References
ADAMS, J. P., ADELI, A., HSU, C.-Y., HARKESS, R. L., PAGE, G. P., DEPAMPHILIS, C. W., SCHULTZ, E. B. & YUCEER, C. 2011. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. Journal of experimental botany, 62, 3737-3752.
ALI, W., ISNER, J. C., ISAYENKOV, S. V., LIU, W. J., ZHAO, F. J. & MAATHUIS, F. J. M. 2012. Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytologist, 194, 716-723.
ARRIVAULT, S., SENGER, T. & KRAMER, U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply.Plant Journal, 46, 861-879.
ARTZ, J. H., WHITE, S. N., ZADVORNYY, O. A., FUGATE, C. J., HICKS, D., GAUSS, G. H., POSEWITZ, M. C., BOYD, E. S. & PETERS, J. W. 2015. Biochemical and Structural Properties of a Thermostable Mercuric Ion Reductase from Metallosphaera sedula. Frontiers in Bioengineering and Biotechnology, 3.
ATDSR, A. F. T. S. A. D. R. 2019. ATSDR’s Substance Priority List.In: REGISTRY., A. F. T. S. A. D. (ed.) Available online: www.atsdr.cdc.gov/spl/index.html
ATSDR, A. F. T. S. A. D. R. 1999. Toxicological Profile for Mercury.; Department of Health and Human Services, Public Health Service.Atlanta, GA, USA.
BALI, A. S., SIDHU, G. P. S. & KUMAR, V. 2020. Root exudates ameliorate cadmium tolerance in plants: A review. Environmental Chemistry Letters, 18, 1243-1275.
BASTA, N. T., RYAN, J. A. & CHANEY, R. L. 2005. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability.J Environ Qual, 34, 49-63.
BHADURI, A. M. & FULEKAR, M. H. 2012. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio-Technology, 11, 55-69.
BUNDSCHUH, M., FILSER, J., LÜDERWALD, S., MCKEE, M. S., METREVELI, G., SCHAUMANN, G. E., SCHULZ, R. & WAGNER, S. 2018. Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur, 30, 6.
CAO, D., CHEN, W., XIANG, Y., MI, Q., LIU, H., FENG, P., SHEN, H., ZHANG, C., WANG, Y. & WANG, D. 2021. The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicology and Environmental Safety,207, 111538.
CARRASCO-GIL, S., ALVAREZ-FERNANDEZ, A., SOBRINO-PLATA, J., MILLAN, R., CARPENA-RUIZ, R. O., LEDUC, D. L., ANDREWS, J. C., ABADIA, J. & HERNANDEZ, L. E. 2011. Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell and Environment,34, 778-791.
CARRASCO-GIL, S., SIEBNER, H., LEDUC, D. L., WEBB, S. M., MILLÁN, R., ANDREWS, J. C. & HERNÁNDEZ, L. E. 2013. Mercury Localization and Speciation in Plants Grown Hydroponically or in a Natural Environment.Environmental Science & Technology, 47, 3082-3090.
CATALDO, D. A., GARLAND, T. R. & WILDUNG, R. E. 1983. Cadmium Uptake Kinetics in Intact Soybean Plants. Plant Physiology, 73,844-848.
CEASAR, S. A., LEKEUX, G., MOTTE, P., XIAO, Z., GALLENI, M. & HANIKENNE, M. 2020. di-Cysteine Residues of the Arabidopsis thaliana HMA4 C-Terminus Are Only Partially Required for Cadmium Transport.Frontiers in Plant Science, 11.
CHANEY, R. L. 2015. How Does Contamination of Rice Soils with Cd and Zn Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers.Current Pollution Reports, 1, 13-22.
CHANG, J. D., HUANG, S., KONISHI, N., WANG, P., CHEN, J., HUANG, X. Y., MA, J. F. & ZHAO, F. J. 2020. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain.Journal of Experimental Botany, 71, 5705-5715.
CHAO, D. Y., CHEN, Y., CHEN, J. G., SHI, S. L., CHEN, Z. R., WANG, C. C., DANKU, J. M., ZHAO, F. J. & SALT, D. E. 2014. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants. Plos Biology, 12.
CHAO, D. Y., SILVA, A., BAXTER, I., HUANG, Y. S., NORDBORG, M., DANKU, J., LAHNER, B., YAKUBOVA, E. & SALT, D. E. 2012. Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana. Plos Genetics, 8.
CHATTERJEE, S., SAU, G. B. & MUKHERJEE, S. K. 2009. Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology & Biotechnology, 25, 1829-1836.
CHEN, B. D., NAYUKI, K., KUGA, Y., ZHANG, X., WU, S. L. & OHTOMO, R. 2018. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation mu X-Ray Fluorescence Analysis. Microbes and Environments, 33, 257-263.
CHIARUCCI, A. & BAKER, A. J. M. 2007. Advances in the ecology of serpentine soils. Plant and Soil, 293, 1-2.
CLEMENS, S. 2019. Metal ligands in micronutrient acquisition and homeostasis. Plant Cell and Environment, 42, 2902-2912.
CLEMENS, S. & MA, J. F. 2016. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annual Review of Plant Biology, Vol 67, 67, 489-512.
COCCINA, A., CAVAGNARO, T. R., PELLEGRINO, E., ERCOLI, L., MCLAUGHLIN, M. J. & WATTS-WILLIAMS, S. J. 2019. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain.BMC Plant Biology, 19, 133.
DARY, M., CHAMBER-PEREZ, M. A., PALOMARES, A. J. & PAJUELO, E. 2010. ”In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177,323-330.
DE OLIVEIRA, V. H. & TIBBETT, M. 2018. Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 155, 281-292.
DE OLIVEIRA, V. H., ULLAH, I., DUNWELL, J. M. & TIBBETT, M. 2020. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 171, 103925.
DUAN, G. L., KAMIYA, T., ISHIKAWA, S., ARAO, T. & FUJIWARA, T. 2012. Expressing ScACR3 in Rice Enhanced Arsenite Efflux and Reduced Arsenic Accumulation in Rice Grains. Plant and Cell Physiology,53, 154-163.
DUBEAUX, G., NEVEU, J., ZELAZNY, E. & VERT, G. 2018. Metal Sensing by the IRT1 Transporter-Receptor Orchestrates Its Own Degradation and Plant Metal Nutrition. Molecular Cell, 69, 953-+.
ERENOGLU, B., EKER, S., CAKMAK, I., DERICI, R. & RÖMHELD, V. 2000. Effect of iron and zinc deficiency on release of phytosiderophores in barley cultivars differing in zinc efficiency. Journal of Plant Nutrition, 23, 1645-1656.
FAHR, M., LAPLAZE, L., BENDAOU, N., HOCHER, V., EL MZIBRI, M., BOGUSZ, D. & SMOUNI, A. 2013. Effect of lead on root growth. Frontiers in Plant Science, 4.
FAO, T. S. O. F. I. I. T. W. 2015.
FENG, S. S., TAN, J. J., ZHANG, Y. X., LIANG, S., XIANG, S. Q., WANG, H. & CHAI, T. Y. 2017. Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum. Plant Cell Reports, 36, 281-296.
FONTANILI, L., LANCILLI, C., SUZUI, N., DENDENA, B., YIN, Y.-G., FERRI, A., ISHII, S., KAWACHI, N., LUCCHINI, G., FUJIMAKI, S., SACCHI, G. A. & NOCITO, F. F. 2016. Kinetic Analysis of Zinc/Cadmium Reciprocal Competitions Suggests a Possible Zn-Insensitive Pathway for Root-to-Shoot Cadmium Translocation in Rice. Rice, 9,16.
FRAUSTO DA SILVA JJR, W. R. 2001. The biological chemistry of the elements: the inorganic chemistry of life, New York, Oxford University Press.
GAO, X., AKHTER, F., TENUTA, M., FLATEN, D. N., GAWALKO, E. J. & GRANT, C. A. 2010. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization. J Sci Food Agric, 90, 750-8.
GREGER, M., KABIR, A. H., LANDBERG, T., MAITY, P. J. & LINDBERG, S. 2016. Silicate reduces cadmium uptake into cells of wheat.Environmental Pollution, 211, 90-97.
GUO, B., LIU, C., DING, N. F., FU, Q. L., LIN, Y. C., LI, H. & LI, N. Y. 2016. Silicon Alleviates Cadmium Toxicity in Two Cypress Varieties by Strengthening the Exodermis Tissues and Stimulating Phenolic Exudation of Roots. Journal of Plant Growth Regulation, 35,420-429.
GUSTIN, J. L., LOUREIRO, M. E., KIM, D., NA, G., TIKHONOVA, M. & SALT, D. E. 2009. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant Journal, 57, 1116-1127.
GWOREK, B., DMUCHOWSKI, W. & BACZEWSKA-DĄBROWSKA, A. H. 2020. Mercury in the terrestrial environment: a review. Environmental Sciences Europe, 32, 128.
HAMMOND, J. P., BOWEN, H. C., WHITE, P. J., MILLS, V., PYKE, K. A., BAKER, A. J., WHITING, S. N., MAY, S. T. & BROADLEY, M. R. 2006. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol, 170, 239-60.
HANIKENNE, M., TALKE, I. N., HAYDON, M. J., LANZ, C., NOLTE, A., MOTTE, P., KROYMANN, J., WEIGEL, D. & KRAMER, U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391-U44.
HAYAT, S., HAYAT, Q., ALYEMENI, M. N., WANI, A. S., PICHTEL, J. & AHMAD, A. 2012. Role of proline under changing environments: a review.Plant Signal Behav, 7, 1456-66.
HAYDON, M. J. & COBBETT, C. S. 2007. Transporters of ligands for essential metal ions in plants. New Phytologist, 174,499-506.
HODGE, A. 2009. Root decisions. Plant Cell Environ, 32,628-40.
HU, M., LI, F. B., LIU, C. P. & WU, W. J. 2015. The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports, 5.
HUI, F. Q., LIU, J., GAO, Q. K. & LOU, B. G. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. Journal of Environmental Sciences, 37, 184-191.
ISHIMARU, Y., TAKAHASHI, R., BASHIR, K., SHIMO, H., SENOURA, T., SUGIMOTO, K., ONO, K., YANO, M., ISHIKAWA, S., ARAO, T., NAKANISHI, H. & NISHIZAWA, N. K. 2012. Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport. Scientific Reports, 2.
JAIN, A., SINILAL, B., DHANDAPANI, G., MEAGHER, R. B. & SAHI, S. V. 2013. Effects of Deficiency and Excess of Zinc on Morphophysiological Traits and Spatiotemporal Regulation of Zinc-Responsive Genes Reveal Incidence of Cross Talk between Micro- and Macronutrients.Environmental Science & Technology, 47, 5327-5335.
JEONG, J. & EIDE, D. J. 2013. The SLC39 family of zinc transporters.Mol Aspects Med, 34, 612-9.
KAMBE, T., TSUJI, T., HASHIMOTO, A. & ITSUMURA, N. 2015. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev, 95,749-84.
KELLER, C., MCGRATH, S. P. & DUNHAM, S. J. 2002. Trace metal leaching through a soil-grassland system after sewage sludge application. J Environ Qual, 31, 1550-60.
KHARE, D., MITSUDA, N., LEE, S., SONG, W. Y., HWANG, D., OHME-TAKAGI, M., MARTINOIA, E., LEE, Y. & HWANG, J. U. 2017. Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana. New Phytologist, 213, 1257-1273.
KOTECHA, M., MEDHAVI, CHAUDHARY, S., MARWA, N., DEEBA, F., PANDEY, V. & PRASAD, V. 2019. Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss. In: SRIVASTAVA, S., SRIVASTAVA, A. K. & SUPRASANNA, P. (eds.) Plant-Metal Interactions. Cham: Springer International Publishing.
KOZHEVNIKOVA, A. D., SEREGIN, I. V., ERLIKH, N. T., SHEVYREVA, T. A., ANDREEV, I. M., VERWEIJ, R. & SCHAT, H. 2014a. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens.New Phytol, 203, 508-519.
KOZHEVNIKOVA, A. D., SEREGIN, I. V., VERWEIJ, R. & SCHAT, H. 2014b. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Plant Signal Behav,9, e29580.
KRISHNA, A. T. P., MAHARAJAN, T., VICTOR ROCH, G., IGNACIMUTHU, S. & ANTONY CEASAR, S. 2020. Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Frontiers in Plant Science, 11.
KRUPA, P. & KOZDROJ, J. 2004. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World Journal of Microbiology & Biotechnology,20, 427-430.
KUMARI, S., AMIT, JAMWAL, R., MISHRA, N. & SINGH, D. K. 2020. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring & Management,13, 100283.
LEE, S., JEONG, H. J., KIM, S. A., LEE, J., GUERINOT, M. L. & AN, G. 2010. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol, 73, 507-17.
LEKEUX, G., LAURENT, C., JORIS, M., JADOUL, A., JIANG, D., BOSMAN, B., CARNOL, M., MOTTE, P., XIAO, Z., GALLENI, M. & HANIKENNE, M. 2018. di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer nanomolar affinity for zinc and are essential for HMA4 function in vivo.Journal of Experimental Botany, 69, 5547-5560.
LETERME, B., BLANC, P. & JACQUES, D. 2014. A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environmental Science and Pollution Research,21, 12279-12293.
LI, D., XU, X., HU, X., LIU, Q., WANG, Z., ZHANG, H., WANG, H., WEI, M., WANG, H., LIU, H. & LI, C. 2015. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa. Frontiers in plant science, 6, 1149-1149.
LI, J., SUN, Y., JIANG, X., CHEN, B. & ZHANG, X. 2018. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicol Environ Saf, 157, 235-243.
LI, Y. J., DHANKHER, O. P., CARREIRA, L., LEE, D., CHEN, A., SCHROEDER, J. I., BALISH, R. S. & MEAGHER, R. B. 2004. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant and Cell Physiology, 45, 1787-1797.
LILAY, G. H., PERSSON, D. P., CASTRO, P. H., LIAO, F., ALEXANDER, R. D., AARTS, M. G. M. & ASSUNÇÃO, A. G. L. 2021. Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nature plants, 7, 137-143.
LINDSAY, E. R. & MAATHUIS, F. J. M. 2016. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate. Febs Letters, 590, 779-786.
LINDSAY, E. R. & MAATHUIS, F. J. M. 2017. New Molecular Mechanisms to Reduce Arsenic in Crops. Trends in Plant Science, 22,1016-1026.
LIU, X. S., FENG, S. J., ZHANG, B. Q., WANG, M. Q., CAO, H. W., RONO, J. K., CHEN, X. & YANG, Z. M. 2019. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. Bmc Plant Biology, 19.
LÓPEZ-MILLÁN, A.-F., ELLIS, D. R. & GRUSAK, M. A. 2004. Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula. Plant Molecular Biology,54, 583-596.
LU, C., ZHANG, L., TANG, Z., HUANG, X.-Y., MA, J. F. & ZHAO, F.-J. 2019. Producing cadmium-free Indica rice by overexpressing OsHMA3.Environment International, 126, 619-626.
LUX, A., MARTINKA, M., VACULIK, M. & WHITE, P. J. 2011. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21-37.
MA, J. F., YAMAJI, N., MITANI, N., XU, X. Y., SU, Y. H., MCGRATH, S. P. & ZHAO, F. J. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 105,9931-9935.
MA, M., DU, H. & WANG, D. 2019. Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 49, 1893-1936.
MAISCH, M., LUEDER, U., KAPPLER, A. & SCHMIDT, C. 2020. From Plant to Paddy-How Rice Root Iron Plaque Can Affect the Paddy Field Iron Cycling.Soil Systems, 4.
MAJUMDER, A., BHATTACHARYYA, K., BHATTACHARYYA, S. & KOLE, S. C. 2013. Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Science of the Total Environment, 463, 1006-1014.
MARSCHNER, P. 2012. Mineral Nutrition of Higher Plants , Academic Press.
MCLAUGHLIN, M. J., HAMON, R. E., MCLAREN, R. G., SPEIR, T. W. & ROGERS, S. L. 2000. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Research, 38, 1037-1086.
MEHARG, A. A. & RAHMAN, M. 2003. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science & Technology, 37,229-234.
MIGEON, A., BLAUDEZ, D., WILKINS, O., MONTANINI, B., CAMPBELL, M. M., RICHAUD, P., THOMINE, S. & CHALOT, M. 2010. Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cellular and Molecular Life Sciences, 67, 3763-3784.
MILNER, M. J., SEAMON, J., CRAFT, E. & KOCHIAN, L. V. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64,369-381.
MOREL, M., CROUZET, J., GRAVOT, A., AUROY, P., LEONHARDT, N., VAVASSEUR, A. & RICHAUD, P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol, 149,894-904.
MOSA, K. A., KUMAR, K., CHHIKARA, S., MCDERMOTT, J., LIU, Z. J., MUSANTE, C., WHITE, J. C. & DHANKHER, O. P. 2012. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research,21, 1265-1277.
MUTHERT, L. W. F., IZZO, L. G., VAN ZANTEN, M. & ARONNE, G. 2020. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. Frontiers in Plant Science, 10.
NAIR, A., JUWARKAR, A. A. & SINGH, S. K. 2007. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air and Soil Pollution,180, 199-212.
NOCTOR, G., MHAMDI, A. & FOYER, C. H. 2016. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell and Environment, 39,1140-1160.
NONG, X. Y., ZHANG, C. L., CHEN, H. X., RONG, Q., GAO, H. F. & JIN, X. D. 2020. Remediation of Cd, Pb and as Co-contaminated Paddy Soil by Applying Different Amendments. Bulletin of Environmental Contamination and Toxicology, 105, 283-290.
ORTEGA-VILLASANTE, C., RELLÁN-ALVAREZ, R., DEL CAMPO, F. F., CARPENA-RUIZ, R. O. & HERNÁNDEZ, L. E. 2005. Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot, 56,2239-51.
PALM, E., GUIDI NISSIM, W., MANCUSO, S. & AZZARELLO, E. 2021. Split-root investigation of the physiological response to heterogeneous elevated Zn exposure in poplar and willow. Environmental and Experimental Botany, 183, 104347.
PARK, J., SONG, W. Y., KO, D., EOM, Y., HANSEN, T. H., SCHILLER, M., LEE, T. G., MARTINOIA, E. & LEE, Y. 2012. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant Journal, 69, 278-288.
PEREZ;, A. P. & EUGENIO, N. R. 2018. Status of local soil contamination in Europe: Revision of the indicator “Progress in the management contaminated sites in Europe”. Luxembourg,.
PINTO, A. P., SIMOES, I. & MOTA, A. M. 2008. Cadmium impact on root exudates of sorghum and maize plants: A speciation study. Journal of Plant Nutrition, 31, 1746-1755.
PODAR, D., SCHERER, J., NOORDALLY, Z., HERZYK, P., NIES, D. & SANDERS, D. 2012. Metal selectivity determinants in a family of transition metal transporters. J Biol Chem, 287, 3185-96.
PRASAD, A. S. 2014. Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol, 28, 357-63.
RAJ, D. & MAITI, S. K. 2019. Sources, toxicity, and remediation of mercury: an essence review. Environmental Monitoring and Assessment, 191, 566.
REMANS, T., THIJS, S., TRUYENS, S., WEYENS, N., SCHELLINGEN, K., KEUNEN, E., GIELEN, H., CUYPERS, A. & VANGRONSVELD, J. 2012. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Ann Bot,110, 239-52.
REMY, E., CABRITO, T. R., BATISTA, R. A., TEIXEIRA, M. C., SA-CORREIA, I. & DUQUE, P. 2012. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 195, 356-371.
REN, X. M., GUO, S. J., TIAN, W., CHEN, Y., HAN, H., CHEN, E., LI, B. L., LI, Y. Y. & CHEN, Z. J. 2019. Effects of Plant Growth-Promoting Bacteria (PGPB) Inoculation on the Growth, Antioxidant Activity, Cu Uptake, and Bacterial Community Structure of Rape (Brassica napus L.) Grown in Cu-Contaminated Agricultural Soil. Frontiers in Microbiology, 10.
RENU, K., CHAKRABORTY, R., MYAKALA, H., KOTI, R., FAMUREWA, A. C., MADHYASTHA, H., VELLINGIRI, B., GEORGE, A. & VALSALA GOPALAKRISHNAN, A. 2021. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity – A review.Chemosphere, 271, 129735.
RIDDLE, S. G., TRAN, H. H., DEWITT, J. G. & ANDREWS, J. C. 2002. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environ Sci Technol,36, 1965-70.
ROSENZWEIG, A. C. 2002. Metallochaperones: bind and deliver. Chem Biol, 9, 673-7.
SATOH-NAGASAWA, N., MORI, M., NAKAZAWA, N., KAWAMOTO, T., NAGATO, Y., SAKURAI, K., TAKAHASHI, H., WATANABE, A. & AKAGI, H. 2011. Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant and Cell Physiology,53, 213-224.
SCHWESIG, D. & KREBS, O. 2003. The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant and Soil, 253, 445-455.
SHI, S., WANG, T., CHEN, Z., TANG, Z., WU, Z., SALT, D. E., CHAO, D. Y. & ZHAO, F. J. 2016. OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Plant Physiol,172, 1708-1719.
SHIM, D., HWANG, J. U., LEE, J., LEE, S., CHOI, Y., AN, G., MARTINOIA, E. & LEE, Y. 2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 21, 4031-43.
SHIN, H., SHIN, H. S., DEWBRE, G. R. & HARRISON, M. J. 2004. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.Plant J, 39, 629-42.
SILVER, S. A. & HOBMAN, J. L. 2007. Mercury Microbiology: Resistance Systems, Environmental Aspects, Methylation, and Human Health, Berlin, Heidelberg, Springer.
SINGH, S., TRIPATHI, D. K., CHAUHAN, D. K. & DUBEY, N. K. 2016. Glutathione and Phytochelatins Mediated Redox Homeostasis and Stress Signal Transduction in Plants: An Integrated Overview. Plant Metal Interaction: Emerging Remediation Techniques , 285-310.
SONG, W.-Y., YAMAKI, T., YAMAJI, N., KO, D., JUNG, K.-H., FUJII-KASHINO, M., AN, G., MARTINOIA, E., LEE, Y. & MA, J. F. 2014. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain.Proceedings of the National Academy of Sciences, 111,15699-15704.
SONG, Y., JIN, L. & WANG, X. J. 2017. Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19, 133-141.
SPAGNOLETTI, F. N., BALESTRASSE, K., LAVADO, R. S. & GIACOMETTI, R. 2016. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicology and Environmental Safety, 133, 47-56.
SUZUKI, M., TAKAHASHI, M., TSUKAMOTO, T., WATANABE, S., MATSUHASHI, S., YAZAKI, J., KISHIMOTO, N., KIKUCHI, S., NAKANISHI, H., MORI, S. & NISHIZAWA, N. K. 2006. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J,48, 85-97.
TANAKA, N., KAWACHI, M., FUJIWARA, T. & MAESHIMA, M. 2013. Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1. FEBS Open Bio,3, 218-24.
TANG, L., MAO, B., LI, Y., LV, Q., ZHANG, L., CHEN, C., HE, H., WANG, W., ZENG, X., SHAO, Y., PAN, Y., HU, Y., PENG, Y., FU, X., LI, H., XIA, S. & ZHAO, B. 2017. Knockout of OsNRAMP5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield.Sci Rep, 7, 14438.
TASHAKOR, M., YAACOB, W. Z. W. & MOHAMAD, H. 2013. Serpentine Soils, Adverse Habitat for Plants. American Journal of Environmental Sciences, 9.
THORNE, S. J., HARTLEY, S. E. & MAATHUIS, F. J. M. 2020. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops?Frontiers in plant science, 11, 1221-1221.
TOGNACCHINI, A., SALINITRO, M., PUSCHENREITER, M. & VAN DER ENT, A. 2020. Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. Plant and Soil, 450,287-302.
TÓTH, G., HERMANN, T., DA SILVA, M. R. & MONTANARELLA, L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309.
TRIPATHI, R. D., SRIVASTAVA, S., MISHRA, S., SINGH, N., TULI, R., GUPTA, D. K. & MAATHUIS, F. J. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol, 25,158-65.
TURNAU, K., GAWROŃSKI, S., RYSZKA, P. & ZOOK, D. 2012. Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland). In: KOTHE, E. & VARMA, A. (eds.) Bio-Geo Interactions in Metal-Contaminated Soils. Berlin, Heidelberg: Springer Berlin Heidelberg.
UENO, D., YAMAJI, N., KONO, I., HUANG, C. F., ANDO, T., YANO, M. & MA, J. F. 2010. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A, 107, 16500-5.
USEPA; UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2007. Treatment Technologies for Mercury in Soil, Waste, and Water.
VALLEE, B. L. A. & ULMER, D. D. 1972. Biochemical Effects of Mercury, Cadmium, and Lead. Annual Review of Biochemistry, 41,91-128.
VERRET, F., GRAVOT, A., AUROY, P., LEONHARDT, N., DAVID, P., NUSSAUME, L., VAVASSEUR, A. & RICHAUD, P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 576, 306-312.
VON WIREN, N., MARSCHNER, H. & ROMHELD, V. 1996. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.Plant Physiology, 111, 1119-1125.
WATTS-WILLIAMS, S. J., SMITH, F. A., MCLAUGHLIN, M. J., PATTI, A. F. & CAVAGNARO, T. R. 2015. How important is the mycorrhizal pathway for plant Zn uptake? Plant and Soil, 390, 157-166.
WHITING, S. N., LEAKE, J. R., MCGRATH, S. P. & BAKER, A. J. M. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist,145, 199-210.
WHO, W. H. O. 2013. Research for universal health coverage.
WILSON, N. 2018. Nanoparticles: Environmental Problems or Problem Solvers? BioScience, 68, 241-246.
WONG, C. K. E., JARVIS, R. S., SHERSON, S. M. & COBBETT, C. S. 2009. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytologist, 181, 79-88.
WU, C., YE, Z., SHU, W., ZHU, Y. & WONG, M. 2011. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. Journal of Experimental Botany, 62,2889-2898.
WU, L., LI, X., MA, L., BORRISS, R., WU, Z. & GAO, X. 2018. Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Journal of Experimental Botany, 69, 5625-5635.
WUANA, R. A. & OKIEIMEN, F. E. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011, 402647.
XU, J., SHI, S., WANG, L., TANG, Z., LV, T., ZHU, X., DING, X., WANG, Y., ZHAO, F.-J. & WU, Z. 2017. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist, 215, 1090-1101.
YU, H. Y., WANG, X. Q., LI, F. B., LI, B., LIU, C. P., WANG, Q. & LEI, J. 2017. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.Environmental Pollution, 224, 136-147.
ZANELLA, L., FATTORINI, L., BRUNETTI, P., ROCCOTIELLO, E., CORNARA, L., D’ANGELI, S., DELLA ROVERE, F., CARDARELLI, M., BARBIERI, M., SANITA DI TOPPI, L., DEGOLA, F., LINDBERG, S., ALTAMURA, M. M. & FALASCA, G. 2016. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta,243, 605-622.
ZHANG, J., MARTINOIA, E. & LEE, Y. 2018. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Plant and Cell Physiology, 59,1317-1325.
ZHANG, T., KULIYEV, E., SUI, D. & HU, J. 2019. The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport. The Biochemical journal, 476, 1791-1803.
ZHAO, F. J., MA, J. F., MEHARG, A. A. & MCGRATH, S. P. 2009. Arsenic uptake and metabolism in plants. New Phytologist, 181,777-794.
ZHOU, Z. S., HUANG, S. Q., GUO, K., MEHTA, S. K., ZHANG, P. C. & YANG, Z. M. 2007. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Journal of Inorganic Biochemistry,101, 1-9.