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Abstract: This paper aims to give a mathematically rigorous description of the
corner singularities of the weak solutions for the plane linearized elasticity system in a
bounded planar domain with angular corner points on the boundary. The qualitative
properties of the solution including its regularity depend crucially on these corner points
or such types of boundary conditions. In particular, the resulting expansion of the so-
lutions of the underlying problem involves singular vector functions, inlines, depending
on a certain parameter ξµ. We derive the transcendental equations for all ten possible
cases of combinations of the boundary conditions generated by the basic four ones in
classical elasticity proposing in the two natural directions of the boundary, i.e., tangen-
tial and normal direction, respectively, which depends on ξµ. So, a MATLAB program
is developed whereby ξµ can be computed, and figures showing their distributions are
presented. The leading singular exponents are computed for these combinations of the
boundary conditions, wherein critical angles ωcritical are listed such that for interior
angles ω < ωcritical the H2-regularity of solution can be guaranteed. Moreover, the
characterization of stress singularities in terms of the inner angle of a corner point is
studied, and the regularity results are given.
Keywords: Elasticity system; corner singularities; regularity; non-smooth domain.

1 Introduction

In the theory of elasticity, it is important to know the stress behavior in the neighbor-
hood of reentrant corners and cracks for physical, theoretical, and numerical reasons.
In fact, the solution can be supposed to be singular and this influences the structural
strength of elastic materials. Also, the type of singularity has an impact on the qualita-
tive behavior of failure of linear elasticity theory in such neighborhoods. Mathematical
considerations, moreover, reveal that the usual boundary conditions have to be supple-
mented at corners to have well-formulated boundary value problems. The problems of
the plane theory of linearized elasticity are stated that near the angular corner points
or points where the types of boundary conditions change may cause stress singularities
[16]. It means that the stresses can be unbounded on these points. The Lamé equa-
tions are generally used for two cases of equilibrium for elastic bodies. These cases are
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explicitly called the case of plane stress and the case of plane strain, which describes
the deformation of the thin elastic plate under named the membrane loading [1, 4, 24,
30].

The eigenfunction expansion method has been used to analyze the two-dimensional
(in-plane and out-of-plane) singular stress field at a thin plate with angular corners
or finite opening cracks [33]. Dempsey and Sinclair [10] have introduced a new form
of Airy stress function to investigate the stress singularities of isotropic elastic plates
in extension. The mathematical derivation for the static bending problem of isotropic
sectorial plates that contain stress singularities at the vertex of the plates owing to
geometry and boundary conditions is described in [5]. In [15], the Mellin transform has
been used to examine the stress singularities in a two-material wedge. [11] has employed
a complex potential approach to analyze the form of eigenvector solutions for a general
corner or an opening crack problem. Sinclair [28] has studied the Logarithmic stress
singularities in a problem of plates in extension with various boundary conditions.

Generally, the questions of corner singularities are examined for three types of bound-
ary conditions, such as Dirichlet, Neumann, or the mixed (Dirichlet-Neumann and vice
versa) boundary conditions for bounded plane domains with corners [12, 31, 34]. [29]
has used the Airy stress function to analyze the stress singularities with the combina-
tions of the three of the four boundary conditions (Dirichlet, Neumann, Soft clamped),
but no singular expansion or the regularity of the solutions was considered. Seweryn
and Molski [27] have studied the elastic stress singularities and the generalized formu-
lations of the stress intensity factors near the angular corners with different boundary
conditions but again the regularity of solutions is not studied. The qualitative proper-
ties of solution of the elasticity system including its regularity in non-smooth domains
with corner points and cracks with the applications of classical and weighted Sobolev
spaces were thoroughly studied in [21, 26]. Rössle and Sändig [25] have used these re-
sults to investigate the geometric singularities and regularity of the Reissner Mindlin
plate model. Brown and Mitrea [6] have considered the mixed problem for the Lamé
system in a class of Lipschitz domains. Ott and Brown [23] have considered the Lamé
system in a bounded Lipschitz domain to determine the existence of a unique solu-
tion when the data is taken from Hardy spaces and Hardy-Sobolev spaces. Recently,
the two-dimensional elasticity problem is considered to investigate the existence and
uniqueness analysis through the single-layer potential approach [20].

The rest of this paper is as follows. In Section 2, the classical formulation of the e-
lasticity system and as a weak problem is presented. The corresponding theorem which
expresses the singular expansion of the solution of the elasticity problem near the an-
gular corner point is stated. In Section 3, after localizing the problem at each angular
corner point of the domain, applying the method of ansatzs leads to a boundary eigen-
value problem with the parameter. The transcendental equations illustrating the corner
singularity exponents for various possible cases of the combinations of the boundary
conditions are derived, and their distributions are shown graphically in Section 3.2. In
Table 1 critical angles ωcritical are listed such that for interior angles ω < ωcritical the
H2-regularity of solution can be guaranteed. The concluding remarks on the regularity
of solutions to the considered problem are given in Section 4.



3

2 The Elasticity System

2.1 Classical Formulation

Let Ω ⊂ R2 be a two-dimensional bounded and connected domain, whose boundary
∂Ω = Γ comprises the angular corner points, the points at which the types of boundary
conditions change. Let M denote the set of these boundary points which consists of
M =

{
P1, ..., PN

}
⊂ ∂Ω. Let ωi, i = 1, 2, ..., N denote the corresponding interior angle

made by the open edges Γi−1 and Γi.

Let u = (u1, u2)T be the displacement vector field with the cartesian components
u1, u2, where the linearized strain tensor ε(u) is defined by

εij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, for i, j = 1, 2. (2.1)

The corresponding linearized stress tensor σ(u) is given according to Hooke’s law by
using the Lamé coefficients µ and Λ (µ and Λ are always assumed to be positive):

σij(u) = µ
(∂ui
∂xj

+
∂uj
∂xi

)
+ Λ

(
div (u)

)
δij , for i, j = 1, 2, (2.2)

where δi j is the Kronecker symbol, div u = ∂1u1 + ∂2u2, and ∂i, i = 1, 2 means dif-
ferentiation with respect to xi. To consider the possible boundary conditions on the
boundary Γ, we assume in the consequence the four canonical choices which describe
basic ones in classical elasticity proposing in the two natural directions of the boundary,
i.e., tangential and normal direction, respectively, and are asserted in [19, 25]. These
are such type of conditions that can be imposed in the variational formulation of the
underlying problem. In the plane stress case, when the thickness of the plate tend-
s to zero then these conditions can be considered as two-dimensional limit boundary
conditions [9]. For the formulation, we suppose that the boundary Γ is composed as
Γ = Γa ∪ Γb ∪ Γc ∪ Γd, where Γa, Γb, Γc, and Γd are the disjoint parts of the boundary
Γ, and maybe each of them is empty.

Let us consider the linear plane strain elasticity problem on a domain Ω:

µ∆u + (µ+ Λ) grad (div u) = −f in Ω, (2.3)

with boundary conditions

u = 0, on Γa, (2.4)

un = 0, σn, τ = 0, on Γb, (2.5)

σn, n = 0, uτ = 0, on Γc, (2.6)

σ(u) n = 0, on Γd, (2.7)

where f = (f1, f2)T is the force density applied on the body Ω, grad = (∂1, ∂2)T , ∆
is the Laplacian, and n is the exterior normal to Γ. Let un = u · n is the normal
components of the vector field u on the boundary, i.e., un = u1n1 + u2n2, while uτ is
the tangential components of the vector u, i.e., uτ = u1n2−u2n1. Let σ(u) n describes
the outward traction field at a point on Γ. The similar notations as above can be
applied to describe its normal and tangential components. For more information about
the boundary conditions, we refer to [Chapter 4, 18] and [25].
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Moreover, the boundary conditions (2.4)-(2.7) represents the hard clamped (HC),
soft clamped (SC), simply supported (SS), and stress-free (SF) boundary conditions.
The formulation (2.3) is used for the case of plane strain, whereas the Lamé operator
for the case of plane stress state can simply be obtained to replace the Lamé coefficients

Λ by Λ̃ =
2µΛ

Λ + 2µ
from [2].

Now, using the differential operator L and the boundary operator B, one can write
shortly (2.3)-(2.7) as {

Lu = −f in Ω,

B u = 0 on Γ.
(2.8)

2.2 Weak Formulation

In this subsection, the weak formulation of the problem (2.8) is given. Let

W (Ω) =
{

u ∈ H1(Ω)2
∣∣u satisfies the essential boundary conditions on Γ

}
, (2.9)

be the set of admissible displacement fields, containing fields with finite energy sustain-
ing the geometrical constraints on the boundary Γ. These assumptions are satisfied if
the meas Γa > 0. Let N denote the set of the rigid movements in W (Ω), i.e.,

N =
{

v(x) =

(
c1 − cx2

c2 + cx1

) ∣∣∣v(x) ∈W (Ω), c, c1, c2 ∈ R
}
. (2.10)

If for example, the boundary piece where the hard clamped boundary conditions are
levied has a positive measure, then N = ∅. Instead, if the stress-free boundary con-
ditions are levied on the whole Γ, which means that Γd = Γ, then the set N is three
-dimensional and contains all rigid motions.

Seek u ∈W (Ω), such that

a
(
u,v

)
= f (v), for every v ∈W (Ω), (2.11)

where

a
(
u,v

)
=

∫
Ω

∑
i,j=1,2

σij(u) εij(v) dx and f (v) =

∫
Ω

f .v dx.

Employing a form of the Korn inequality with the considered boundary conditions gives
the coercivity of the bilinear form a

(
., .
)

in (2.11) on the space

U(Ω) =
{

u(x) ∈W (Ω)
∣∣∣ :

∫
Ω

u.v dx = 0, ∀v ∈ N
}
. (2.12)

Due to this Korn inequality with boundary conditions, the Lax-Milgram lemma is
relevant and consequently, a unique weak solution u ∈ U(Ω) of the variational problem
(2.11) exists if the right-hand side fulfills the following compatibility condition∫

Ω
f .v dx = 0, for every v ∈ N . (2.13)

The understanding of the eigenvalues and corresponding eigenfunctions are crucial to
describe the behavior of solution u ∈ U(Ω) of the problem (2.11) in the neighborhood
of the angular corner points. The following theorem states this fact which is a classical
result.
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Theorem 2.1. [8, 17] (Expansion theorem): Given f ∈ Lp(Ω)2, 1 ≤ p < ∞, let
u ∈ U(Ω) be the unique weak solution of the problem (2.11) and P is an isolated
angular corner point of Γ. If ξ1, ξ2, ..., ξN are the eigenvalues of the operator V̂(ξ), then
the solution u admits the following expansion in a neighborhood η(P ) of P , i.e.,

u = χ(r)

[
N∑
µ=1

Iµ∑
ρ=1

κµρ−1∑
κ=0

cµ, ρ, κ Sµ, ρ, κ(r, θ)

]
+ wreg(r, θ), (2.14)

with wreg(r, θ) ∈ W 2, p
(
η(P )

)
and χ is the cut-off function (3.1). Here, N be the

number of all eigenvalues of the operator pencil V̂(ξ) in the strip Re(ξµ) ∈ (0, 2 − 2
p),

the constants cµ, ρ, κ depend on the data and the singular functions, Iµ = dim Ker V̂(ξµ),
κµρ is the length of the Jordan chains of V̂(ξµ) and the corresponding singular functions
are given by

Sµ, ρ, κ(r, θ) = rξµ
κ∑
j=0

( log r)j

j!
Φρ, κ−j
µ (θ), (2.15)

where Φρ, κ−j
µ (θ) is a canonical system of Jordan chains of V̂(ξ) respecting ξµ.

It is noted from (2.14) and (2.15) that the eigenvalues ξµ = 0 do not yield singularities
in the development of the solution in the neighborhood η(P ).

Remarks 2.1. It is observed that the knowledge of the singular exponents ξµ in (2.15)
which is known as eigenvalues leads to determine the qualitative properties of the so-
lution including regularity of the underlying problem. Since they generate the singular
functions as a power of r. It is observed that if Re (ξµ) ≥ 1, then the general solution
defined in (2.14) is regular and belongs to W 2,2(Ω)2. The case Re (ξµ) = 0 represents
the translation which is regular. Normally, the terms with Re (ξµ) < 1 are called the
singular terms since they produce the unbounded stresses. The logarithmic terms occur
only if ξµ has the algebraic multiplicity greater than one. Furthermore, the generalized
eigenvalues are dependent on the values of the apex angle ω0.

It is observed from (2.14) and (2.15) that the resulting expansion contains singular
vector functions, which in turn relies on the values of parameter ξµ. Furthermore,
the knowledge of the values of parameter ξµ leads to determine the regularity and
singularity properties of the solution of the given problem. So to obtain the results,
the following steps are followed.

1. Localize the elasticity problem (2.8) in the neighborhood of an angular corner
point and then consider the problem (2.8) in an infinite wedge. The problem
(2.8) is written in local polar coordinates (r, θ), and applying the method of
ansatzs leads to a boundary eigenvalue problem with the parameter.

2. We derive the transcendental equations for this parametric boundary eigenvalue
problem for various possible combinations of the boundary conditions with the
aid of the determinant method. Analytically, it is much difficult to compute the
values of ξµ, which are explicitly called the generalized eigenvalues of the given
problem.

3. So with the aid of the Newton method from computation, a MATLAB program
is developed to compute the eigenvalues Re (ξµ), and the figures showing their
distributions are given.
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4. Finally, we determine the leading singular exponents for all the possible combina-
tions of the boundary conditions, and the critical angles ωcritical are listed which
helps to determine the regularity results.

3 The Elasticity System in an Infinite Wedge

3.1 Localization

We consider a weak solution u ∈ U(Ω) ⊂ H1(Ω)2 to (2.11), assuming that f ∈
L2(Ω)2. Generally, it is recognized that the solution u does not belongs to H2(Ω)2

owing to the geometrical singularities of the boundary, for instance, the angular corner
points or points upon which the types of boundary conditions change. Consider the
point PN ∈

{
Pi
}

as origin with the interior angle ωN = ω0 ∈ (0, 2π), and an appropriate
infinite differentiable cut-off function χ(|x|) = χ(r) depending on the distance r from
the point PN is defined as

χ(r) =

{
1 for 0 < r < δ

2 ,

0 for r > δ.
(3.1)

We multiply on the both-sides of (2.8) by the smooth cut-off function χ, then substitute
v = χu in (2.8). The derivatives are considered in the distribution sense. Thus, the
boundary value problem (2.8) is set on the infinite wedge

W =
{

x = (x1, x2) ∈ R2
∣∣ (r, θ) : 0 ≤ r <∞, −ω0

2
< θ <

ω0

2

}
,

and coincides with the original problem near the point PN . Therefore, the problem
(2.8) becomes {

Lv = −F(x) in W,

B± v = 0 on Γ±,
(3.2)

where F = (F1, F2) and the function F1 is as follows

F1 =

µ
(
χ∆u1 + u1∆χ+ 2 ∂χ

∂x1
∂u1
∂x1

+ 2 ∂χ
∂x2

∂u1
∂x2

)
+ (µ+ Λ)

(
χ ∂2u1
∂x12

+ ∂2u2
∂x1 ∂x2

+u1
∂2χ
∂x12

+ 2∂u1∂x1
∂χ
∂x1

+ u2
∂2χ

∂x1 ∂x2
+ ∂u2

∂x2
∂χ
∂x1

+ ∂χ
∂x2

∂u2
∂x1

)
.

F2 has the similar form. The behavior of v near the point PN illustrates the regularity
of the solution u in the neighborhood of the point PN . It is stated that just only one
condition is prescribed on the whole Γ− and possibly another condition is prescribed
on the whole Γ+.

For the regularity analysis of the boundary value problem (3.2), we rewrite the
operators in polar coordinates as follows:

µ
(∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2

∂2vr
∂θ2

− vr
r2
− 2

r2

∂vθ
∂θ

)
+ (Λ + µ)

∂

∂r

(∂vr
∂r

+
1

r
vr +

1

r

∂vθ
∂θ

)
= −Fr,

µ
(∂2vθ
∂r2

+
1

r

∂vθ
∂r

+
1

r2

∂2vθ
∂θ2

− vθ
r2

+
2

r2

∂vr
∂θ

)
+ (Λ + µ)

1

r

∂

∂θ

(∂vr
∂r

+
1

r
vr +

1

r

∂vθ
∂θ

)
= −Fθ,

(3.3)
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where (vr, vθ), (Fr, Fθ) are the polar components of the displacement vector field v,
and F, respectively. Hence

v =

(
vr
vθ

)
= A

(
v1

v2

)
, F =

(
Fr
Fθ

)
= A

(
F1

F2

)
, A =

(
cos θ sin θ
− sin θ cos θ

)
.

The components of the stress tensor in polar coordinates are described as

σrr = 2µ
∂vr
∂r

+ Λ
(∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

)
, (3.4)

σθθ = 2µ
(1

r

∂vθ
∂θ

+
vr
r

)
+ Λ

(∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

)
, (3.5)

σrθ = σθr = µ
(1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
. (3.6)

We seek the solutions to the considered problem under the form

vr(r, θ) = rξ v̂r(θ), vθ(r, θ) = rξ v̂θ(θ), (3.7)

where ξ ∈ C is a complex number.

Using (3.7), the problem (3.3) emerges an ordinary differential system which depends
analytically on the complex parameter ξ and holds on the interval I = θ ∈

(
− ω0

2 ,
ω0
2

)
.

Thus the transformed form of the problem (3.3) is given by

µ
d2v̂r
dθ2

+ (2µ+ Λ)(ξ2 − 1)v̂r +
[
− (Λ + 3µ) + (µ+ Λ)ξ

]dv̂θ
dθ

= −F̂r,

(2µ+ Λ)
d2v̂θ
dθ2

+
[
(Λ + 3µ) + (µ+ Λ)ξ

]dv̂θ
dθ

+ µ(ξ2 − 1)v̂θ = −F̂θ,
(3.8)

whereas the transformed form of the Neumann boundary conditions emerges as

σ̂rθ = µ
(dv̂r
dθ

+ (ξ − 1)v̂θ
)

and σ̂θθ = (2µ+ Λ)
dv̂θ
dθ

+
(
2µ+ (ξ + 1)Λ

)
v̂r. (3.9)

Let L̂(ξ) denote the matrix differential operator analogous to the system (3.8). Anal-
ogously, the operator B̂[. .](ξ) is used to characterize the general transformed form of
the matrix boundary operators for various combinations of the boundary conditions
(2.4)-(2.7). Accordingly, the operator pencil V̂(ξ) for a generalized eigenvalue problem
can be written as

V̂(ξ) =
[
L̂(ξ),

{
B̂[. .](ξ)

}]
. (3.10)

Thus, the operator V̂(ξ) maps W 2, 2(I)2 into L2(I)2 × C2 × C2. Let V̂(ξ)(θ, ξ) = 0 is
used to describe a generalized eigenvalue problem and the solvability of such type of
problems is discussed in [17, 32]. The operator V̂(ξ) is an isomorphism for all ξ ∈ C
apart from some isolated points (known as the eigenvalues of V̂(ξ)). So, the resolvent

R(ξ) =
[
V̂(ξ)

]−1
is an operator-valued, meromorphic function of ξ has poles of finite

multiplicity. The eigenvalues of the operator V̂(ξ) are obtained with the determinant
method, this means that the nontrivial solution of the generalized eigenvalue problem
leads to a transcendental equation whose zeros are the eigenvalues of V̂(ξ).

The definition of the eigenvalues ξµ (whereas the subscript µ is generally used to
refer to the multiple eigenvalues) and the corresponding eigenfunctions are described
in the following definition.
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Definition 3.1. A complex number ξ = ξ0 is known as eigenvalue of V̂(ξ) if there
exists a nontrivial solution i.e., û(., ξ0) 6= 0, which is holomorphic at ξ0, such that
V̂(ξ0) û(θ, ξ0) = 0. û(θ, ξ0) is called an eigenfunction of V̂(ξ0) corresponding to the
eigenvalue ξ0. The set of fields

{
û0(θ, ξ0), û0,1(θ, ξ0), ..., û0,s(θ, ξ0)

}
with û0,0 = û0 is

said to be a Jordan chain corresponding to the eigenvalue ξ0, if the equation

m∑
q=0

1

q!

( ∂
∂ξ

)q V̂(ξ) û0,m−q(θ, ξ)
∣∣∣
ξ=ξ0

= 0 for m = 1, 2, ..., s,

is satisfied. The number s+ 1 is called the length of the Jordan chain.

3.2 Distributions of the Eigenvalues

In this section, the general solutions of the homogenous system (3.8) are given. The
transcendental functions whose roots are the eigenvalues of the operator V̂(ξ) for all the
possible cases of the combinations of the boundary conditions (2.4)-(2.7) are derived.
Moreover, the distributions of the generalized eigenvalues are computed numerically.

The fundamental solution of the homogenous parametric dependent system (3.8) for
the case of ξ 6= 0 is given by

(
v̂r
v̂θ

)
=



B1

(
sin[(ξ + 1)θ]
cos[(ξ + 1)θ]

)
+B2

(
cos[(ξ + 1)θ]
− sin[(ξ + 1)θ]

)
+B3

( (
3µ+ Λ− ξ(µ+ Λ)

)
cos[(1− ξ)θ]

−
(
3µ+ Λ + ξ(µ+ Λ)

)
sin[(1− ξ)θ]

)
+B4

( (
3µ+ Λ− ξ(µ+ Λ)

)
sin[(1− ξ)θ](

3µ+ Λ + ξ(µ+ Λ)
)

cos[(1− ξ)θ]

)
,

(3.11)

where Bi ∈ R, i = 1, 2, 3, 4. For the case of ξ = 0, the general solution of the homoge-
nous system (3.8) has the following form

(
v̂r
v̂θ

)
=



B1

(
sin θ
cos θ

)
+B2

(
cos θ
− sin θ

)
+B3

(
−
(
3µ+ Λ

)
θ cos θ + µ sin θ(

3µ+ Λ
)
θ sin θ +

(
2µ+ Λ

)
cos θ

)
+B4

( (
3µ+ Λ

)
θ sin θ + µ cos θ(

3µ+ Λ
)
θ cos θ −

(
2µ+ Λ

)
sin θ

)
.

(3.12)

The coefficients B = (B1, B2, B3, B4)T are determined according to the types of bound-
ary conditions. Analogously, the tractions

(
σ̂rθ, σ̂θθ

)
in (3.9) for the cases of ξ 6= 0 and

ξ = 0 can be obtained by using (3.11) and (3.12).

To evaluate the eigenvalues and corresponding eigenfunctions of the elasticity system,
the solution (3.11) with various possible combinations of the boundary conditions is
considered to obtain a system of four linear homogeneous equations with our unknowns
B1, B2, B3, and B4. The resulting matrix of coefficients of these equations depends
on the complex parameter ξ, and a nontrivial solution exists if and only if the deter-
minant of the resulting matrix of coefficients vanishes. Furthermore, it produces the
transcendental equations whose roots are the eigenvalues, namely, ξµ for µ = 1, ...N .

Moreover, for the case of plane strain, we consider the following relations between
the Lamé coefficients µ, Λ and the Poisson’s ratio ν = Λ

2(Λ+µ) , i.e.,

(Λ + 3µ)

Λ + µ
= 3− 4ν,

(Λ + 2µ)

µ
=

2(1− ν)

1− 2ν
, and

(Λ + 3µ)

µ
=

3− 4ν

1− 2ν
.
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On the other hand, for the case of plane stress, the Poisson’s ration ν has to be replaced
by ν̃ = ν

(1+ν) .

To compute the transcendental equations for different possible cases of the combina-
tions of the boundary conditions, we proceed as follows.
Case 1: Hard clamped- Hard clamped boundary conditions (HC-HC)

It means that the hard clamped boundary conditions are given on both sides of the
angular corner point. The determinant method is used to obtain a system of linear
homogeneous equations. A non-trivial solution exists if the determinant DHC−HC(ξ)
of the corresponding system of the matrix of coefficients vanishes. So, the obtained
characteristic equation from (3.11) and (2.4) for the plane strain condition is given by

DHC−HC(ξ) = sin2(ξω0)− ξ2
( 1

3− 4ν

)2
sin2(ω0). (3.13)

The roots of the equation (3.13) are the eigenvalues of the operator V̂HC−HC(ξ) =[
L̂(ξ), {B̂[HC−HC](ξ)}

]
.

The dispersal of zeros of equation (3.13) with Re(ξ) ∈ [0, 4] and ω0 ∈ (0, 2π) is
shown in Figures 1a-3 for Poisson’s ratios ν = 0.0, 0.29, 0.33, 0.41, and 0.5. It ought to
be observed that the singularity of the stress field arises only for the real value of the
exponent ξ

(
Re (ξ) ∈ (0, 1) and Im (ξ) = 0

)
, which corresponds to ω0 > π. In all the

subsequent graphs, the black lines reveal the real eigenvalues, while the red lines reveal
the real parts of the conjugate pair of complex eigenvalues.

(a) Eigenvalues for HC-HC conditions for ν =
0.0.

(b) Eigenvalues for HC-HC conditions for ν =
0.29 (plane stress).

Figure 1: Distribution of the eigenvalues for HC-HC conditions for ν = 0.0 and ν = 0.29
(plane stress).
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(a) Eigenvalues for HC-HC conditions for ν =
0.33.

(b) Eigenvalues for HC-HC conditions for ν =
0.41.

Figure 2: Distribution of the eigenvalues for HC-HC conditions for ν = 0.33 and
ν = 0.41.

Figure 3: Distribution of the eigenvalues for HC-HC conditions for ν = 0.5.

Case 2: Stress free- Stress free boundary conditions (SF-SF)

It means that the stress free boundary conditions are given on both sides of the
angular corner point. So, the obtained characteristic equation for this case is

DSF−SF (α) = sin2(ξω0)− ξ2 sin2(ω0). (3.14)

The numerical solutions to equation (3.14) are shown in Figure 4 with Re(ξ) ∈ [0, 4]
and ω0 ∈ (0, 2π). Now, we give the results for the eigenvalues of the algebraic equation
(3.14), and the others will be treated analogously. The singular exponents are attained
by finding the roots of (3.14). Ordering these solutions with the non-decreasing real
part, a non-decreasing sequence of numbers ξµ, µ = 1, 2, ...N is obtained. The number
sµ is defined by

sµ = Re (ξµ) + 1,
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which is known as the order of the regularity of the solution space and depends on
the corner singularity. More information about the numbers ξµ can be found in [18].
Furthermore, the non-convex and convex cases are discussed separately regarding the
values of apex angle ω0.
Case I. For the non-convex case, that is ω0 ∈ (π, 2π), the first 3 leading eigenvalues
ξµ, µ = 1, 2, 3 are real and the properties

1

2
< ξ1 <

π

ω0
< ξ2 = 1 < ξ3 <

2π

ω0
, ω0 ∈ (π, ω∗], (3.15)

1

2
< ξ1 <

π

ω0
< ξ2 < ξ3 = 1 <

2π

ω0
, ω0 ∈ (ω∗, 2π), (3.16)

hold. In particular, ω∗ ≈ 1.4303π is the unique solution of the equation tanω − ω = 0
in the interval ω ∈ [0, 2π). It can be seen that for an angle ω0 ∈ (ω∗, 2π), there are two
eigenvalues ξ1, ξ2 less than 1.
Case II. For the convex case, that is ω0 ∈ (0, π), ξ1 is a simple and unique eigenvalue
that lie in the strip 0 < Re(ξ1) < π

ω0
.

Figure 4: Distribution of the eigenvalues for SF-SF conditions.

Remarks 3.1. In consideration of Theorem 2.1, if someone wants to get a maximum
regularity for the solution u of the problem (2.11), it is essential to reveal that the
strip Re(ξµ) ∈ (0, 2− 2

p) is free of the root of the derived transcendental equations for
various combinations of the boundary conditions.

So, for a closer look at the structure of distribution of the zeros of the equation (3.14)
in a strip, the following proposition is described as follows.

Proposition 3.1. If ω0 ∈ (0, π), then the equation (3.14) has no root in the strip
Re(ξ) ∈ (0, 1

2 ] and If ω0 ∈ (0, 2π), then this equation has no root in the strip Re(ξ) ∈ (0, 1
4 ].

Proof. The proposition is inspired by [7] and ([3], Remark A.7). We study the equation

sin2(ξω0) = m2ξ2 sin2(ω0), (3.17)
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with m ∈ (0, 1]. It covers equation (3.14) by taking m = 1. It is noticeable that ξ is
a solution of the equation (3.17) if and only if ξ satisfies the equations (3.18)-(3.19)
below:

sin(ξω0) = mξ sin(ω0), (3.18)

sin(ξω0) = −mξ sin(ω0). (3.19)

We have to show that if ω0 ∈ (0, π), then (3.18) has no root in the strip Re(ξ) ∈ (0, 1
2 ].

Similar argument displays the result of (3.19). Letting ξ = a+ ib with a, b ∈ R in (3.18)
and separating the real and imaginary parts. Then the equation (3.18) is splits into
two equations

sin(aω0) cosh(bω0) = ma sin(ω0), (3.20)

cos(aω0) sinh(bω0) = mb sin(ω0). (3.21)

Let us consider the two functions f1, f2 for a fixed b ∈ R, such as

f1 : R→ R : a→ sin(aω0) cosh(bω0),

f2 : R→ R : a→ ma sin(ω0).
(3.22)

It is easily checked that

f1(0) = f2(0) = 0 and f1(
1

2
) > f2(

1

2
),

for ω0 ∈ (0, π). Since, f1 is concave in the interval [0, π
2ω0

], we get for all a ∈ (0, 1
2 ]:

f1(a) ≥ 2af1(
1

2
) > 2af2(

1

2
) = f2(a).

Therefore, for ω0 ∈ (0, π), (3.20) does not coincide with (3.21) in the interval (0, 1
2 ]. So

does (3.18). Analogously, for ω0 ∈ (0, 2π) holds.

The equation (3.17) recover the equation (3.13), since m = 1
(3−4ν) ∈ (0, 1].

Case 3: Hard clamped- Stress free boundary conditions (HC-SF)

DHC−SF (ξ) = ξ2
( 1

3− 4ν

)
sin2(ω0)− 4(1− ν)2

3− 4ν
+ sin2(ξω0). (3.23)

The numerical solutions to equation (3.23) are shown in Figures 5a-7 withRe(ξ) ∈ [0, 4]
and ω0 ∈ (0, 2π) with the same Poisson’s ratios as given in Figures 1a-3, respectively.
It is noticing that lower values of the Poisson’s ratios implicate higher values of the
threshold angle ω0 with the singular terms. For instance, when ν = 0.5 in plane strain
conditions, the singular terms already arises for ω0 >

π
4 . Furthermore, for a certain

angle ω0 there may seem many singular terms of ξ real or complex contingent on
Poisson’s ratios. Such as, when ω0 = 3π

2 , and ν = 0.5 (in plane strain), we have three
real singular terms equivalent to three different values of ξ ∈ (0, 1), but if ν = 0.33, two
values of ξ, a real and complex one are found.

Proposition 3.2. If ω0 ∈ (0, π), then (3.23) has no root in the strip Re(ξ) ∈ (0, 1
2 ]. If

ω0 ∈ (0, 2π), then this equation has no root in the strip Re(ξ) ∈ (0, 1
4 ].
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Proof. Firstly, we have to show that the equation (3.23) has no root in the strip

Re(ξ) ∈ (0, 1
2 ] when ω0 ∈ (0, π). Let we set m1 =

1

3− 4ν
and m2 =

4(1− ν)2

3− 4ν
in

the equation (3.23). We let ξ = a + ib with a, b ∈ R in (3.23) and separating the
real and imaginary parts. Then the equation (3.23) can be split into the following two
equations

sin2(aω0) cosh2(bω0)− cos2(aω0) sinh2(bω0) = m2 −m1(a2 − b2) sin2(ω0), (3.24)

sin(2aω0)sinh(2bω0) = −4m1ab sin2(ω0). (3.25)

Now, we consider the two cases of the values of b.
Case I. If b = 0, then the equation (3.24) becomes

sin2(aω0) = m2 −m1(a2) sin2(ω0), (3.26)

and has no solution a ∈ [0, 1
2 ]. The direct computation gives us that the right hand-

side is strictly greater than the left hand-side at a = 1
2 . Since, we get the result in the

interval [0, π
2ω0

]. Furthermore, the right hand-side of (3.26) is decreasing, while its left
hand-side is increasing.
Case II. If b 6= 0, then a solution a > 0 of equation (3.25) satisfies

a >
π

2ω0
>

1

2
. (3.27)

From (3.25), we find that

sin(2aω0)

a
=
−4bm1 sin2(ω0)

sinh(2bω0)
. (3.28)

We get (3.27) since in the interval a ∈ [0, π
2ω0

]. The right hand-side of (3.28) is always
negative, while its left hand-side is positive.

By joining together the two cases, we get that (3.23) having no root in the strip
Re(ξ) ∈ (0, 1

2 ]. Analogously, the case for ω0 ∈ (0, 2π) can be proved.

The similar propositions for the other cases of boundary conditions can be proved
analogously to Propositions 3.1 and 3.2.

(a) Eigenvalues for HC-SF conditions for ν =
0.0.

(b) Eigenvalues for HC-SF conditions for ν =
0.29 (plane stress).

Figure 5: Distribution of the eigenvalues for HC-SF conditions for ν = 0.0 and ν = 0.29
(plane stress).
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(a) Eigenvalues for HC-SF conditions for ν =
0.33.

(b) Eigenvalues for HC-SF conditions for ν =
0.41.

Figure 6: Distribution of the eigenvalues for HC-SF conditions for ν = 0.33 and ν =
0.41.

Figure 7: Distribution of the eigenvalues for HC-SF conditions for ν = 0.5.

Case 4: Soft clamped- Soft clamped boundary conditions (SC-SC)
It means that the Soft clamped boundary conditions (2.5) are given on both sides of the
angular corner point. Therefore, the computation leads to the transcendental equation

DSC−SC(ξ) = cos(2ξω0)− cos(2ω0). (3.29)

The roots of (3.29) are the eigenvalues of the operator V̂SC−SC(ξ) =
[
L̂(ξ), {B̂[SC−SC](ξ)}

]
.

The distribution of zeros of equation (3.29) with Re(ξ) ∈ [0, 4] and ω0 ∈ (0, 2π) is
shown in Figure 8. We obtain the real eigenvalues ξ of (3.29) and can be given explicitly
by

ξn = ±
(
n
π

ω0
− 1
)
, (3.30)

where n is an integer.
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Figure 8: Distribution of the eigenvalues for SC-SC conditions.

Next, we only describe the characteristics equations of all the other possible combi-
nations of the boundary conditions, whereas we give up the explicit specifications of
the subsequent determinants.
Case 5: Hard clamped- Soft clamped boundary conditions (HC-SC)

DHC−SC(ξ) = sin(2ξω0)− ξ
( 1

3− 4ν

)
sin(2ω0). (3.31)

The numerical solutions to equation (3.31) for Poisson’s ratios ν = 0.0, 0.29, 0.33, 0.41,
and 0.5 are shown in Figures 9a-11 with Re(ξ) ∈ [0, 4] and ω0 ∈ (0, 2π). It is noted
that the singularity of the stress field arises for ω0 >

π
2 , for any value of the Poisson’s

ratios excepting ν = 0.5 in Plane strain conditions, where the transient angle ω0 jumps
from π

2 to 0.7151π. Moreover, it is noted that for ν = 0.5 in plane strain condition,
equation (3.31) is the same as equation (3.36).

(a) Eigenvalues for HC-SC conditions for ν =
0.0.

(b) Eigenvalues for HC-SC conditions for ν =
0.29.

Figure 9: Distribution of the eigenvalues for HC-SC conditions for ν = 0.0 and ν = 0.29
(plane stress).
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(a) Eigenvalues for HC-SC conditions for ν =
0.33.

(b) Eigenvalues for HC-SC conditions for ν =
0.41.

Figure 10: Distribution of the eigenvalues for HC-SC conditions for ν = 0.33 and
ν = 0.41.

Figure 11: Distribution of the eigenvalues for HC-SC conditions for ν = 0.5.

Case 6: Simply supported- Simply supported boundary conditions (SS-SS)

DSS−SS(α) = cos2(ξω0)− cos2(ω0). (3.32)

The dispersal of zeros of equation (3.32) with Re(ξ) ∈ [0, 4] and ω0 ∈ (0, 2π) is shown
in Figure 12. It has the same eigenvalues corresponding to equation (3.30).

Case 7: Soft clamped- Simply supported boundary conditions (SC-SS)

DSC−SS(ξ) = cos(2ξω0) + cos(2ω0). (3.33)

The distribution of zeros of equation (3.33) withRe(ξ) ∈ [0, 4] and ω0 ∈ (0, 2π) is shown
in Figure 13. We obtain the real eigenvalues ξ of (3.33) and can be given explicitly by

ξn = ±
[(1

2
+ n

) π
ω0
− 1
]
, (3.34)
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Figure 12: Distribution of the eigenvalues for SS-SS conditions.

where n is an integer.

Figure 13: Distribution of the eigenvalues for SC-SS conditions.

Case 8: Hard clamped- Simply supported boundary conditions (HC-SS)

DHC−SS(ξ) = ξ
( 1

3− 4ν

)
sin(2ω0) + sin(2ξω0). (3.35)

The numerical solutions to equation (3.35) are shown in Figures 14a-16 withRe(ξ) ∈ [0, 4]
and ω0 ∈ (0, 2π) with the same Poisson’s ratios as given in Figures 1a-3, respectively.
The singular terms appear for ω0 >

π
2 .

It is noted that for ν = 0.5 in plane strain condition, equation (3.35) is the same as
the equation (3.37).
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(a) Eigenvalues for HC-SS conditions for ν =
0.0.

(b) Eigenvalues for HC-SS conditions for ν =
0.29.

Figure 14: Distribution of the eigenvalues for HC-SS conditions for ν = 0.0 and ν = 0.29
(plane stress).

(a) Eigenvalues for HC-SS conditions for ν =
0.33.

(b) Eigenvalues for HC-SS conditions for ν =
0.41.

Figure 15: Distribution of the eigenvalues for HC-SS conditions for ν = 0.33 and
ν = 0.41.
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Figure 16: Distribution of the eigenvalues for HC-SS conditions for ν = 0.5.

Case 9: Simply supported- Stress free boundary conditions (SS-SF)

DSS−SF (ξ) = sin(2ξω0)− ξ sin(2ω0). (3.36)

The numerical solutions to equation (3.36) are shown in Figure 17 with Re(ξ) ∈ [0, 4]
and ω0 ∈ (0, 2π). It is observed that the singularity of the stress field appears for
ω0 > 0.7151π and is defined by the real values of ξ. In the equations (3.14) and (3.36),
ξ = 1 is always a zero of them. But this zero corresponds to a regular part of the
solution, that is a rotation. So, we neglect ξ = 1 in the equivalent figures 4 and 17.

Figure 17: Distribution of the eigenvalues for SS-SF conditions.

Case 10: Soft clamped- Stress free boundary conditions (SC-SF)

DSC−SF (ξ) = sin(2ξω0) + ξ sin(2ω0). (3.37)
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The numerical solutions to equation (3.37) are shown in Figure 18 with Re(ξ) ∈ [0, 4]
and ω0 ∈ (0, 2π). It is observed that the singularity of the stress field arises only for
the real values of the exponents ξ

(
Re (ξ) ∈ (0, 1) and Im (ξ) = 0

)
, which corresponds

to ω0 >
π
2 .

Figure 18: Distribution of the eigenvalues for SC-SF conditions.

3.2.1 Computation of the Singular Exponents

In section 3.2, we have completely discussed the distribution of the eigenvalues of the
problem (2.8) for all the possible combinations of the boundary conditions. Now, we
explain the process of computed these eigenvalues. As an example, we are considering
the eigenvalue condition (3.14). The real eigenvalues of the eigenvalue condition (3.14)
can be simply generated with MATLAB by an implicit plot, but it is much complicated
to compute the complex eigenvalues. Here, we have developed the MATLAB program
for the computation of the complex roots of the eigenvalue condition (3.14) (see ap-
pendix A), and the figure showing the distribution of the eigenvalues are given. We
are interested only in those singularities in which the exponent lies in 0 ≤ Re (ξµ) < 1.
The equation (3.14) is providing that an apex angle greater than π generates such
exponents. The other eigenvalue conditions can be treated analogously.

Table 1 provides the representation of critical angles for stresses for various possible
combinations of the boundary conditions.

Remarks 3.2. It is noted from the above-mentioned results that the qualitative prop-
erties of the solution including the regularity of the underlying problem depend on the
properties of the singular exponents ξµ which are explicitly called the eigenvalues. It is
observed that if Re (ξµ) ≥ 1, then the solution defined in (2.14) is regular and belongs
to space W 2,2(Ω)2. The case Re (ξµ) = 0 represents the translation which is regular.
Hence, we consider only those eigenvalues of the generalized boundary eigenvalue prob-
lem that lies in the strip 0 ≤ Re (ξµ) < 1. Furthermore, the generalized eigenvalues
depend on the values of the apex angle ω0.
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Table 1: Critical angles for the stresses for different boundary conditions

Boundary conditions Angles

HC-HC π

SF-SF π

SC-SC π/2

SS-SS π/2

HC-SC π/2 For any Poisson ratio’s ν =
0.0, 0.29, 0.33, 0.41 except for
ν = 0.5 where the transient angle
jumps from π/2 to 0.7151π.

SC-SS π/4

SS-SF 0.7151π

HC-SS π/2

HC-SF 0.3422π For ν = 0.29 (plain stress) and
for ν = 0.5 plain strain condition
when the transient angle is π/4.

SC-SF π/2

4 Regularity Results

Let u ∈ U(Ω) be the unique weak solution of the boundary value problem (2.8). The
understanding of the singular terms permits us to evaluate the maximal regularity of
the weak solution. Based on Theorem 2.1 and the observations presented in Section 3,
we describe the subsequent theorem.

Theorem 4.1. Let Ω ⊂ R2 be a 2-dimensional bounded plane and connected domain.
Suppose that the opening angle ω0 at each of the angular boundary points Pi is lesser
than the values given in Table 1. Then for any given data f ∈ L2(Ω)2, the weak solution
u of the problem (2.8) has the regularity u ∈ U(Ω) ∩H2(Ω).

The regularity result for the elasticity problem in a polygonal domain for the char-
acteristic equations (3.13), (3.14) and (3.23) are proved in [13, 22].

The following theorem gives the regularity of the solution of the problem (2.11) when
all the ten possible combinations of the boundary conditions are applied on a domain
Ω with angular corner points on the boundary.

Theorem 4.2. Let Ω ⊂ R2 be a 2-dimensional bounded and connected domain with
the interior angles ωi at the angular corner points Pi of Γ. If Ω satisfies the following
assumption that ωi < 2π for all points Pi of the equations (3.13), (3.14), (3.23), (3.31),
(3.35), (3.36), and (3.37), for ωi <

4
5π for all Pi of the equations (3.29) and (3.32), in

addition to for ωi <
2
5π for all Pi of the equation (3.33). Then the solution u of the

problem (2.11) for given data f ∈ L2(Ω)2 satisfies

u ∈ H
5
4

+δ(Ω)2, for some δ > 0. (4.1)

Proof. For the proof, we proceed as [Section 1.4.5, 14]. By the assumption on the domain
Ω and the descriptions regarding the distribution of zeros of the derived transcendental
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equations specified in Section 3, that the strip Re(ξ) ∈ (0, 1
4 ] is free of the root for all

possible cases of the combination of the boundary conditions at each point Pi of the
boundary Γ. Additionally, it is recognized that in a fixed strip Re(ξ) ∈ [m,n] with
m,n ∈ R, the obtained characteristic equations (3.13), (3.14), (3.23),(3.29), (3.31)-
(3.33), and (3.35)-(3.37) have only a finite number of isolated roots, therefore there
exists a p ∈

]
8
7 , 2
[
, such that at each point of Γ the strip Re(ξ) ∈

(
0, 2− 2

p

]
is free

of the root. In consequence of Theorem 2.1, we conclude that the solution u of the
considered problem belongs to W 2,p(Ω)2 for such a p. Using [Theorem 1.4.4.1, 14], we
get (4.1), since the domain Ω has a Lipschitz boundary.

Remarks 4.1. It is noted that if the domain Ω satisfies the assumptions of Theorem
4.2, then for ωi < 2π for all points Pi of the equations (3.13)and (3.14), for ωi < π for
all Pi of (3.31), (3.35), (3.23), (3.37) and (3.36), for ωi <

2
3π for all Pi of (3.29) and

(3.32), in addition to ωi <
π
3 for all Pi of (3.33), then the solution u of the problem

(2.11) for given data f ∈ L2(Ω)2 satisfies u ∈ H
3
2

+δ(Ω)2, for some δ > 0.

5 Conclusion

In this paper, a mathematically rigorous description of the corner singularities of the
weak solutions for the plane linearized elasticity system in a bounded planar domain
with angular corner points on the boundary has been given. To analyze the behavior of
solutions of the considered problem in the vicinity of the singularities, we have extend-
ed our analysis by considering all ten possible cases of combinations of the boundary
conditions generated by the basic four ones in classical elasticity [2, 19] proposing in
the two natural directions of the boundary, i.e., tangential and normal direction, re-
spectively, which have not yet studied. In particular, the resulting expansion involves
singular vector functions, inlines, depending on a certain parameter ξµ. Since they
generate the singular functions as a power of r. The transcendental equations illustrat-
ing the corner singularity exponents for these combinations of the boundary conditions
have been derived with the aid of the determinant method. Analytically, it was much
difficult to determine the values of a parameter ξµ from these transcendental equations.
Consequently, a MATLAB program has been developed (see appendix A), whereby the
parameter ξµ has been computed, and figures showing their distributions have been
presented. Moreover, we have computed the leading singular exponents for all these
combinations of the boundary conditions, wherein the critical angles ωcritical have been
listed in Table 1 such that for interior angles ω < ωcritical the H2-regularity of solution
can be guaranteed.

Additionally, it has been observed that if Re (ξµ) ≥ 1, then the solution of the
underlying problem is regular and belongs toW 2,2(Ω)2. The caseRe (ξµ) = 0 represents
the translation which is regular. The terms with Re (ξµ) < 1 are called the singular
terms since they yield the unbounded stresses. So, we have considered only those
eigenvalues of the boundary eigenvalue problem that lies in the strip 0 ≤ Re (ξµ) < 1
which in turn depends on the angles ω. The characterization of stress singularities
for these combinations of the boundary conditions in terms of the inner angle of a
corner point has been studied. Finally, it has been proved that the solution u of the
considered problem belongs to W 2,p(Ω)2 for all the possible cases of the combinations
of the boundary conditions at each point Pi of the Γ, when the strip Re(ξ) ∈

(
0, 2− 2

p

]
is free of the root for such a p which belongs to

]
8
7 , 2
[
.
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[25] A. Rössle and A.-M. Sändig. Corner singularities and regularity results for the
Reissner/Mindlin plate model. Journal of Elasticity. The Physical and Mathe-
matical Science of Solids. 103(2) (2011), 113–135.
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A Appendix

MATLAB program for the computation of real eigenvalues of the eigen-
value condition

1 % Program t h a t compute the r e a l r o o t s
2 % o f the e i g e n v a l u e c o n d i t i o n s and p l o t them .
3 function [ ] = r o o t p l o t i n g ( omega start , omega end , q )
4 % Function [ ] = r o o t p l o t i n g ( q )
5

6 % D e s c r i p t i o n
7 % The f u n c t i o n compute the r e a l roo t o f the complex number
8 % in the g iven area us ing ang le w0 .
9 %

10 % Input :
11 % q : Eigenva lue c o n d i t i o n s as an i n l i n e f u n c t i o n based on
12 % lambda and w0 . Where lambda = a + i ∗b
13 % Output :
14 % output : output ( i )∗ r e a l
15 i o t a = sqrt (−1) ;
16 syms lambda omega0 ;
17 %input f u n c t i o n q , s t a r t i n g and ending v a l u e o f omega
18 %output : p l o t t i n g o f r e a l r o o t s o f q between omega
19 q = ( lambda ) . ˆ 2 . ∗ sin ( omega0 ) .ˆ2− sin ( lambda∗omega0 ) . ˆ 2 ;
20 omega start = 0 ;
21 omega end = 2∗pi ;
22 % f = matlabFunction ( q , ’ Vars ’ , [ lambda , omega0 ] ) g e n e r a t e s a

MATLAB
23 % anonymous f u n c t i o n
24 f = matlabFunction (q , ’ Vars ’ , [ lambda , omega0 ] ) ;
25 df = matlabFunction ( d i f f ( f ( lambda , omega0 ) , lambda ) ) ;
26 % I f maximum 10 p o i n t s s a t i s f y the accuracy
27 % r e f i n e the decimal power
28 omega0 re f ine r = 100 ;
29 omega0 = ( omega start : . 1 / omega0 re f ine r : omega end ) ’ ;
30 nomega0 = length ( omega0 ) ;
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31 % Change ymax to a d j u s t the v e r t i c a l range o f p l o t
32 ymax = 4 ;
33 % Change the v a l u e o f i n i t i a l guess r e f i n e r f o r f i n e r s e l c t i o n

o f i n i t i a l
34 % guess
35 i n i t i a l g u e s s r e f i n e r = 2 ;
36 r = 0 : . 0 1 / i n i t i a l g u e s s r e f i n e r : ymax ;
37 nr = length ( r ) ;
38 % i t e r r e p r e s e n t the t o t a l number o f i t e r a t i o n s and t o l

r e p r e s e n t
39 % t o l e r a n c e
40 i t e r = 10 ;
41 t o l = 1 .0 e−10;
42 f igure (1 )
43 hold on ;
44 % Loop over area o f the ang l e
45 % Program shou ld be a b l e to compute the roo t as area o f ang l e

top down
46 for j =1: nr
47 z = r ( j )+rand∗ i o t a ;
48 for k=1: i t e r
49 z = z−f ( z , omega0 ) . / df ( z , omega0 ) ;
50 norm f = abs ( f ( z , omega0 ) ) ;
51 end
52 i da ta = [ ] ;
53 for i =1:nomega0
54 i f ( norm f ( i )<t o l )
55 i da ta = [ idata ; i ] ;
56 disp ( ’ s u c c e s s ’ ) ;
57 end
58 end
59 % Xticks r e t u r n s a v e c t o r c o n t a i n i n g the x−a x i s t i c k
60 % v a l u e s f o r the curren t axes .
61 x t i c k s ( [ 0 pi/2 pi 3∗pi/2 2∗pi ] )
62 x t i c k l a b e l s ({ ’ 0 ’ , ’ \ pi /2 ’ , ’ \ pi ’ , ’ 3\ pi /2 ’ , ’ 2\ pi ’ })
63 xlabel ( ’ \omega {0} ’ )
64 ylabel ( ’ Real \ x i ’ )
65 t i t l e ( ’ Graphs o f the Real Roots o f the Eigenvalue Condit ions ’ )
66 grid
67 % axes s p e c i f i e d by ax i n s t e a d o f the curren t axes .
68 ax = gca ;
69 ax . GridColor = [ 0 . 5 . 5 ] ;
70 ax . Gr idLineSty le = ’−− ’ ;
71 ax . GridAlpha = 0 . 5 ;
72 ax . Layer = ’ top ’ ;
73

74 omega0i = omega0 ( idata ) ;
75 z i = z ( idata ) ;
76 cond1 =abs ( imag( z i ) ) < .0001;
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77 cond2 =abs ( imag( z i ) ) >=.0001;
78 cond3 =abs ( real ( z i ) )>=.01;
79 ind1 = find ( cond1 & cond3 ) ;
80 ind2 = find ( cond2 & cond3 ) ;
81 % Plot the imaginary and r e a l r e g i o n s
82 plot ( omega0i ( ind1 ) , real ( z i ( ind1 ) ) , ’ . k ’ , ’ MarkerSize ’ , 6 ) ;
83 plot ( omega0i ( ind2 ) , real ( z i ( ind2 ) ) , ’ . r ’ , ’ MarkerSize ’ , 2 ) ;
84 axis ( [ 0 2∗pi 0 4 ] )
85 drawnow ;
86 end
87

88 end
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