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Abstract: The Sawada-Kotera equations illustrate the non-linear wave phenomena in shallow water,
ion-acoustic waves in plasmas, fluid dynamics, etc. In this article, the two-mode Sawada-Kotera equa-
tion (tmSKE) occurring in fluid dynamics is addressed. The improved F-expansion and generalized
exp(−φ(ζ))-expansion methods are utilized in this model and abundant of solitary wave solutions of
different kinds such as bright and dark solitons, multi-peak soliton, breather type waves, periodic so-
lutions, and other wave results are obtained. These achieved abundant novel solitary and other wave
results have significant applications in fluid dynamics, applied sciences and engineering. By granting
appropriate values to parameters, the structures of few results are presented in which many structures
are novel. The graphical moments of few solutions help the engineers and scientists for understanding
the physical phenomena of this model. To explain the novelty between the present results and the
previously attained results, a comparative study has been carried out. Furthermore, the executed
techniques can be employed for further studies to explain the realistic phenomena arising in fluid
dynamics correlated with any physical and engineering problems.
Keywords: Improve F-expansionjmethod; Generalized exp(−φ(ζ))-expansionjmethod; Two-mode
Sawada-Kotera equation; Traveling and dual wave solutions, breather waves, Periodic solitons.

1 Introduction

The dynamic complexity of physical phenomena in the real world can be expressed by the
changes in temporal and spatial events. The temporal and spatial changes of physical phenomena
are greatest articulated by partial differential equations (PDEs). The nonlinear PDEs are utilized for
expressing various physicaljphenomena in the real world. Nonlinear wave phenomena emerge in plasma
physics, fluid mechanics, solid-state physics, dynamics of chemical, non-linear optics, population model
and other fields of science and engineering [1–11]. The analytical solutions of non-linear PDEs play a
decisive part in non-linear science as they inform us deep imminent into the physicaljcharacteristics of
the model and can provide further physical informations to help in other applications. In recent years,
the approximate and exact results of non-linear PDEs have attracted more and more attention, as they
are utilized to illustrate the complex non-linear phenomena in dissimilar scientific areas. Numerous
real world problems are altered into equations mathematically by differential equations. Thus, the
finding wave results of all kinds of PDEs are a major problem, such as the present direction of non-
linear science, which originated from the research of chemistry, physics, material science, biology and
many more, and has a burly practical backdrop. They have significant realistic applications and
theoretical study in mathematics.

Lately, in terms of time and space derivatives, novel families of nonlinear PDEs have been rec-
ognized in the name of ”dual-mode” or ”two-mode”. With regard to this curiosity, researchers have
established some dual mode nonlinear PDEs, namely two-mode (tm) mKdV [12, 13], tm KdV [7, 14],
tm Sharma-Tasso-Olver [9], tm fifth order KdV [4, 15], two-mode Burger equation (tmBE) [16], tm
Ostrovsky [17], tm perturbed Burger (tmPB) [17], tm KdV Burgers (tmKdVB) [18], tm Kadomt-
sev Petviashvili (tmKP) [19, 20], two-mode dispersive Fisher (tmdF) [21], tm Kuramoto-Sivashinsky
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(tmKS) [22], tm Boussinesq Burgers (tmBB) [23], two-mode coupled KdV (tmKdV) and mKdV (tm-
CmKdV) [24, 25], wo-mode non-linear Schrödinger (tmNLS) [26], and tm Hirota Satsuma coupled
KdV (tmHSKdV) [27] equations and the related dual-wave solutions are analyzed by different meth-
ods, such as Tanh expansion technique, (G′/G)-expansion technique, rational Sine-Cosine technique,
Kudryshov technique, simplified Hirota technique, Tanh-Coth tachnque, Sech-Csch technique, Fourier
spectral technique, Bcklund transformation scheme and Trigonometric function technique [12–27]. As
results, few solitons results in the form Kink, Kinks type of multiple soliton, periodic wave of singular
kind, dark and bright solitons have been conceded out for the aforementioned models.

The researcher Wazwaz [4] developed the tmSKE from the tmfKdV equation, and few multiple
solitons results were determined by the simplified Hirota technique. Later on, the researchers in
[15] investigated the tmfKdV model and established some Kink, bright and periodic solutions in
singular form by sine-cosine function and Kudryashov techniques. The authors in [11] were modified
Kudryashov and auxiliary equation methods, and dual wave solutions were constructed. It should be
pointed out that the tmSKE is a special case of the tmfKdV equation. As far as the author is aware,
although some two-mode PDEs have been extensively studied, the contribution to the above tmSKE is
limited. It can be seen from the literature that there is room for further study of the tmSKE through
the improved F-expansion and generalized exp(−φ(ζ))-expansion methods, as well as the illustrating
their physical explanations. The results executing by the projected methods will be new in method
applications.

Numerous powerful methods (analytic, semi-analytic, and numerical methods) for studying non-
linear PDEs [21–48], such as modified direct algebraic technique, Hirota bilinear technique, modified
simple equation technique, Bcklund transformation scheme, F-expansion method, modified Kudryashov
, Darboux transform technique, (G′/G)-expansion technique, rational Sine-Cosine technique, inverse
scattering scheme, auxiliary equation method, painlev analysis method, trigonometric function tech-
nique, tanh/coth method, sine and sinh Gordon equation expansion methods, general symmetry tech-
nique, variational iteration technique, reduced differential transform method, Fourier spectral tech-
nique, finite difference technique, Adomian decomposition technique, finite element technique, the
wavelet technique and other techniques.

This work intends to attain solitons and other wave results of tmSKE. The described generalized
exp(−φ(ζ))-expansion and improved F-expansion methods are employed for obtaining wave solutions.
The constructed results are novel and more general. To our best knowledge, these approaches are not
utilized to address the early work on this equation.

This paper is structured as follows. Section 1, specifies the introduction. In Section 2, a summary
of the general type of tm standard and SK equations are summarized. In Section 3, the appraisal
of the improvedjF-expansion and generalizedjexp(−φ(ζ))-expansion techniques are depicted. The
constructed results of the exploration are given in Sectionj4. In Sectionj5, a generaljdiscussion and
graphical illustrations of some acquired solutions are described. Finally, the conclusion of the article
is illustrated in Section 6.

2 Formulation of Mathematical Models

2.1 General type of dual-mode standard model

The general type of the dual-mode model proposed by Korsonski [7] is

∂2u

∂t2
− ν ∂

2u

∂x2
+

(
∂

∂t
− βν ∂

∂x

)
G

(
u, u
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, ...

)
+

(
∂

∂t
− γν ∂

∂x

)
N
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, r ≥ 2

)
= 0, (1)

the above equation (1) is recognized from the equation of standard mode:
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In equation (1), the function u(x, t) is an unknown with (t, x) ∈ (−∞,∞), and ν > 0 is velocity of
the phase, β ≤ 1, γ ≤ 1, β and γ symbolize nonlinearityjand dispersion parameters respectively. The

terms L
(
∂2u
∂r∂x , r ≥ 2

)
and N

(
u, u∂u∂x , ...

)
signify the terms of linear and nonlinear respectively.

2.2 Dual-mode Sawada-Kotera model

The SKE in standard form having two non-linear terms [4] has as

∂u

∂t
+ 5

∂

∂x

(
u3

3
+ u

∂2u

∂x2

)
+
∂5u

∂x5
= 0, (2)

in above equation, the terms ∂5u
∂x5

and ∂
∂x

(
u3

3 + u∂
2u
∂x2

)
are linear and nonlinear respectively.

Merging the sense of Korsunsky [7], and follow Wazwaz [4], the tmSKE of the standard SKE
precises by equation (2) is presented as

∂2u

∂t2
− ν ∂

2u

∂x2
+

(
∂

∂t
− βν ∂

∂x

)
∂

∂x

(
5u3

3
+ 5u

∂2u

∂x2

)
+

(
∂
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− γν ∂

∂x

)
∂5u

∂x5
= 0. (3)

Obviously, for ν = 0, the tmSKE specified through equation (3) after integrating the relevant time t
has been simplified to the standard mode SKE given through equation (2).
The equation (3) illustrates the proliferation of two moving waves under the persuade of phase velocity
ν, dispersion (γ), and non-linearity (β) factors.

3 Portrayal of Proposed Methods

Here, we reveal the algorithms of suggested techniques namely as improved F-expansion and gener-
alized exp(−φ(ζ))-expansion methods for constructing the wave results of two-mode Sawada-Kotera
model. The general non-linear PDE has as

G (v, vx, vvx, vt, vxx, vvxx, wtt, ........) = 0, (4)

where the polynomial function G having unknown function v(x, t) with respect to a few specific
independent variables x and t, that also having derivative terms of linear and non-linear. Assuming
the transformation for changing independent variables into sole variable has as

v(x, t) = U(ζ), ζ = kx− ωt+ θ, (5)

where the constant k and ω are wave length andjfrequency. Utilizing (5), the equation (4) is converting
into ODE as

F
(
U,U ′, U ′′, UU ′′, .....

)
= 0, (6)

where U ′ = dU
dζ and F is a polynomial of U and its derivatives.

3.1 Improved F-expantion Method

The main steps are as
1st step: Consider the solution of Eq.(6) has as

U(ζ) =

N∑
i=0

Ai (µ+ F (ζ))i +

−N∑
j=−1

B−j (µ+ F (ζ))j , (7)
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where the constants Ai, B−j , µ are real and the function F (ζ) in equation (7) pledges the below ODE

F ′(ζ) = δ0 + δ1F (ζ) + δ2F
2(ζ) + δ3F

3(ζ), (8)

where δ0, δ1, δ2 and δ3 are real constants.
2nd step: By utilizing homogeneous principle on Eq.(6), the positive integer N is obtained.

3rd step: Deputizing Eq.(7) into Eq.(6) and taking the various coefficients of F i(ζ)
(µ+F (ζ))j

to zero,

capitulate a system of equation. By using Mathematica, this system is solved and constant values can
be achieved. After substituting constant values and solutions of Eq.(6), the wave solutions of Eq.(7)
are constructed.

3.2 Generalized exp(−φ(ζ))-expansion Method

The main steps are as
1st step: Assume the solution of Eq.(6) has the form as

U(ζ) =

N∑
i=0

Ai (exp(−φ(ζ)))i , (9)

where Ai (0 ≤ i ≤ N) are real constants such that AN 6= 0 and φ = φ(ζ) pledges the ODE as

φ′(ζ) = a exp(−φ(ζ)) + b exp(φ(ζ)) + c, (10)

where a, b, c are real constants.
2nd step: Utilizing homogeneous principle on Eq.(6), the positive integer N is obtained.
3rd step: By Deputizing equation (9) into (6) and polynomial obtained in e(−φ(ζ)), and taking

diverse powers of (e(−φ(ζ)))i to zero, capitulate a system of equation. By resolving this system and
reverse substitution, we construct many exact solutions for Eq.(4).

4 Applications

In this segment, we construct the solitons and other wave solutions of two-mode Sawada-Kotera
equation by employing described methods. By employing the transformation described in Eq.(5), the
Eq.(3) is converted into ODE as(

ω2 − k2ν2
)
U ′′ − 5k (ω + βkν)

(
k2UU (iv) + 2k2U ′U ′′′ + k2

(
U ′′
)2

+ U2U ′′ + 2U
(
U ′
)2)

−k5 (ω + γkν)U (vi) = 0. (11)

4.1 Application of improved F-expansion Method

Employing balancing principle on Eq.(11) and solution of equation (11) assumed as

U(ζ) = A0 +A1 (µ+ F (ζ)) +A2 (µ+ F (ζ))2 +
B1

µ+ F (ζ)
+

B2

(µ+ F (ζ))2
. (12)

By substituting Eq.(12) into Eq.(11) and deputing the coefficients of F i(ζ)
(µ+F (ζ))j

to zero, we attained

a equations system A0, A1, A2, B1, B2, δ0, δ1, δ2, δ3, β, γ, k, ν, ω and θ. Mathematica 9 was utilized for
solving this equation system. We attain the families of wave results as:
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1st Family: here assume δ0 = δ3 = 0,
Set 1:

A0 = −
√

3 (γ2 − 1) ν
(
12δ22µ

2 − 12δ2δ1µ+ δ21
)

δ21
√

5(β − γ)
, A1 = −

12δ2
√

3 (γ2 − 1) ν (δ1 − 2δ2µ)

δ21
√

5(β − γ)
,

A2 = −
12δ22

√
3 (γ2 − 1) ν

δ21
√

5(β − γ)
, B1 = B2 = 0, k = ∓

4
√

4 (γ2 − 1) ν

δ1
4
√

15(β − γ)
, ω = ±

γν 4
√

4 (γ2 − 1) ν

δ1
4
√

15(β − γ)
. (13)

Set 2:

A0 = −
3k2

(
12δ22µ

2 − 12δ2δ1µ+ δ21
)

2
, A1 = 18δ2k

2 (2δ2µ− δ1) , A2 = −18δ22k
2, B1 = 0,

B2 = 0, ν =
15δ41k

4(β − γ)

4 (γ2 − 1)
, ω =

15γδ41k
5(γ − β)

4 (γ2 − 1)
. (14)

Set 3:

A0 =

√
3 (γ2 − 1) ν

(
12δ22µ

2 − 12δ2δ1µ+ δ21
)

δ21
√

5(β − γ)
, A1 =

12δ2
√

3 (γ2 − 1) ν (δ1 − 2δ2µ)

δ21
√

5(β − γ)
, B1 = 0,

B2 = 0, A2 =
12δ22

√
3 (γ2 − 1) ν

δ21
√

5(β − γ)
, k = ±

4
√

4 (1− γ2) ν
δ1

4
√

15(β − γ)
, ω = ∓

γν 4
√

4 (1− γ2) ν
δ1

4
√

15(β − γ)
. (15)

The soliton results of Eq.(3) from sets 1 and 2 are constructed in the form as

u1,2(x, t) = −
√

3 (γ2 − 1) ν
(
δ2e

δ1(ζ+ζ0)
(
δ2e

δ1(ζ+ζ0) + 10
)

+ 1
)√

5(β − γ)
(
δ2eδ1(ζ+ζ0) − 1

)2 , δ1 > 0. (16)

u3,4(x, t) = −
√

3 (γ2 − 1) ν
(
δ2e

δ1(ζ+ζ0)
(
δ2e

δ1(ζ+ζ0) − 10
)

+ 1
)√

5(β − γ)
(
δ2eδ1(ζ+ζ0) + 1

)2 , δ1 < 0. (17)

u5(x, t) = −
3δ21k

2
(
δ2e

δ1(ζ+ζ0)
(
δ2e

δ1(ζ+ζ0) + 10
)

+ 1
)

2
(
δ2eδ1(ζ+ζ0) − 1

)2 , δ1 > 0. (18)

u6(x, t) = −
3δ21k

2
(
δ2e

δ1(ζ+ζ0)
(
δ2e

δ1(ζ+ζ0) − 10
)

+ 1
)

2
(
δ2eδ1(ζ+ζ0) + 1

)2 , δ1 < 0. (19)

Similar-way, one can construct more wave results of Eq.(3) from set 3.

2nd Family: In this family, we assume as δ1 = δ3 = 0,
Set 1:

A0 = −
√

3 (1− γ2) ν
(
3δ2µ

2 + 2δ0
)

δ0
√

5(γ − β)
, A1 =

6µδ2
√

3 (1− γ2) ν
δ0
√

5(γ − β)
, A2 = −

3δ2
√

3 (1− γ2) ν
δ0
√

5(γ − β)

B1 = 0, B2 = 0, k = ∓
4
√

(1− γ2) ν
4
√

60δ20δ
2
2(γ − β)

, ω = ±
γν 4
√

(1− γ2) ν
4
√

60δ20δ
2
2(γ − β)

. (20)
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Figure 1: By granting appropriate valuesjto parameters,jthe formation of solutions (16) and (17)
are revealed as: Fig(1-A) Dark solitaryjwave andjits 2-dimensional (2D) in Fig(1-B), Fig(1-C) bright
solitonjand its 2D in Fig(1-D).

Set 2:

A0 =

√
3 (1− γ2) ν

(
3δ2µ

2 + 2δ0
)

δ0
√

5(γ − β)
, A1 = −

6µδ2
√

3 (1− γ2) ν
δ0
√

5(γ − β)
, A2 =

3δ2
√

3 (1− γ2) ν
δ0
√

5(γ − β)

B1 = 0, B2 = 0, k = ± (−1)3/4 4
√
γ2 − 1 4

√
ν

√
2 4
√

15 4
√
δ20δ

2
2(γ − β)

, ω = ∓(−1)3/4γ 4
√
γ2 − 1ν5/4

√
2 4
√

15 4
√
δ20δ

2
2(γ − β)

. (21)

The wave solutions of Eq.(3) are constructed from solution sets 1 and 2 as

u7,8(x, t) = −
√

3 (1− γ2) ν
(
3 tan2

(√
δ0δ2(ζ + ζ0)

)
+ 2
)√

5(γ − β)
, δ0δ2 > 0. (22)

u9,10(x, t) =

√
3 (1− γ2) ν

(
3 tanh2

(√
−δ0δ2(θ + ξ)

)
− 2
)√

5(γ − β)
, δ0δ2 < 0. (23)
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Figure 2: By granting appropriate valuesjto parameters,jthe formation of solutions (18) and (19) are
revealed as: Fig(2-A) is Multi-peak solitons and its 2D in Fig(2-B), Fig(2-C) is solitary wave of Kink
type and its 2D in Fig(1-D).

u11,12(x, t) =

√
3 (1− γ2) ν

(
3 tan2

(√
δ0δ2(θ + ξ)

)
+ 2
)√

5(γ − β)
, δ0δ2 > 0. (24)

u13,14(x, t) =

√
3 (1− γ2) ν

(
2− 3 tanh2

(√
−δ0δ2(θ + ξ)

))√
5(γ − β)

, δ0δ2 < 0. (25)

3rd Family: In this family, we assume as δ3 = 0,
Set 1:

A0 = −3k2

2

(
12δ22µ

2 + 4δ2 (2δ0 − 3δ1µ) + δ21
)
, A1 = −18δ2k

2 (δ1 − 2δ2µ) , A2 = −18δ22k
2, B1 = 0,

B2 = 0, ω =
15k5

(
δ21 − 4δ0δ2

)2 ∓√225
(
δ21 − 4δ0δ2

)
4k10 + 16k2ν

(
15β

(
δ21 − 4δ0δ2

)
2k4 + 4ν

)
8

,

γ = −
15k5

(
δ21 − 4δ0δ2

)2 ∓√225
(
δ21 − 4δ0δ2

)
4k10 + 16k2ν

(
15β

(
δ21 − 4δ0δ2

)
2k4 + 4ν

)
8kν

. (26)
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Figure 3: By granting appropriate valuesjto parameters,jthe shape of solutions (22) and (23) are
shown as: Fig(3-A)jperiodic solitary wave and its 2D in Fig(3-B), Fig(3-C) is darkjsoliton andjits 2D
in Fig(3-D).

Set 2:

A0 = −
√

3 (γ2 − 1) ν
(
12δ22µ

2 + 4δ2 (2δ0 − 3δ1µ) + δ21
)(

δ21 − 4δ0δ2
)√

5(β − γ)
, A1 = −

12δ2
√

3 (γ2 − 1) ν (δ1 − 2δ2µ)(
δ21 − 4δ0δ2

)√
5(β − γ)

,

A2 = −
12δ22

√
3 (γ2 − 1) ν(

δ21 − 4δ0δ2
)√

5(β − γ)
, B1 = 0, B2 = 0, k = ∓

√
2 4
√

(γ2 − 1) ν

4

√
15
(
δ21 − 4δ0δ2

)2
(β − γ)

,

ω = ±
γν 4
√

4 (γ2 − 1) ν

4

√
15
(
δ21 − 4δ0δ2

)2
(β − γ)

. (27)
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The wave results of Eq.(3) from setsj1 and 2 arejconstructed as follows

u15,16(x, t) =
3k2

2

(
δ21

(
3 tan2

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

)
− 10

)
− 4δ0δ2

(
3 tan2

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

)

+2) + 12
√

4δ0δ2 − δ21δ1 tan

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

))
, 4δ0δ2 > δ21 ; (28)

u17,18(x, t) =

√
3 (γ2 − 1) ν(

δ21 − 4δ0δ2
)√

5(β − γ)

(
δ21

(
3 tan2

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

)
− 10

)

+12
√

4δ0δ2 − δ21δ1 tan

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

)

−4δ0δ2

(
3 tan2

(√
4δ0δ2 − δ21

2
(ζ + ζ0)

)
+ 2

))
, 4δ0δ2 > δ21 ; (29)

where ζ0 is constant.

4.2 Application of Generalized exp(−φ(ζ))-expansion Method

In this part, we employ generalized exp(−φ(ζ))-expansion method on two-mode Sawada-Kotera
for constructing the solitons and more waves solutions. Employing balancing principle of homogeneous
on Eq.(11) and assume the wave solution as

ψ(ξ) = A0 +A1 exp(−φ(x)) +A2 (exp(−φ(x)))2 . (30)

By substituting Eq.(30) into Eq.(11) and deputing the coefficients of
(
e(−φ(ζ))

)i
to zero, we achieved

a equations system A0, A1, A2, a, b, c, k, ν, ω, η, β. Mathematica 9 was utilized to resolve the equations
set. We attained below families as:
1st Family:

A0 = −
2
(
8abk2 + c2k2

)
3

, A1 = −8ack2, A2 = −8a2k2, ω = ∓kν, γ =
(10β ∓ 1)

9
. (31)

2nd Family:

A2 = 0, ω = ∓kν, γ = ±1, β = ±1. (32)

3rd Family:

A0 = −
(√

5k(βkν + ω) (16a2b2k5(βkν + ω)− 8abc2k5(βkν + ω) + c4k5(βkν + ω)− 4k2ν2 + 4ω2)

+40abk3(βkν + ω) + 5βc2k4ν + 5c2k3ω
)
/ (10k(βkν + ω)) , A1 = −6ack2, A2 = −6a2k2, γ = β.

(33)

4th Family:

A1 = −8ack2, A2 = −8a2k2, ω = ±kν, β = ∓1, γ = ∓1. (34)

From 1st family, the different forms of solitons and other solutions of Eq.(3) are obtained as
TypejI: for a = 1, b 6= 0, c2 − 4b > 0,

u1,2(ζ) =
2k2

3

8ab

3
(
c2 − 2ab+ c

√
c2 − 4b tanh

(√
c2−4b
2 (ζ + ζ0)

))
(√

c2 − 4b tanh
(√

c2−4b
2 (ζ + ζ0)

)
+ c
)2 − 1

− c2
 . (35)
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Figure 4: By granting appropriate valuesjto parameters,jthe shape of solutions (24) and (29) arejshown
as: Fig(4-A) Multi peak soliton of different amplitude and its 2D in Fig(4-B), Fig(4-C)jperiodic solitary
wave and its 2D in Fig(4-D).

TypejII: for a = 1, b 6= 0, c2 − 4b < 0,

u3,4(ζ) =
2k2

3

8ab

3
(
c2 − 2ab− c

√
4b− c2 tan

(√
4b−c2
2 (ζ + ζ0)

))
(
c−
√

4b− c2 tan
(√

4b−c2
2 (ζ + ζ0)

))2 − 1

− c2
 . (36)

TypejIII: for a = 1, b = 0, c 6= 0, c2 − 4b > 0,

u5,6(ζ) = −2k2

3

(
c2 + 8ab+

12ac2

ec(zeta+ζ0) − 1
+

12a2c2(
ec(ζ+ζ0) − 1

)2
)
. (37)

TypejIV: for a = 1, b 6= 0, c 6= 0, c2 − 4b = 0,

u7,8(ζ) =
2k2

3

(
6ac3(ζ + ζ0)

c(ζ + ζ0) + 1
− 3a2c4(ζ + ζ0)

2

(c(ζ + ζ0) + 1)2
− 8ab− c2

)
. (38)
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TypejV: for c = 0, a > 0, b > 0,

u9,10(ζ) = −2k2

3

(
12b cot

(√
ab(ζ + ζ0)

)(
c

√
a

b
+ a cot

(√
ab(ζ + ζ0)

))
+ 8ab+ c2

)
. (39)

TypejVI: for c = 0, a < 0, b < 0,

u11,12(ζ) = −2k2

3

(
8ab+ c2 − 12bc

√
a

b
cot
(√

ab(ζ − ζ0)
)

+ 12ab cot2
(√

ab(ζ − ζ0)
))

. (40)

TypejVII: for c = 0, a > 0, b < 0,

u13,14(ζ) =
2k2

3

(
12bc

√
−a
b

coth
(√
−ab(ζ − ζ0)

)
+ 12ab coth2

(√
−ab(ζ − ζ0)

)
− 8ab− c2

)
. (41)

TypejVIII: for c = 0, a < 0, b > 0,

u15,16(ζ) =
2k2

3

(
12ab coth2

(√
−ab(ζ + ζ0)

)
− 12bc

√
−a
b

coth
(√
−ab(ζ + ζ0)

)
− 8ab− c2

)
. (42)

TypejIX: for b = 0, c = 0,

u17,18(ζ) = −2k2

3

(
8ab+ c2 +

12c

ζ + ζ0
+

12

(ζ + ζ0)2

)
. (43)

From 2nd family, the more solitons and other wave solutions of Eq.(3) are obtained as
TypejI: for a = 1, b 6= 0, c2 − 4b > 0,

u19,20(ζ) = A0 −
2A1b

√
c2 − 4b tanh

(√
c2−4b
2 (ζ + ζ0)

)
+ c

. (44)

TypejII: for a = 1, b 6= 0, c2 − 4b < 0,

u21,22(ζ) = A0 −
2A1b

c−
√

4b− c2 tan
(√

4b−c2
2 (ζ + ζ0)

) . (45)

TypejIII: for a = 1, b = 0, c 6= 0, c2 − 4b > 0,

u23,24(ζ) = A0 −
A1c

1− ec(ζ+ζ)
. (46)

TypejIV: for a = 1, b 6= 0, c 6= 0, c2 − 4b = 0,

u25,26(ζ) = A0 −
A1c

2(ζ + ζ0)

2c(ζ + ζ0) + 2
. (47)

TypejV: for c = 0, a > 0, b > 0,

u27,28(ζ) = A0 +
A1

√
b cot

(√
ab(ζ + ζ0)

)
√
a

. (48)

TypejVI: for c = 0, a < 0, b < 0,

u29,30(ζ) = A0 −
A1

√
b cot

(√
ab(ζ − ζ0)

)
√
a

. (49)
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Figure 5: By granting appropriate valuesjto parameters,jthe shape of solutions (35) and (37) are shown
as: Fig(4-A) is bright soliton wavejand its 2D in Fig(5-B), Fig(5-C) is dark solitary wave andjits 2D
in Fig(5-D).

TypejVII: for c = 0, a > 0, b < 0,

u31,32(ζ) = A0 +A1

√
− b
a

coth
(√
−ab(ζ − ζ0)

)
. (50)

TypejVIII: for c = 0, a < 0, b > 0,

u33,34(ζ) = A0 −A1

√
− b
a

coth
(√
−ab(ζ + ζ0)

)
. (51)

TypejIX: for b = 0, c = 0,

u35,36(ζ) = A0 +
A1

a(ζ + ζ0)
. (52)

Similarly, more general soliton results can construct of equation (3) from families 3rd and 4th.
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Figure 6: By granting appropriate valuesjto parameters,jthe shape of solutions (44) and (45) are shown
as: Fig(6-A) is Kink soliton wave and its 2D in Fig(6-B), Fig(6-C) is Breather wave of strange shape
and its 2D in Fig(6-D).

5 Discussion of Results and Graphical Representation

The accomplished solutions are dissimilar from the results obtained by other researchers in the
previous methods. The equations (8) and (10) present numerous dissimilar kinds of solutions by
giving different values of parameters. It was announced earlier that the tmSKE was studied by
the simplified Hirota technique [4], the Kudryashov and the modified Kudryashov methods [11, 15],
auxiliary equation method [11] and sine-cosine technique [15]. Pedestal on the applications of these
methods, the authors report some bright, dark, multi-solitons, singular periodic and kink structured
results with the restricted conditions β = γ = 1. However in this article, eighteen wave solutions are
constructed through the improved F-expansion method and thirty-six wave solutions are constructed
through the generalized exp(−φ(ζ))-expansion technique. The explored solutions demonstrate the
dual-mode bright, dark, periodic, Kink, multi soliton and singular wave behaviors that are being
classified as waves of right/left mode. Evaluated with published results [4,11,15], it is worth revealed
that the constructed dual-wave solutions are new for the interests of applied methods. As a result, we
have constructed several original results, which have not been explained before.

The Figures 1 to 4 indicate the solitons and other waves in dissimilar structures are described.
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In the Figure 1, by granting appropriate valuesjto parameters,jthe formation of solutions (16) and
(17) are revealed as: Fig(1-A) Dark solitaryjwave andjits 2-dimensional (2D) in Fig(1-B), Fig(1-C)
bright soliton and its 2D in Fig(1-D). By granting appropriate valuesjto parameters,jthe formation of
solutions (18) and (19) in Figure 2 are revealed as: Fig(2-A) is Multi-peak solitons and its 2D in Fig(2-
B), Fig(2-C) is solitary wave of Kink type and its 2D in Fig(1-D). In Figure 3, by granting appropriate
valuesjto parameters,jthe shape of solutions (22) and (23) are shown as: Fig(3-A) periodic solitary
wave and its 2D in Fig(3-B), Fig(3-C) is dark soliton and its 2D in Fig(3-D). By granting appropriate
valuesjto parameters,jthe shape of solutions (24) and (29) in Figure 4 are shown as: Fig(4-A) Multi
peak soliton of different amplitude and its 2D in Fig(4-B), Fig(4-C) periodic solitary wave and its 2D
in Fig(4-D).

The Figures 5 and 6 illustrate the solitary waves in dissimilar structures are described. In the
Figure 55, By granting appropriate valuesjto parameters,jthe shape of solutions (35) and (37) are
shown as: Fig(4-A) is bright soliton wave and its 2D in Fig(5-B), Fig(5-C) is dark solitary wave and
its 2D in Fig(5-D). By granting appropriate valuesjto parameters,jthe shape of solutions (44) and (45)
in Figure 6 are shown as: Fig(6-A) is Kink soliton wave and its 2D in Fig(6-B), Fig(6-C) is Breather
wave of strange shape and its 2D in Fig(6-D).

6 Conclusion

The described methods namely, improved F-expansion method and generalized exp(−φ(ζ))-
expansion method have been effectively employed on the tmSKE and as consequences, abundant
of solitary wave solutions of different kinds such as bright and dark solitons, multi peak soliton,
breather type waves, periodic solutions and otherjwave solutionsjare obtained. Thesejobtained abun-
dant novel solitons and other wave results have significant applications in fluid dynamics, applied
sciences and engineering. The Sawada-Kotera equations illustrating the non-linear wave phenomena
in shallow water, ion-acoustic waves in plasmas, fluid dynamics etc., and tmSKE also arising in fluid
dynamics is addresses in this article. The graphical moments of few solutions are depicted that helps
the engineers and scientist for understanding the physical phenomena of this model. To explain the
novelty between the present results and the previously attained results, a comparative study has been
presented. Furthermore, the executed techniquesjcan bejemployed for furtherjmodels arising in fluid
dynamics correlated with any physical and engineering problems. The computational work approves
the effectiveness, simplicity, and impact of described techniques.
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