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TABLE S1. Geographical location and elevation of the 44 sampling points across the main five 
forest habitat types of the Troodos mountain range (Cyprus). Geographic distances between 
sampling points ranged from 45 m to 65 km. Two different samples were collected from each 
locality corresponding to the leaf litter and the deep soil layers, for a total of 88 samples. In 
order to avoid biases due to recent natural or human-driven disturbances, we selected pure 
forest sites that appeared intact (within a 2 km radius) based on historical orthophotos of the 
past 60 years, available from the Department of Land and Surveys, Ministry of Interior, Republic 
of Cyprus (https://eservices.dls.moi.gov.cy/). 
 

Forest habitat Habitat code Locality code Latitude Longitude Elevation (m) 
Pinus brutia Pb Pb01NWE 35.05890 32.62383 960 
Pinus brutia Pb Pb02PSI 35.01363 32.65182 1100 
Pinus brutia Pb Pb03TRI 35.01081 32.67200 1182 
Pinus brutia Pb Pb04OIK 35.03740 32.83374 451 
Pinus brutia Pb Pb05THE 35.05109 32.93183 472 
Pinus brutia Pb Pb06SAI 34.88597 32.91084 857 
Pinus brutia Pb Pb07LAG 34.98339 33.03513 814 
Pinus brutia Pb Pb08MIT 35.02863 33.10117 550 
Pinus brutia Pb Pb09KAP 34.95303 33.22019 693 
Pinus brutia Pb Pb10LIT 34.93824 33.32448 426 
Quercus alnifolia Qa Qa01NWE 35.05032 32.62390 964 
Quercus alnifolia Qa Qa01TEST 34.95216 32.74701 890 
Quercus alnifolia Qa Qa02PSI 35.02238 32.64947 1050 
Quercus alnifolia Qa Qa03TRI 34.99646 32.67845 1393 
Quercus alnifolia Qa Qa04STR 34.98886 32.68803 1137 
Quercus alnifolia Qa Qa05MIL 34.92007 32.74375 945 
Quercus alnifolia Qa Qa06MAD 34.95435 32.99693 1572 
Quercus alnifolia Qa Qa07ALO 34.92540 33.04498 1279 
Quercus alnifolia Qa Qa08PAL 34.89243 33.07495 1351 
Quercus alnifolia Qa Qa09KIO 34.92168 33.19400 1347 
Quercus alnifolia Qa Qa10VAV 34.90582 33.21685 1147 
Cedrus brevifolia Cb Cb01PSI 35.02256 32.64991 1027 
Cedrus brevifolia Cb Cb02TRI 35.00095 32.67910 1341 
Cedrus brevifolia Cb Cb03TRI 35.00021 32.68005 1359 
Cedrus brevifolia Cb Cb04TRI 34.99837 32.67926 1366 
Cedrus brevifolia Cb Cb05TRI 34.99722 32.67742 1372 
Cedrus brevifolia Cb Cb06TRI 34.99460 32.68099 1400 
Cedrus brevifolia Cb Cb07STR 35.02256 32.64991 1124 
Pinus nigra Pn Pn01PRO 34.95261 32.83689 1440 
Pinus nigra Pn Pn02CHI 34.95487 32.85660 1696 
Pinus nigra Pn Pn03CHI 34.94499 32.86504 1818 
Pinus nigra Pn Pn04CHI 34.93476 32.86170 1905 
Pinus nigra Pn Pn05CHI 34.93015 32.87531 1766 
Pinus nigra Pn Pn06CHI 34.93917 32.89204 1712 
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Pinus nigra Pn Pn07TRO 34.91629 32.88539 1727 
Pinus nigra Pn Pn08AMI 34.92676 32.89821 1600 
Juniperus foetidissima Jn Jn01CHI 34.95515 32.85732 1671 
Juniperus foetidissima Jn Jn02CHI 34.94367 32.86582 1798 
Juniperus foetidissima Jn Jn03CHI 34.93476 32.86017 1896 
Juniperus foetidissima Jn Jn04CHI 34.93439 32.87003 1833 
Juniperus foetidissima  Jn Jn05TRO 34.91908 32.86950 1716 
Juniperus foetidissima Jn Jn06CHI 34.93451 32.88286 1619 
Juniperus foetidissima Jn Jn07AMI 34.92804 32.89826 1564 
Juniperus foetidissima Jn Jn08CHI 34.93525 32.86301 1921 
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TABLE S2. Details on the software, arguments and parameter values used in each step of the read processing and filtering pipeline. 
 

Step Software and version Arguments and parameter values Task 

Primer removal CUTADAPT v.2.10 
min_overlap=20 min_overlap=26 
--discard_untrimmed --error-rate=0 

Filter out those reads that do not contain an adapter and/or 
exhibit variation in primer length and primer composition in 
either forward or reverse raw sequences 

Merging PEAR v.0.9.11 -q 26 -v 100 
Merge forward and reverse reads by setting the minimum 
overlap size to 100 bp and trim the low-quality part of a read 
when two consecutive bases have a quality score below 26 

Quality filtering VSEARCH v.2.9.1 --fastx_filter --fastq_maxee 1 Discard reads with more than 1 expected error 

Dereplication I VSEARCH v.2.9.1 --derep_fulllength –sizeout --minuniquesize 2 
Pool strictly identical reads and calculate abundance value per 
library. Discard reads with a post-dereplicated abundance value 
smaller than 2 

Length filtering VSEARCH v.2.9.1 
--fastx_filter --fastq_minlen 416 
--fastq_maxlen 420 

Retain only reads with length between 416 bp and 420 bp 

Denoising VSEARCH v.2.9.1 --cluster_unoise --minsize 2 --unoise_alpha 2 
Denoise reads using the UNOISE3 algorithm with a value of 2 for 
the a parameter (default) and discard reads with an abundance 
value smaller than 2 

Chimera filtering VSEARCH v.2.9.1 --uchime3_denovo --abskew 16 Remove chimeras using an abundance skew value of 16 (default) 

Dereplication II VSEARCH v.2.9.1 --derep_fulllength --sizeout –sizein --minuniquesize 1 
Pool strictly identical reads and calculate abundance value 
across all libraries using previous library-based abundance 
information 

BLAST search NCBI-BLAST v.2.8.1 -outfmt 5 -evalue 0.001 -max_target_seqs 100 
BLAST search against a database using an e-value of 0.001 and 
output the first 100 matches per query. Format result output file 
to XML format suitable for MEGAN software 

Community table 
generation 

VSEARCH v.2.9.1 --search_exact --otutabout 
Search for 100% exact and full-length matches of the query 
sequences in the database of target sequences. Summarise 
sequence abundance per site in a species x site formatted table 

Read-abundance 
filtering 

METAMATE v.0.1b18 
find.py --refmatchpercent 100 --refmatchlength 350 
--dbmatchpercent 100 --dbmatchlength 400 
--expectedlength 418 --percentvariation 0 -s 5 

Remove putative NUMTs and other types of low-frequency 
erroneous sequences using stringent values to assign sequences 
as verified authentic and verified non-authentic haplotypes 
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TABLE S3. PCA loadings of environmental variables for the two first principal components (PC). 
Variables with a loading value >0.4 for a given PC are highlighted in bold. The fraction of 
variance explained by each PC is reported at the bottom of the table. 
 

Variables Code Data source(1) (2) 3) PC1 PC2 
Elevation ALT NASA STRM 0.981 0.020 
Annual mean temperature BIO1 WorldClim -0.989 -0.021 
Maximum temperature of warmest month BIO5 WorldClim -0.883 0.032 
Minimum temperature of coldest month BIO6 WorldClim -0.955 -0.078 
Annual precipitation BIO12 WorldClim 0.984 -0.010 
Precipitation of wettest quarter BIO16 WorldClim 0.968 -0.042 
Precipitation of driest quarter BIO17 WorldClim 0.952 0.079 
Climatic moisture index CMI ENVIREM 0.990 0.025 
Thornthwaite aridity index TAI ENVIREM -0.649 -0.430 
Topographic wetness index TWE ENVIREM -0.538 0.772 
Explained variance (%)   81.312 7.965 

(1) NASA STRM: https://srtm.csi.cgiar.org 
(2) WorldClim: https://www.worldclim.org/data/worldclim21.html 
(3) ENVIREM: https://envirem.github.io 
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TABLE S4. Results of model selection testing for the relationship between average richness (α diversity, RICH) or community 
uniqueness (local contribution to β diversity - LCBD) and topoclimatic variation (ENVPC1 and ENVPC2; see Table S3). Latitude (Lat) and 
longitude (Lon) were included as covariates in the models. Response variables were calculated at ASV and OTU level. Generalized 
linear mixed models (GLMMs) were used to fit forest habitat type as random effect in order to account for non-independence 
among samples from the same forest habitat. Generalized linear models (GLMs) were applied when random effect variance was zero 
or nearly zero indicating a poor model fit and no influence of random effect on response variation. For each model we indicate K, 
number of parameters in the model; AICC, sample-size adjusted Akaike’s information criterion (AIC) value; ∆AICC, difference in AICC 
value from that of the most supported model; ωi, AICC weight. Only best ranked equivalent models (∆AICC ≤2) are shown. 
 

ASVs (haplotypes)  OTUs (3% lineages) 
Model Parameters K AICC ∆AICC ωi  Model Parameters K AICC ∆AICC ωi 
RICHASV      RICHOTU     
  1 Lon 1 320.40 0.00 0.48    1 ENVPC2 + Lon 2 267.20 0.00 0.67 
  2 Lon + ENVPC2 2 321.10 0.70 0.34    2 ENVPC2 1 268.57 1.37 0.33 
  3 Lon + Lat 2 322.32 1.92 0.18        
             
LCBDASV      LCBDOTU     
  1 ENVPC1 + ENVPC2 2 -493.40 0.00 1.00    1 ENVPC1 1 -435.40 0.00 1.00 
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TABLE S5. Results of PCNM axes selection using dbRDA and a forward selection procedure as implemented in the ‘ordistep’ function 
of the vegan R package (Oksanen et al., 2020). Significance of PCNM axes was evaluated against community dissimilarity matrices as 
estimated using the Simpson dissimilarity index (βSIM) at ASV and OTU levels. The adjusted coefficient of determination (R2ADJ) for 
each model is also provided. The Pinus nigra (Pn) and Juniperus foetidissima (Jn) sampling sites were analysed both separately and 
jointly, according to the results of NMDS-based ordinations (Figure 3). Predictor information in those models containing no 
significant variables (null) is replaced by dashes. 
 

 ASVs (haplotypes)  OTUs (3% lineages) 
Model Predictors F p-value R2

ADJ  Predictors F p-value R2
ADJ 

Across habitats SPAPCNM1 5.332 <0.001 0.155  SPAPCNM1 4.586 <0.001 0.148 
 SPAPCNM2 2.392 <0.001   SPAPCNM2 2.369 <0.001  
 SPAPCNM5 1.629 0.007   SPAPCNM4 1.456 0.027  
 SPAPCNM10 1.367 0.032   SPAPCNM5 1.714 0.002  
 SPAPCNM17 1.637 0.007   SPAPCNM15 1.334 0.042  
      SPAPCNM17 1.426 0.029  
          
Pinus brutia (Pb) Null - - -  Null - - - 
          
Quercus alnifolia (Qa) SPAPCNM1 1.543 0.006 0.051  SPAPCNM1 2.892 0.005 0.231 
      SPAPCNM2 1.850 0.007  
          
Cedrus brevifolia (Cb) SPAPCNM2 2.603 0.045 0.210  SPAPCNM1 2.387 0.024 0.188 
          
          
Pinus nigra (Pn) Null - - -  Null - - - 
          
Juniperus foetidissima (Jn) Null - - -  Null - - - 
          
Pinus nigra (Pn) + Juniperus foetidissima (Jn) Null - - -  SPAPCNM3 1.755 0.008 0.048 
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TABLE S6. Results from multivariate generalized linear models (mvGLMs) testing for the relationship between community 
composition as response variable and forest habitat type (HAB), spatial (SPAPCNMi) and topoclimatic (ENVPCi) variables as predictors. 
Analyses were performed at ASV and OTU levels, either with all sites (across habitats) or separately for each of the forest habitat 
types. Variable significance was first assessed by single-term models and those predictors with a significant effect were used to build 
a full model following a backward stepwise selection with all terms in the final model being statistically significant. Results of all 
significant single-term models are shown and variables included in the final model are highlighted in bold. We provide the 
correlation coefficient (Hopper´s R2) of each significant variable as calculated using the ‘best.r.sq’ function from the mvabund R 
package (Wang, Naumann, Wright, & Warton, 2012). The Pinus nigra (Pn) and Juniperus foetidissima (Jn) sampling sites were 
analysed both separately and jointly, according to the results of NMDS-based ordinations (Figure 3). 
 

 ASVs (haplotypes)  OTUs (3% lineages) 
Model Predictors Deviance p-value R2  Predictors Deviance p-value R2 
Across habitats HAB 4220 0.001 0.121  HAB 2197 0.001 0.138 
 SPAPCNM1 2530 0.001 0.040  SPAPCNM1 1110 0.002 0.044 
 SPAPCNM2 1677 0.001 0.030  SPAPCNM2 813.7 0.002 0.037 
 SPAPCNM3 1080 0.011 0.025  SPAPCNM3 501.5 0.016 0.028 
 SPAPCNM4 1442 0.001 0.029  SPAPCNM4 645.3 0.002 0.032 
 SPAPCNM5 1084 0.034 0.023  SPAPCNM5 503.9 0.044 0.027 
 SPAPCNM7 1040 0.006 0.028  SPAPCNM7 449.5 0.024 0.028 
 SPAPCNM10 1067 0.019 0.024  SPAPCNM10 455.1 0.036 0.025 
 SPAPCNM11 844.3 0.016 0.032  SPAPCNM11 462.1 0.008 0.044 
 SPAPCNM17 1224 0.004 0.030  SPAPCNM15 380.8 0.030 0.036 
 SPAPCNM20 940.9 0.015 0.029  SPAPCNM17 478.6 0.029 0.026 
 SPAPCNM25 996.4 0.019 0.030  SPAPCNM20 427.2 0.026 0.028 
 ENVPC1 1620 0.001 0.030  ENVPC1 866.7 0.001 0.040 
 ENVPC2 1772 0.001 0.032  ENVPC2 897.5 0.001 0.041 
          
Pinus brutia (Pb) SPAPCNM1 872.3 0.006 0.128  SPAPCNM1 437.5 0.015 0.131 
 ENVPC1 770.9 0.023 0.130  ENVPC1 424.0 0.022 0.138 
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Quercus alnifolia (Qa) SPAPCNM1 684.1 0.032 0.107  SPAPCNM1 392.4 0.010 0.136 
 SPAPCNM6 842.8 0.001 0.119  SPAPCNM6 349.6 0.025 0.108 
 SPAPCNM7 609.5 0.029 0.115      
 ENVPC2 652.0 0.039 0.113      
          
Cedrus brevifolia (Cb) ENVPC1 586.6 0.045 0.281  ENVPC1 275.5 0.044 0.259 
          
Pinus nigra (Pn) Null - - -  Null - - - 
          
Juniperus foetidissima (Jn) Null - - -  Null - - - 
          
Pinus nigra (Pn) + Juniperus foetidissima (Jn) SPAPCNM2 551.9 0.028 0.072  SPAPCNM3 257.4 0.013 0.089 
 SPAPCNM3 490.0 0.033 0.080  ENVPC1 254.4 0.019 0.086 
 SPAPCNM4 516.8 0.040 0.076      
 SPAPCNM5 512.2 0.024 0.076      
 SPAPCNM6 515.5 0.018 0.070      
 ENVPC1 508.0 0.026 0.082      
 ENVPC2 438.6 0.032 0.087      
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TABLE S7. Univariate matrix regressions with randomization (MRR) testing for the relationship 
between dissimilarity in community composition (βSIM) across Quercus alnifolia (Qa) sampling 
sites as response variable and forest fragmentation (FRAIBR) as explanatory variable. Community 
dissimilarity was estimated using the Simpson dissimilarity index (βSIM) at ASV and OTU levels. 
The alternative FRAIBR distance matrices were calculated under an isolation-by-resistance (IBR) 
scenario based on the spatial distribution of Quercus alnifolia patches and assuming a range of 
increasing resistance values (5 - 1,000,000) for the non-Quercus habitat cells in order to identify 
the value that best explained the observed estimates of community dissimilarity (βSIM). We also 
provide the univariate results for the remaining distance matrices based on topoclimate 
(ENVPC1-2), weighted topographic distances (SPATWD), topographic complexity (TRIIBR) and a ‘flat’ 
scenario (NULLIBR), with their respective coefficient of determination (R2) and p-value. 
 

 Resistance value of 
non-Quercus habitat cells 

ASVs (haplotypes)  OTUs (3% lineages) 
Terms p-value R2  p-value R2 
ENVPC1-2 - 0.002 0.224  0.005 0.178 
SPATWD - 0.037 0.083  0.002 0.242 
TRIIBR - 0.027 0.110  0.006 0.229 
NULLIBR - 0.049 0.072  0.003 0.232 
       
FRAIBR 5 0.021 0.108  0.002 0.265 
FRAIBR 10 0.020 0.115  0.001 0.266 
FRAIBR 50 0.010 0.124  0.002 0.264 
FRAIBR 100 0.001 0.125  0.004 0.263 
FRAIBR 250 0.009 0.124  0.002 0.261 
FRAIBR 500 0.010 0.122  0.002 0.260 
FRAIBR 1000 0.018 0.121  0.003 0.259 
FRAIBR 10000 0.022 0.119  0.002 0.257 
FRAIBR 100000 0.016 0.119  0.003 0.256 
FRAIBR 1000000 0.020 0.118  0.006 0.256 
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FIGURE S1. Position in the topoclimatic space (first two principal components of a PCA based on 
10 environmental variables, see Table S3) of the 44 sampling sites. The inset plot shows the 
position of the 44 sampling points (red circles) in relation to the 500 randomly distributed 
points throughout Cyprus (grey circles), all used to perform PCA. For a biological interpretation 
of each PC, see Table S3. 
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FIGURE S2. Average richness (α diversity, top panels) and community uniqueness (local contribution to β diversity - LCBD, bottom 
panels) per soil layer (deep soil and leaf litter) within each forest habitat, at ASV (left panels) and OTU (right panels) levels. ANOVA 
results assessing the difference in mean values between the two layers are provided on each respective panel. Inset graphs show the 
difference in variation of α diversity (ASV, F1,86 = 152.4, p-value <0.001; OTU, F1,86 = 145.6, p-value <0.001) and LCBD (ASV, F1,86 = 
13.11, p-value <0.001; OTU, F1,86 = 16.17, p-value <0.001) between soil layers when combining all forest habitats: Pb, Pinus brutia 
(light green); Qa, Quercus alnifolia (orange); Cb, Cedrus brevifolia (blue); Pn, Pinus nigra (black); Jn, Juniperus foetidissima (purple). 
 

 



 
 

13 
 

FIGURE S3. Relationships of average richness (α diversity, top panels) and community 
uniqueness (local contribution to β diversity - LCBD, bottom panels) with their most explicative 
predictors according to GLMM/GLM analysis (Table 1; Table S4), at ASV (left panels) and OTU 
(right panels) levels. In the main four scatter plots, circle size represents the altitude of each 
sampling site. Additionally, inset graphs show the relationship between the respective response 
variable and elevation using the LOESS function as implemented in the ggplot2 (Wickham, 
2016) R package, for displaying purposes. Regression lines and 95% confidence intervals are 
represented in dark and light grey, respectively. Circle colour represents the different forest 
habitats: Pb, Pinus brutia (light green); Qa, Quercus alnifolia (orange); Cb, Cedrus brevifolia 
(blue); Pn, Pinus nigra (black); Jn, Juniperus foetidissima (purple). 
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APPENDIX I - SUPPLEMENTAL METHODS 

 

Read-abundance filtering in METAMATE 
 
The average number of raw reads per sample after demultiplexing was 158,262 (SD = 25,865). 
Once raw reads were quality filtered and dereplicated in VSEARCH v.2.9.1 (Rognes, Flouri, 
Nichols, Quince, & Mahé, 2016) (see Table S2), we retained reads of ±2 bp with respect to 
amplicon length as this variation (416-420 bp) is required for the application of posterior 
filterings using the METAMATE v.0.1b18 software (Andújar et al., 2021). After denoising and 
chimera filtering (see Table S2), each sample contained on average 435.8 unique sequences (SD 
= 176.7) resulting in a total of 35,776 ASVs of which 28,499 were taxonomically assigned to 
Acari (6,388), Collembola (4,710) and Coleoptera (17,401). These ASVs were further filtered to 
remove putative nuclear copies of mitochondrial DNA (NUMTs or pseudogenes) and other 
erroneous sequences by applying the METAMATE software. This software allows the application 
of multiple read-abundance filtering strategies and posterior evaluation of their effects on the 
prevalence of known authentic mitochondrial haplotypes and presumed non-mitochondrial 
copies (e.g., those violating the reading frame or expected length, as expected for NUMTs and 
erroneous sequences) in the final filtered dataset. We designated ASVs as either known 
mitochondrial haplotypes or presumed non-authentic sequences on the basis of a reference 
database composed of the NCBI nt collection (accessed November 2020) and a curated 
reference catalogue including 561 previously available sequences corresponding to soil lineages 
of Acari, Collembola and Coleoptera from the Iberian Peninsula (Arribas, Andújar, Salces-
Castellano, Emerson, & Vogler, 2021; Arribas, Andújar, Hopkins, Shepherd, & Vogler, 2016) plus 
344 Sanger sequences of the ‘voucher’ specimens from Cyprus (generated by this study). 
 

We ran find.py Python script in METAMATE with the above-described reference database 
and set the reference-matching arguments as follows: --refmatchpercent 100, --refmatchlength 
350, --dbmatchpercent 100, --dbmatchlength 400. The length-based arguments were set by 
applying the next options: --expectedlength 418 and --percentvariation 0. For the translation-
based filtering, i.e., amino acid translation to identify erroneous sequences, we applied the 
invertebrate mitochondrial genetic code (translation-based argument; --table 5), letting the 
reading frame to be automatically detected. When not specified, the parameters were set as 
default (see https://github.com/tjcreedy/metamate for more details about the different 
options). 

 
We assessed a total of 7,872 different filtering strategies at both across- and within- 

sample levels, and also within clades. ASVs of each taxonomic group (Acari, Collembola and 
Coleoptera) were separately analysed. Specifically, we evaluated a broad range of threshold 
values for a comprehensive suite of filtering procedures based on (a) absolute haplotype 
abundance across the whole dataset [range: 3 - 500], (b) relative haplotype abundance across 
the whole dataset [range: 0.000005 - 4%], (c) relative haplotype abundance across the whole 
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dataset by phylogenetic clade [range: 0.0000025 - 4%], (d) absolute haplotype abundance by 
library [range: 3 - 500], (e) relative haplotype abundance by library [range: 0.000005 - 4%] and 
(f) relative haplotype abundance by library and phylogenetic clade [range: 0.0000025 - 4%]. We 
also evaluated the effect of combinatory filtering resulting from jointly considering (a)+(b), 
(a)+(c), (b)+(c) and (d)+(e), (d)+(f), (e)+(f) criteria, assuming a similar range of threshold values 
as described above. We excluded a given ASV if it did not pass the specified threshold in all 
libraries where it was found. Following Andújar et al. (2021), clades were defined assuming a 
20% divergence threshold on a UPGMA tree reconstructed with F84 model-corrected distances 
(Felsenstein & Churchill, 1996). Distances were calculated on an alignment which was obtained 
in MAFFT (FFT-NS-i method) with 1000 cycles (Katoh & Standley, 2013). 

 
For each filtering strategy, we calculated the ratio of retained estimated non-authentic 

ASVs to the total number of estimated retained ASVs (estimated retained non-authentic ASVs 
plus estimated retained authentic ASVs). For each taxonomic group (Acari, Collembola and 
Coleoptera), we selected the filtering solution that yielded the lowest ratio value (always 0%) 
while maximizing the total number of actual ASVs in the final dataset (Andújar et al., 2021), in 
order to ensure the removal of most erroneous sequences. The best-fit filtering strategy for 
each taxonomic group included the following criteria and threshold values: Acari, (b) relative 
haplotype abundance across the whole dataset [value = 0.0005%] and (c) relative haplotype 
abundance across the whole dataset by phylogenetic clade [value = 0.065%]; Collembola, (d) 
absolute haplotype abundance by library [value = 15] and (f) relative haplotype abundance by 
library and phylogenetic clade [value = 0.03%]; and Coleoptera, (d) absolute haplotype 
abundance by library [value = 300] and (f) relative haplotype abundance by library and 
phylogenetic clade [value = 0.15%]. Finally, the dump.py Python script was used to generate the 
sequence file containing only the METAMATE-filtered haplotypes that passed the abundance 
thresholds, as specified by the best-fit filtering solutions. After examining these sequence files, 
we found no presence of stop codons or unexpected amplicon lengths. 

 
Once the METAMATE filtering was completed, we used VSEARCH (Rognes et al., 2016) to 

generate a read-count community table of the METAMATE-filtered haplotypes by matching them 
against the raw read dataset (before dereplicating, length filtering and denoising; see Table S2). 
The read-count community table was further filtered by removing those ASVs showing 
abundances of 2 or fewer reads and also those whose contribution to the total number of reads 
per taxonomic group and library was lower than 1%. After completing the read processing and 
filtering pipeline, there were recalcitrant sequences remaining in the negative controls, which 
were absent or presented very low-abundance in any given actual sample, and were thus 
removed completely from the dataset (see Taberlet, Bonin, Zinger, & Coissac, 2018). Filtered 
read-count community tables were converted to presence/absence tables. 
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Digital elevation model (DEM) and weighted topographic distances 

 
We obtained a digital elevation model (DEM) at 90 meters resolution in GeoTIFF format from 
the CGIAR-CSI GeoPortal (Jarvis, Reuter, Nelson, & Guevara, 2008; https://srtm.csi.cgiar.org). 
This DEM is derived from the NASA´s Shuttle Radar Topographic Mission (SRTM) data 
distributed by the United States Geological Survey (USGS), which has been processed to fill data 
voids using interpolation methods in order to produce a continuous topographic surface. 
 

Given the high topographic complexity of the study region, we did not rely on Euclidean 
geographic distances among sampling sites, but we calculated the weighted topographic 
distance between each pair of sampling sites using the ‘topoWeightedDist’ function from the 
package topoDistance (Wang, 2020) in R (R Core Team, 2020). Topographic distances account 
for the additional overland distance covered by an organism due to elevation changes imposed 
by topographic relief. The coordinates of the sampling sites and the previously described DEM 
were used as inputs. We calculated the weighted topographic distances using a linear function 
to weight aspect changes (hFunction parameter) and an exponential function to weight the 
slope (vFunction parameter), as recommended by Wang (2020). This assumes that the 
energetic cost to traverse a slope varies exponentially with the change in angle. 
 
WorldClim and ENVIREM variables 

 
We downloaded near current (1970-2000) climate data at 30-arcseconds (~1 km) resolution 
from WorldClim v.2.1 (Fick & Hijmans, 2017; https://www.worldclim.org/). We obtained 
climate data for monthly average, minimum, and maximum temperature and monthly 
precipitation, and the 19 standard WorldClim bioclimatic variables. Additionally, we 
downloaded the 30-arcseconds DEM that was specifically used to produce the WorldClim 
dataset. 
 

We interpolated climate raster variables to downscale the WorldClim data to a finer 
resolution (90 meters), which allowed us to distinguish the closest sampling sites in terms of 
their environmental profiles since the WorldClim data are not spatially detailed enough to 
account for the spatial heterogeneity of such a mountainous terrain (Poggio, Simonetti, & 
Gimona, 2018). We used the available elevation data at 90 m resolution as an independent 
variable to interpolate temperature and precipitation rasters. The interpolation models utilized 
here were similar to those used by the authors of the WorldClim data set, that include elevation 
as an independent variable to fit thin-plate spline interpolations of temperature and 
precipitation variables (Fick & Hijmans, 2017; see Figure S1 in their supplementary material). 
Firstly, we fitted thin-plate spline surfaces to the original 30-arcsecond resolution raster data, 
with the elevation from the 30-arcsecond DEM of WorldClim as an independent covariate, 
using the ‘fastTps’ function from the fields R package (Nychka, Furrer, Paige, & Sain, 2017). This 
function uses a compactly supported Wendland covariance, and we set its θ scale parameter to 
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5 geographical miles (about 5 arcminutes). This parameter is the tapering range that is passed 
to the Wendland compactly supported covariance, and larger values make this model closer to 
a standard thin-plate spline model. We used the ‘fastTpsMLE’ function to estimate the 
smoothing parameter lambda (λ) from the data. We selected the ‘fastTps’ function instead of 
the standard ‘Tps’ function because the former was computationally faster and produced 
qualitatively similar results to the standard one in preliminary runs. Secondly, we generated 90 
meters resolution raster data from these thin-plate spline surfaces and the 90 m resolution 
DEM with the ‘interpolate’ function in the raster R package (Hijmans, 2020). We did this for all 
monthly temperature and precipitation variables and for six selected bioclimatic variables: BIO1 
(annual mean temperature), BIO5 (maximum temperature of warmest month), BIO6 (minimum 
temperature of coldest month), BIO12 (annual precipitation), BIO16 (precipitation of wettest 
quarter), and BIO17 (precipitation of driest quarter). 

 
We used the 90 m resolution DEM and the interpolated monthly temperature and 

precipitation data to calculate three environmental and one topographic variable of the 
ENVIREM dataset (Title & Bemmels, 2018, and references therein) at the required resolution: 
climatic moisture index (CMI), Thornthwaite aridity index (TAI), topographic wetness index 
(TWI), and terrain roughness index (TRI). CMI is a metric of relative wetness and aridity, 
computed as the ratio of annual precipitation to annual potential evapotranspiration 
(Vörösmarty, Douglas, Green, & Revenga, 2005; Willmott & Feddema, 1992). TAI is a measure 
of the degree of water deficit below water need (Thornthwaite, 1948). TWI quantifies water 
flow over the topography and is correlated with soil attributes such as organic matter and 
horizon depth (Böehner et al., 2002; Conrad et al., 2005; Title & Bemmels, 2018). TWI provides 
information which is not correlated with elevation and can be used to characterize sites that 
are located in the same area, and thus with similar regional climate, but differ in soil conditions 
owing to their position within a watershed (Title & Bemmels, 2018). TRI is an index of terrain 
variability summarizing local variation to surface morphology (Wilson, O’Connell, Brown, 
Guinan, & Grehan, 2017), being used as a surrogate for topographic complexity, habitat 
heterogeneity and microsite availability (Title & Bemmels, 2018). 

 
We used the 90 m resolution DEM to estimate the TWI from the DEM using SAGA v.2.1.4 

(Conrad et al., 2015), and the TRI using the ‘terrain’ function from the raster R package. In order 
to calculate the climatic moisture index (CMI) and Thornthwaite aridity index (TAI) at the 
required resolution (90 meters), we first estimated annual potential evapotranspiration (PET) 
using the ‘monthlyPET’ function from the envirem R package (Title & Bemmels, 2018). This 
function calculates the potential evapotranspiration from the monthly mean temperature, 
temperature range and the extraterrestrial solar radiation. The extraterrestrial solar radiation 
can be generated with the ‘ETsolradRasters’ function from the envirem R package. Following 
Title and Bemmels (2018), the solar radiation was estimated for the year 1990 and the annual 
PET was calculated as the sum of the monthly values. The Thornthwaite aridity index was 
generated using the ‘aridityIndexThornthwaite’ function from the monthly precipitation and 
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monthly PET data. The CMI was calculated using the ‘climaticMoistureIndex’ function from the 
annual PET and the annual precipitation (sum of the monthly values), both functions 
implemented in the envirem R package (Title & Bemmels, 2018, see references therein). 
 
Isolation by resistance (IBR) scenarios of landscape connectivity 

 
Given that the Golden Oak - Quercus alnifolia (Qa) is an endemic species to Cyprus (also known 
as the national tree of the country) and its habitat (EU priority habitat type 9390) is protected 
by European legislation (listed in the Annex I of Habitat Directive, 92/43/EEC), the exact 
distribution and limits of its highly fragmented forest patches along the Troodos mountain 
range have been mapped at a fine scale by the local Department of Forests (Ministry of 
Agriculture, Rural Development and Environment, Republic of Cyprus). This available 
information on the Quercus alnifolia (Qa) forest patches allowed us to implement an isolation-
by-resistance (IBR) approach to assess the effect of habitat fragmentation on β diversity 
patterns of the soil microarthropod communities. To this end, the digital cartography delimiting 
the geographic distribution of Quercus alnifolia (Qa) habitat fragments was obtained upon 
request from the Department of Forests (https://www.data.gov.cy/). The shapefile was 
carefully examined for inconsistencies using Google satellite imagery in ARCGIS v.10.3 (ESRI, 
Redlands, CA, USA). After some minor corrections regarding the edge location of specific small 
patches located in well-known areas by the authors, the shapefile was converted to a raster 
layer using the ‘rasterize’ function in the raster R package (Hijmans, 2020) and a cell size of 90 
m. This raster file was further examined for potential errors in patch edges as a result of the 
rasterizing process. 
 

For the IBR analyses, cells classified as Quercus alnifolia (Qa) were assigned a resistance 
value of 1. In order to assign an appropriate resistance value to non-Quercus cells, we explored 
a range of values and selected the one that best explained the variation of our response 
variables (for a similar approach, see Noguerales, Cordero, Knowles, & Ortego, 2021). 
Specifically, we generated 10 alternative models by assigning to non-Quercus cells increasing 
resistance values (from 5 to 1,000,000) using the ‘reclassify’ function in the raster R package. 
Then, we used univariate matrix regression with randomization (MRR; Wang, 2013) to evaluate 
the significance of each alternative model and the one showing the highest coefficient of 
determination (R2) was selected for downstream analyses. Community dissimilarity matrices 
based on the Simpson dissimilarity index (βSIM) at ASV and OTU levels were considered as 
response variables in these landscape sensitivity analyses. 

 
 Additionally, we constructed two alternative IBR scenarios considering (i) the 
topographic complexity of the study area as calculated using the topographic roughness index 
(TRIIBR), and (ii) a “flat landscape” with all cells assigned an equal resistance (=1) value (NULLIBR). 
The terrain roughness index (TRI) per cell was estimated based on the 90 m resolution DEM 
using the ‘terrain’ function from the raster R package, as explained above. The “flat landscape” 
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scenario (NULLIBR) is considered as a proxy of classical Euclidean distances between geographic 
points that has proven to be appropriate for comparisons with competing IBR models using a 
circuit theory framework (Jha & Kremem, 2013; Noguerales, Ortego, & Cordero, 2017; Velo-
Antón, Parra Parra-Olea, & Zamudio, 2013). 
 

Finally, we calculated pairwise resistance distances between Quercus alnifolia (Qa) 
sampling points (n = 11) based on each IBR scenario using CIRCUITSCAPE v.4.0.5 (McRae, 2006; 
McRae & Beier, 2007), an eight-neighbor cell connection scheme, and average resistance for 
connections between cells. All raster data used to generate the above IBR scenarios were at 90 
meters of resolution. 
 
Statistical analyses 

 
Principal coordinates of neighbour matrices (PCNM) 
 
The topographic weighted distance matrix was transformed into spatial predictors using 
principal coordinates of neighbour matrices (PCNM), an approach allowing to transform 
distances to rectangular data that are suitable for constrained ordination or regression (Borcard 
& Legendre, 2002; Dray, Legendre, & Peres-Neto, 2006). Resulting PCNM eigenvectors are 
known to be robust predictors to describe both simple and complex spatial patterns across 
different geographic scales (Jones et al., 2008). In order to avoid an overrepresentation of 
spatial variables in posterior analyses owing to the high number of PCNM eigenvectors 
retrieved (up to 24 axes in our case), we ran a preliminary dbRDA (Legendre & Anderson, 1999) 
using the PCNM eigenvectors as explanatory terms and applied a forward selection procedure 
using the ‘ordistep’ function in the vegan R package (for a similar approach, see Peres-Neto & 
Legendre, 2010; Zinger et al., 2019). PCNM eigenvectors were independently selected for each 
spatial (across-habitats and within-habitat) and genetic similarity (ASVs and OTUs) scale using 
the respective community dissimilarity matrix (βSIM). Only the PCNM eigenvectors remaining in 
the final model were considered for posterior analyses (dbRDA and mvGLMs).  
 
Generalized linear mixed models (GLMMs) 
 
We used generalized linear mixed models (GLMMs) and an information-theoretic model 
selection approach (Burnham & Anderson, 2002) to analyse the relationship between average 
richness per site (α diversity, RICH) or local contribution to β diversity (LCBD) per site and the 
topoclimatic variables (ENVPC1 and ENVPC2) as predictors, with latitude and longitude as 
covariates. GLMMs were fitted using a Gaussian error distribution and an identity link function. 
Forest habitat type (categorical predictor, HAB) was initially fitted in all models as a random 
effect in order to account for the potential non-independence among samples from the same 
forest habitat. 
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We fitted GLMMs using the maximum likelihood (ML) method, instead of using the 
restricted maximum likelihood (REML) approach, as recommended when a model selection 
approach is followed (Bolker et al., 2009; Bunnefeld & Phillimore, 2012; Harrison et al., 2018). 
We assessed the variance of the random effect in all GLMMs, and when its value was zero or 
nearly zero as indicative of a poor model fit and no influence of random effect on the variation 
of the response variable, we applied generalized linear models (GLMs) using a Gaussian error 
distribution and an identity link function. We analyzed the collinearity among predictors by 
means of variance inflation factor (VIF) and ensured none of them showed VIF >10. 

 
The goodness of fit of the models was evaluated using AICc (Akaike’s information 

criterion, adjusted for small samples). Best ranked equivalent models (ΔAICC ≤2) were full-
averaged and the unconditional 95% confidence intervals (CI) of their estimators were 
estimated. The effect of variables was considered as consistent and significant if the 95 % 
confidence interval (CI) of its estimator excluded the value 0 (Burnham & Anderson, 2002). We 
calculated the marginal (R2m) and conditional (R2c) coefficients of determination for each final 
model including only predictors considered significant. These statistics represent the variance 
explained by the fixed effects (R2m) and by the entire model including both fixed and random 
effects (R2c). The R2c estimator was not calculated in those cases where model fitting was 
conducted using GLMs, as random effects had no influence on the response variable. 
GLMMs/GLMs were built using ‘lmer’ and ‘glm’ functions in the lme4 R package (Bates, 
Maechler, Bolker, & Walker, 2015). Model selection and averaging were performed using 
‘dredge’, ‘model.sel’, ‘model.avg’, ‘par.avg’ and ‘r.squaredGLMM’ functions in the MuMIn R 
package (Barton, 2015). 
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