References
Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data 5 (1): 170191 DOI: 10.1038/sdata.2017.191
Angelaki V, Harbor JM. 1995. Impacts of Flow Diversion for Small Hydroelectric Power Plants on Sediment Transport, Northwest Washington.Physical Geography 16 (5): 432–443 DOI: 10.1080/02723646.1995.10642564
Aryal Y, Zhu J. 2020. Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique.Journal of Hydrology 585 : 124746 DOI: 10.1016/j.jhydrol.2020.124746
Bogen J. 1989. Glacial Sediment Production and Development of Hydro-Electric Power in Glacierized Areas. Annals of Glaciology13 : 6–11 DOI: 10.3189/S0260305500007539
Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion.Nature Communications 8 : 2013 DOI: 10.1038/s41467-017-02142-7
Buchner J, Yin H, Frantz D, Kuemmerle T, Askerov E, Bakuradze T, Bleyhl B, Elizbarashvili N, Komarova A, Lewińska KE, et al. 2020. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sensing of Environment 248 : 111967 DOI: 10.1016/j.rse.2020.111967
Buishand TA. 1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology 58 (1): 11–27 DOI: 10.1016/0022-1694(82)90066-X
Byers AC, Rounce DR, Shugar DH, Lala JM, Byers EA, Regmi D. 2019. A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal.Landslides 16 (3): 533–549 DOI: 10.1007/s10346-018-1079-9
Carretier S, Regard V, Vassallo R, Aguilar G, Martinod J, Riquelme R, Pepin E, Charrier R, Hérail G, Farías M, et al. 2013. Slope and climate variability control of erosion in the Andes of central Chile.Geology 41 (2): 195–198 DOI: 10.1130/G33735.1
Chalov S, Terskii P, Efimova L, Terskaya A, Efimov V, Danilovich I, Koval M. 2019. Problems of hydrological monitoring in transboundary rivers of Eastern Europe (on the example of the Western Dvina).Engineering survey 13 (1): 32–45 DOI: 10.25296/1997-8650-2019-13-1-32-44
Costa A, Anghileri D, Molnar P. 2018. Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach. Hydrology and Earth System Sciences 22 (6): 3421–3434 DOI: https://doi.org/10.5194/hess-22-3421-2018
Cox R, Zentner DB, Rakotondrazafy AFM, Rasoazanamparany CF. 2010. Shakedown in Madagascar: Occurrence of lavakas (erosional gullies) associated with seismic activity. Geology 38 (2): 179–182 DOI: 10.1130/G30670.1
Csiki S, Rhoads BL. 2010. Hydraulic and geomorphological effects of run-of-river dams. Progress in Physical Geography: Earth and Environment 34 (6): 755–780 DOI: 10.1177/0309133310369435
Dearing JA, Jones RT. 2003. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records.Global and Planetary Change 39 (1): 147–168 DOI: 10.1016/S0921-8181(03)00022-5
Dearing JA, Battarbee RW, Dikau R, Larocque I, Oldfield F. 2006. Human–environment interactions: learning from the past. Regional Environmental Change 6 (1): 1–16 DOI: 10.1007/s10113-005-0011-8
Dokukin M, Bekkiev M, Kalov R, Chernomorets S, Savernyuk E. 2020. Activation of rock avalanches in the Central Caucasus and their impact on the dynamics of glaciers and debris flows. Ice and Snow60 (3): 361–378 DOI: 10.31857/S2076673420030045
Dusar B, Verstraeten G, Notebaert B, Bakker J. 2011. Holocene environmental change and its impact on sediment dynamics in the Eastern Mediterranean. Earth-Science Reviews 108 (3): 137–157 DOI: 10.1016/j.earscirev.2011.06.006
Fel’dman BN. 1985. Hydropower engineering of the Northern Caucasus.Hydrotechnical Construction 19 (3): 124–129 DOI: 10.1007/BF01429086
Fischer T, Gemmer M, Liu L, Su B. 2012. Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007.Climatic Change 110 (3): 783–799 DOI: 10.1007/s10584-011-0123-8
Galy V, Peucker-Ehrenbrink B, Eglinton T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature521 (7551): 204–207 DOI: 10.1038/nature14400
Gao P, Mu X-M, Wang F, Li R. 2011. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences 15(1): 1–10 DOI: https://doi.org/10.5194/hess-15-1-2011
Gao P, Zhang X, Mu X, Wang F, Li R, Zhang X. 2010. Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950–2005. Hydrological Sciences Journal55 (2): 275–285 DOI: 10.1080/02626660903546191
García-Ruiz JM. 2010. The effects of land uses on soil erosion in Spain: A review. CATENA 81 (1): 1–11 DOI: 10.1016/j.catena.2010.01.001
Golosov V, Yermolaev O, Litvin L, Chizhikova N, Kiryukhina Z, Safina G. 2018. Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degradation & Development 29 (8): 2658–2667 DOI: 10.1002/ldr.3061
Golosov VN, Ivanov MM, Tsyplenkov AS, Ivanov MA, Konoplev AV, Wakiyama Y, Konstantinov EA, Ivanova NN. 2021. Erosion as a Factor of Transformation of Soil Radioactive Contamination in the Basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Science54 (2): 291–303 DOI: 10.1134/S106422932102006X
Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, Munteanu C, Ostapowicz K, Hostert P. 2014. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites.Remote Sensing of Environment 151 : 72–88 DOI: 10.1016/j.rse.2013.04.022
Gusarov AV, Sharifullin AG, Komissarov MA. 2021. Contemporary Long-Term Trends in Water Discharge, Suspended Sediment Load, and Erosion Intensity in River Basins of the North Caucasus Region, SW Russia.Hydrology 8 (1): 28 DOI: 10.3390/hydrology8010028
Harmel D, Cooper J, Slade M, Haney R, Arnold G. 2006. Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Transactions of the ASABE 49 (3): 689–701 DOI: 10.13031/2013.20488
Hartvigsen M. 2014. Land reform and land fragmentation in Central and Eastern Europe. Land Use Policy 36 : 330–341 DOI: 10.1016/j.landusepol.2013.08.016
Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34 (3): 807–816 DOI: 10.1016/S0043-1354(99)00225-0
Hoffmann T, Thorndycraft VR, Brown AG, Coulthard TJ, Damnati B, Kale VS, Middelkoop H, Notebaert B, Walling DE. 2010. Human impact on fluvial regimes and sediment flux during the Holocene: Review and future research agenda. Global and Planetary Change 72 (3): 87–98 DOI: 10.1016/j.gloplacha.2010.04.008
Ioffe G, Nefedova T, Zaslavsky I. 2004. From Spatial Continuity to Fragmentation: The Case of Russian Farming. Annals of the Association of American Geographers 94 (4): 913–943 DOI: 10.1111/j.1467-8306.2004.00441.x
Ivanov MM, Konoplev AV, Walling DE, Konstantinov EA, Gurinov AL, Ivanova NN, Kuzmenkova NV, Tsyplenkov AS, Ivanov MA, Golosov VN. 2021. Using reservoir sediment deposits to determine the longer-term fate of chernobyl-derived 137Cs fallout in the fluvial system.Environmental Pollution 274 : 116588 DOI: 10.1016/j.envpol.2021.116588
Jackson JE. 2003. A user’s guide to principal components . Wiley-Interscience: Hoboken, N.J.
Jeffery ML, Yanites BJ, Poulsen CJ, Ehlers TA. 2014. Vegetation-precipitation controls on Central Andean topography.Journal of Geophysical Research: Earth Surface 119 (6): 1354–1375 DOI: 10.1002/2013JF002919
Jennings KS, Winchell TS, Livneh B, Molotch NP. 2018. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere.Nature Communications 9 (1): 1148 DOI: 10.1038/s41467-018-03629-7
Kasper D, Fernandes Amaral JH, Rider Forsberg B. 2018. The effect of filter type and porosity on total suspended sediment determinations.Analytical Methods 10 (46): 5532–5539 DOI: 10.1039/C8AY02134A
Kennedy VC, Zellweger GW, Jones BF. 1974. Filter pore-size effects on the analysis of Al, Fe, Mn, and Ti in water. Water Resources Research 10 (4): 785–790 DOI: https://doi.org/10.1029/WR010i004p00785
Kireeva M, Frolova N, Rets E, Samsonov T, Entin A, Kharlamov M, Telegina E, Povalishnikova E. 2020. Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period. International Journal of River Basin Management 18 (4): 491–502 DOI: 10.1080/15715124.2019.1695258
Kondolf GM. 1997. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environmental Management 21 (4): 533–551 DOI: 10.1007/s002679900048
Kundzewicz ZW, Robson AJ. 2004. Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques.Hydrological Sciences Journal 49 (1): 7–19 DOI: 10.1623/hysj.49.1.7.53993
Lesiv M, Schepaschenko D, Moltchanova E, Bun R, Dürauer M, Prishchepov AV, Schierhorn F, Estel S, Kuemmerle T, Alcántara C, et al. 2018. Spatial distribution of arable and abandoned land across former Soviet Union countries. Scientific Data 5 (1): 180056 DOI: 10.1038/sdata.2018.56
Li L, Ni J, Chang F, Yue Y, Frolova N, Magritsky D, Borthwick AGL, Ciais P, Wang Y, Zheng C, et al. 2020. Global trends in water and sediment fluxes of the world’s large rivers. Science Bulletin 65(1): 62–69 DOI: 10.1016/j.scib.2019.09.012
Liuzzo L, Bono E, Sammartano V, Freni G. 2017. Long-term temperature changes in Sicily, Southern Italy. Atmospheric Research198 : 44–55 DOI: 10.1016/j.atmosres.2017.08.007
Lizaga I, Quijano L, Palazón L, Gaspar L, Navas A. 2018. Enhancing Connectivity Index to Assess the Effects of Land Use Changes in a Mediterranean Catchment. Land Degradation & Development29 (3): 663–675 DOI: https://doi.org/10.1002/ldr.2676
Marks M. 2020. ChangePointTaylor: Identify Changes in Mean . Available at: https://CRAN.R-project.org/package=ChangePointTaylor
Mavromatis T, Stathis D. 2011. Response of the water balance in Greece to temperature and precipitation trends. Theoretical and Applied Climatology 104 (1): 13–24 DOI: 10.1007/s00704-010-0320-9
Moatar F, Person G, Meybeck M, Coynel A, Etcheber H, Crouzet P. 2006. The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Science of The Total Environment 370 (2): 515–531 DOI: 10.1016/j.scitotenv.2006.07.029
Molnar P, Anderson RS, Anderson SP. 2007. Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research: Earth Surface112 (F3) DOI: 10.1029/2005JF000433
Montanher OC, Novo EML de M, Filho EE de S. 2018. Temporal trend of the suspended sediment transport of the Amazon River (1984–2016).Hydrological Sciences Journal 63 (13–14): 1901–1912 DOI: 10.1080/02626667.2018.1546387
Montgomery DR. 2007. Soil erosion and agricultural sustainability.Proceedings of the National Academy of Sciences 104(33): 13268–13272 DOI: 10.1073/pnas.0611508104
Moore RD, Fleming SW, Menounos B, Wheate R, Fountain A, Stahl K, Holm K, Jakob M. 2009. Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrological Processes 23 (1): 42–61 DOI: https://doi.org/10.1002/hyp.7162
Onyutha C. 2016. Statistical Uncertainty in Hydrometeorological Trend Analyses. Advances in Meteorology 2016 : e8701617 DOI: 10.1155/2016/8701617
Oost KV, Quine TA, Govers G, Gryze SD, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, et al. 2007. The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science318 (5850): 626–629 DOI: 10.1126/science.1145724
Oswood MW, Milner AM, Irons JG. 1992. Climate Change and Alaskan Rivers and Streams. In Global Climate Change and Freshwater Ecosystems , Firth P, , Fisher SG (eds).Springer: New York, NY; 192–210. DOI: 10.1007/978-1-4612-2814-1_9
Pettitt AN. 1979. A Non-Parametric Approach to the Change-Point Problem.Journal of the Royal Statistical Society: Series C (Applied Statistics) 28 (2): 126–135 DOI: https://doi.org/10.2307/2346729
Poesen J. 2018. Soil erosion in the Anthropocene: Research needs: Soil erosion in the Anthropocene. Earth Surface Processes and Landforms 43 (1): 64–84 DOI: 10.1002/esp.4250
Portenga EW, Bierman PR. 2011. Understanding Earth’s eroding surface with 10Be. GSA Today 21 (8): 4–10 DOI: 10.1130/G111A.1
Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y. 2007. The GLIMS geospatial glacier database: A new tool for studying glacier change. Global and Planetary Change 56 (1–2): 101–110 DOI: 10.1016/j.gloplacha.2006.07.018
Rets EP, Durmanov IN, Kireeva MB, Smirnov AM, Popovnin VV. 2020. Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges.Climatic Change DOI: 10.1007/s10584-020-02931-y
Rets EP, Dzhamalov RG, Kireeva MB, Frolova NL, Durmanov IN, Telegina AA, Telegina EA, Grigoriev VYu. 2018. Recent trends of river runoff in the North Caucasus. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY11 (3): 61–70 DOI: 10.24057/2071-9388-2018-11-3-61-70
Rodrigo-Comino J, Martínez-Hernández C, Iserloh T, Cerdà A. 2018. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 28 (4): 617–631 DOI: 10.1016/S1002-0160(17)60441-7
Salerno F, Thakuri S, D’Agata C, Smiraglia C, Manfredi EC, Viviano G, Tartari G. 2012. Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Global and Planetary Change 92–93 : 30–39 DOI: 10.1016/j.gloplacha.2012.04.001
Shahgedanova M, Popovnin V, Aleynikov A, Petrakov D, Stokes CR. 2007. Long-term change, interannual and intra-seasonal variability in climate and glacier mass balance in the central Greater Caucasus, Russia.Annals of Glaciology 46 : 355–361 DOI: 10.3189/172756407782871323
Solomina O, Bushueva I, Dolgova E, Jomelli V, Alexandrin M, Mikhalenko V, Matskovsky V. 2016. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium.Global and Planetary Change 140 : 28–58 DOI: 10.1016/j.gloplacha.2016.02.008
Steegen A, Govers G. 2001. Correction factors for estimating suspended sediment export from loess catchments. Earth Surface Processes and Landforms 26 (4): 441–449 DOI: https://doi.org/10.1002/esp.196
Syvitski JPM, Milliman JD. 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology 115 (1): 1–19 DOI: 10.1086/509246
Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P. 2005. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean.Science 308 (5720): 376–380 DOI: 10.1126/science.1109454
Tarolli P. 2016. Humans and the Earth’s surface: Humans and the Earth’s surface. Earth Surface Processes and Landforms 41 (15): 2301–2304 DOI: 10.1002/esp.4059
Taylor WA. 2000. Change-point analysis: a powerful new tool for detecting changes
Tielidze LG, Wheate RD. 2018. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere 12 (1): 81–94 DOI: https://doi.org/10.5194/tc-12-81-2018
Toropov PA, Aleshina MA, Grachev AM. 2019. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century.International Journal of Climatology 39 (12): 4703–4720 DOI: https://doi.org/10.1002/joc.6101
Trimble SW. 1999. Decreased Rates of Alluvial Sediment Storage in the Coon Creek Basin, Wisconsin, 1975-93. Science 285(5431): 1244–1246 DOI: 10.1126/science.285.5431.1244
Tsyplenkov A, Vanmaercke M, Collins AL, Kharchenko S, Golosov V. 2021. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: The Djankuat catchment, Caucasus Mountains, Russia. CATENA 203 : 105285 DOI: 10.1016/j.catena.2021.105285
Valderrama Murillo PA, Vilca O. 2012. Dinámica e implicancia del aluvión de la laguna 513, Cordillera Blanca, Ancash, Perú. Repositorio Institucional INGEMMET Available at: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/692 [Accessed 1 June 2021]
Vanacker V, Bellin N, Molina A, Kubik PW. 2014. Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model.Landscape Ecology 29 (2): 293–309 DOI: 10.1007/s10980-013-9956-z
Vanmaercke M, Ardizzone F, Rossi M, Guzzetti F. 2017. Exploring the effects of seismicity on landslides and catchment sediment yield: An Italian case study. Geomorphology 278 : 171–183 DOI: 10.1016/j.geomorph.2016.11.010
Vanmaercke M, Kettner AJ, Eeckhaut MVD, Poesen J, Mamaliga A, Verstraeten G, Rãdoane M, Obreja F, Upton P, Syvitski JPM, et al. 2014a. Moderate seismic activity affects contemporary sediment yields.Progress in Physical Geography: Earth and Environment 38(2): 145–172 DOI: 10.1177/0309133313516160
Vanmaercke M, Obreja F, Poesen J. 2014b. Seismic controls on contemporary sediment export in the Siret river catchment, Romania.Geomorphology 216 : 247–262 DOI: 10.1016/j.geomorph.2014.04.008
Vanmaercke M, Poesen J, Govers G, Verstraeten G. 2015. Quantifying human impacts on catchment sediment yield: A continental approach.Global and Planetary Change 130 : 22–36 DOI: 10.1016/j.gloplacha.2015.04.001
Vanmaercke M, Poesen J, Maetens W, de Vente J, Verstraeten G. 2011. Sediment yield as a desertification risk indicator. Science of The Total Environment 409 (9): 1715–1725 DOI: 10.1016/j.scitotenv.2011.01.034
de Vente J, Poesen J, Verstraeten G, Govers G, Vanmaercke M, Van Rompaey A, Arabkhedri M, Boix-Fayos C. 2013. Predicting soil erosion and sediment yield at regional scales: Where do we stand?Earth-Science Reviews 127 : 16–29 DOI: 10.1016/j.earscirev.2013.08.014
Verhaegen Y, Huybrechts P, Rybak O, Popovnin VV. 2020. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE.The Cryosphere 14 (11): 4039–4061 DOI: 10.5194/tc-14-4039-2020
Walling DE. 1983. The sediment delivery problem. Journal of Hydrology 65 (1): 209–237 DOI: 10.1016/0022-1694(83)90217-2
Walling DE. 1988. Erosion and sediment yield research — Some recent perspectives. Journal of Hydrology 100 (1): 113–141 DOI: 10.1016/0022-1694(88)90183-7
Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change 39(1): 111–126 DOI: 10.1016/S0921-8181(03)00020-1
Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351 (6269) DOI: 10.1126/science.aad2622
Waters CN, Zalasiewicz JA, Williams M, Ellis MA, Snelling AM. 2014. A stratigraphical basis for the Anthropocene? Geological Society, London, Special Publications 395 (1): 1–21 DOI: 10.1144/SP395.18
Wei X, Zhang M. 2010. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study.Water Resources Research 46 (12) DOI: https://doi.org/10.1029/2010WR009250
Williams GP, Rosgen DL. 1989. Measured total sediment loads (suspended loads and bedloads) for 93 United States streams. 89–67. U.S. Geological Survey. DOI: 10.3133/ofr8967
Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015. A global boom in hydropower dam construction. Aquatic Sciences 77(1): 161–170 DOI: 10.1007/s00027-014-0377-0
Zhang F, Shi X, Zeng C, Wang L, Xiao X, Wang G, Chen Y, Zhang H, Lu X, Immerzeel W. 2020. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau. Science Bulletin 65 (5): 410–418 DOI: 10.1016/j.scib.2019.12.017
Zhang S, Lu XX, Higgitt DL, Chen C-TA, Han J, Sun H. 2008. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change 60 (3): 365–380 DOI: 10.1016/j.gloplacha.2007.04.003