References
Chaderjian WB, Chin ET, Harris RJ, and Etcheverry T. (2005). Effect of Copper Sulfate on Performance of a serium-free CHO cell Culture Process and the level of free Thiol in the Recombinant Antibody Expressed. Biotechnol Prog 2005, 21, 550-553.
Chung WK, Russell B, Yang YH, Handlogten M, Hudak S, Cao M, Wang J, Robbines D, Ahuja S, Zhu M. (2017). Effects of Antibody Disulfide Bond Reduction on purification Process performance and Final Drug Substance Stability. Biotechnology and Bioengineering Vol. 114, No. 6. 1264-1274. DOI:10.1002/bit.26265
Dombkowski AA, Sultana KZ, Craig DB. (2014). Protein disulfide engineering. Federation of European Biochemical Societies (FEBS) 588, 206-212. DOI:10.1016/j.febslet.2013.11.024
Du C, Huang Y, Borwankar A, Tan Z, Cura A, Yee JC, Singh N, Ludwig R, Borys M, Ghose S, Mussa N, Li ZJ. (2018). Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process. mAbs 10:3, 500-510. DOI:10.1080/19420862.2018.1424609
Gurjar SA, Wheeler JX, Wadhwa M, Thorpe R, Kimber I, Derrick3 JP, Dearman RJ and Metcalfe C. (2019). The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. The Journal of Biological Chemistry 294, 19616-19634. DOI: 10.1074/jbc.RA119.010637
Hutterer KM, Hong RW, Lull J, Zhao X, Wang T, Pei R, Le ME, Borisov O, Piper R, Liu YD, Petty K, Apostol L & Flynn GC. (2013). Monoclonal antibody disulfide reduction during manufacturing. mAbs 5:4, 608-613. DOI: 10.4161/mabs.24725
Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW. (2010). Mechanism of Antibody Reduction in Cell Culture Production Processes. Biotechnology and Bioengineering Vol. 107, 622-632. DOI: 10.1002/bit.22848
Koterba KL, Borgschulte T, Laird MW. (2012). Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture. Journal of Biotechnology 157, 261-267. DOI: 10.1016/j.jbiotec.2011.11.009
Liu HC and May K. (2012). Disulfide bond structures of IgG molecules. mAbs 4:1. 17-23. DOI: 10.4161/mAbs.4.1.18347
Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K and Radziejewski CH. (2010). Ranking the susceptibility of disulfide bonds in Human IgG1 antibodies by reduction, differential Alkylation, and LC-MS Analysis. Anal. Chem. 2010, 82(12), 5219-5226
Mullan B, Dravis B, Lim A, Clarke A, Janes S, Lambooy P, Olson D, O’Riordan T, Ricart B, Tulloch AG. (2011). Disulfide bond reduction of a therapeutic monoclonal antibody during cell culture manufacturing operations. BMC Proceedings 2011, 5(Suppl 8):P110.
Mun M, Khoo S, Minh AD, Dvornicky J, Trexler-Schmidt M, Kao YH, Laird MW. (2015). Air Sparging for Prevention of Antibody Disulfide Bond Reduction in Harvested CHO Cell Culture Fluid. Biotechnol Bioeng 122 (4); 734-742. DOI: 10.1002/bit.25495
Ruaudel J, Bertschinger M, Letestu S, Giovannini R, Wassmann P, Moretti P. (2015). Antibody disulfide bond reduction during process development: insight using a scale-down model process. BioMed Central Proceedings 9(suppl 9): P24. http://www.biomedcentral.com/1753-6561/9/S9/P24
Trexler-Schmidt M , Sargis S , Chiu J , Sze-Khoo S , Mun M , Kao YH , Laird MW. (2010). Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnology and Bioengineering Vol. 106, 452-461. DOI: 10.1002/bit.22699
Wang S, Kaltashov IA. (2015). Identification of Reduction-susceptible Disulfide Bonds in transferrin by differential Alkylation Using O16/O18 labeled Iodoacetic acid. J. Am. Soc. Mass Spectrom 26: 800-807. DOI: 10.1007/s13361-015-1082-5
Wang T, Liu YD, Cai B, Huang G, Flynn GC. (2015). Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities. Journal of Pharmaceutical and Biomedical Analysis 102, 519-528. DOI: 10.1016/j.jpba.2014.10.023
Figure 1 . TrxR activities in the supernatant of CCF, the low-pressure fraction (< 0.8 bar), the high-pressure fraction (> 0.8 bar) and the flush of the depth filtration of the molecule 1 cell culture
Figure 2 . TrxR activities in the low-pressure fraction (< 0.8 bar), the high-pressure fraction (> 0.8 bar) the flush of the depth filtration, and the cell lysate of the molecule 2 cell culture
Figure 3 . NADPH concentration in the low-pressure fraction (< 0.8 bar), the high-pressure fraction (> 0.8 bar), the flush of the depth filtration, and the cell lysate of the molecule 2 cell culture
Figure 4 . The non-reduced SDS-PAGE of molecule2 incubated in cell lysates with different NADPH concentrations. Lane: 1. Marker; 2. Reduction by DTT; 3. NADPH >1.5 μM cell lysate; 4. NADPH 1.0 μM cell lysate; 5. NADPH 0.5 μM cell lysate. Reduction by DTT was used as a positive control.
Figure 5 . NADPH concentration in the cell lysates and the supernatants of CCF of five recombinant molecules
Figure 6 : NADPH concentration in cell lysates of three recombinant molecules on different culture days.
Figure 7 . NADPH concentration in the cell lysate of the seed, the cell lysate at harvest, and the supernatant of the CCF.