
sup ||baz |72 —|—/ bt + ubay || 22dt < C(K* + pul/?). (3.14)
0<t<T 0
Similarly, we also get
~ T ~ ~
sup ||bsz |32 +/ 1bat + ubsz || 22dt < C(k* + ul/?). (3.15)
0<t<T 0

Proof of Theorem 1.2-(i). Combining the convergence rate for the solution in L? with
(3.8) and the convergence rate for the derivative of solution in L? with (3.12), (3.14) and (3.15),
we finish the proof of Theorem 1.2-(i).

3.2 Thickness of boundary layer

In this section, we will discuss the thickness of boundary layer. To this end, we give the following
spatially weighted estimates on (v — %), and (w — W), in L.

Lemma 3.1 Assume that (p,u,v,w,bs,b3) and (p, @, v, W, ba, b3) be the solution of the problems
(1.1)-(1.2) and (1.3)-(1.4) on (0,1) x [0,T"), then

sup_(1€(@)(w — D)allZs + 6N w — w)alf) < C (2 +52) (3.16)
0<t<T

where £(x) 2 x(1 — ) for x € (0,1).

Proof. Differentiating (3.1)3 with respect to x, then multiplying it by £?(x)9,, we obtain after
integrating by parts that

1d [! 2 2 ! 2 ! Vaz /-2
s [ @@liaPis = — [ (i +ui)@@ide—p [ € @)
0 0 o P
L 5 1 L by
- [ @i - [ (an). @@+ [ (208 @0ds
o P 0 o P
5
L ZIi‘ (3.17)
i—1
Thanks to
lu(z,t)] < ]/ ugdr| < Cx(l — x)||ug|| Lo for 0<x<1/2
0
and
u(z, £)] < \/ wodz| < Ca(l— o)uslle for 1/2<z<1,
1
hence

I < Clug|lp=[1€(x) 0 72 (3.18)
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From (2.4) and (2.54), we get

1U
&z—géf@ﬂ@ﬁ@%+§@ﬁmﬂx

< [Baa |

_“/o
< |

Using (2.4), (2.42) and (2.54), we have

1
& ()dx + C ([|E(x) 02172 + K21 00al|72)
1 |'L~)zm|2

(x)dz + C (||€(@)o]2 + K2) .

I < C (|[6]P20 1120 + 1€(2)o]122) 5
I < C ([l lla 3 + [1€(2)5:]132)

I5 < C (Jbaull3s + Woaaw + 5uls + IE(2)Tu22)

< C (IBaliZ + 1boe + wbsel3 + a3 + IE()l132)

Here, we have used (3.1)5 to get that

(3.19)

(3.20)

(3.21)

(3.22)

b2z + Tl 2 < C <||l~72t +ubsa g2 + [luz o< [1Ba]| 22 + b2 poe 1| 2 + H52x||L<>°Hﬁ||L2)

< C (Ifbae + wbza | 2 + bl 2 + |l )

Inserting (3.18)-(3.22) into (3.17), by Gronwall inequality and (3.15), we obtain

sup [|€(2)d, ][22 < C(u'/? + K2).
0<t<T

In the same method as (3.23), we deduce

sup [|&(x)d]|72 < C(u'? + 52).
0<t<T

Therefore, we complete the proof of Lemma 3.1.

(3.23)

Proof of Theorem 1.2-(ii). Firstly, in view of (3.16) and according to the assumption

1/4

k < p/* in Theorem 1.2, it is easy to deduce that

1-5 1/2 1-5
52/ 171\2d:c:52/ ]%]de+52/ 15,2 d
5 5 1/2

1/2 1-5
g/ x2|17x|2d:v+/ (1 = 2)2[5,[2dz
5 1/2

1/2 1-6
g4/ ﬁu—m%ﬁm+{/ 22(1 - 2%, [2da
) 1/2

1
< 4/ 221 — 2)%|0,2dx < O (k% + p/?) < Cop'/?.
0
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Therefore, we obtain
17(8)205) < C (150)132(0p) + 15® 2005172 (1) 220 )
<O (24 02+ 571 (2 4 %)) < Co L2,
which provided that 6 = d(u) satisfies
6(u) =0 and opV? 500 as pu— 0.

On the other hand, due to the continuity of the solution, we have
liminf |[9(x, )| 7000 7.0 0,
im in 10(, ) || oo (0,1:0(00)) >

which provided the boundary data vy (t), va(t) are not identically zero.

4 Proof of Theorem 1.3

(3.25)

(3.26)

(3.27)

In this section, we construct a boundary layer solution such that (v — v)(x,t) convergence to
v*(z,t) in L*® as (k,pu) — (0,0). Assume that v*(z,t) and w*(z,t) are solutions of (1.8) and

(1.9), respectively, it is easily derived the following estimates:

sup ([[0*]|72 + lw*|172) < Cp'’?,
0<t<T

T
wﬂmm<wﬁﬁ4@ﬁ»+w@/UMA§+mgﬁaﬁgo
0<t<T 0

Let © £ v — o — v*, then ¢ satisfies the equation:

~ _ ~ % ~ 7
- HUzg ~ ~ — A ~ Vzx PUgy pv bQZ
Ut — = —UVp — UV — UV — Ph— — p—— — — + —.

H —
p P g P P
Multiplying it by 0,;, we have

1d 9 1 "{)xx’z 1 o 1 . .
102172 + 1 p dr = — WOy Dy dr — (D, + V) Vgpdx
0 0 0

2dt
1 /=5 ~ % 1 ~=
0 PP o P

1 5
+/ L bggdr 2> H.
0

p i=1

Noticing that
xT
iz, )] < |/ fode| < Ca(1— o)|iullie for 0<z<1/2
0
and

x
|a(z,t)] < \/ tydr| < Cx(l — )|ty Lo for 1/2<x<1,
1

20
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we get

Hy < Clltg || oo ll2(1 = 2)0z[| L2 [| 022l 22

< Op ol lo(1 = 2)8all72 + epll Ozl 72

< Cﬂil/zuaxH%OO +5NH@MH%2§ (4.5)
Hy < C (Jiiall o lloall 2 + 152 oe 1all 2 + [aall 21l 220 12 22
< C (el + D623z + 52130 1l 30)
< C ((alle + VlealZ + 11/2) (4.6)
3> WUz || T2 + 1 Pl Lo |Vaa 1.2 ep|| Uz 25 .
H < C (ultaal3e + pllallde 05, 132) + plltn} (4.7)

Hy+ Hs < C(|p]loolBzll 2 + 1]l 22115] 120 ) |92 | 22
< C (I3 11003 + 91172) - (4.8)

Substituting (4.5)-(4.8) into (4.4), choosing ¢ sufficiently small, we have

T
sup il + 4 | Vot < C. (49)
0<t<

In similar manner, we also have

T
sup (a3 + 1 [ i edt < C. (4.10)
0<t<T 0

Proof of Theorem 1.3. 1t is easily deduced from Sobolev inequality, (3.8), (4.1), (4.9) and
(4.10) that

lollze < € (ollz2 + ol 10:177) < Cut™ (4.11)
and
il < € (Ibllzz + ol 5l 15) < Cutl®. (4.12)

Therefore, collecting (4.11) and (4.12) together, we complete the proof of Theorem 1.3.
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