References
ADAMS, J. P., ADELI, A., HSU, C.-Y., HARKESS, R. L., PAGE, G. P.,
DEPAMPHILIS, C. W., SCHULTZ, E. B. & YUCEER, C. 2011. Poplar maintains
zinc homeostasis with heavy metal genes HMA4 and PCS1. Journal of
experimental botany, 62, 3737-3752.
ALI, W., ISNER, J. C., ISAYENKOV, S. V., LIU, W. J., ZHAO, F. J. &
MAATHUIS, F. J. M. 2012. Heterologous expression of the yeast arsenite
efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic
stress. New Phytologist, 194, 716-723.
ARRIVAULT, S., SENGER, T. & KRAMER, U. 2006. The Arabidopsis metal
tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn
exclusion from the shoot under Fe deficiency and Zn oversupply.Plant Journal, 46, 861-879.
ARTZ, J. H., WHITE, S. N., ZADVORNYY, O. A., FUGATE, C. J., HICKS, D.,
GAUSS, G. H., POSEWITZ, M. C., BOYD, E. S. & PETERS, J. W. 2015.
Biochemical and Structural Properties of a Thermostable Mercuric Ion
Reductase from Metallosphaera sedula. Frontiers in Bioengineering
and Biotechnology, 3.
ATDSR, A. F. T. S. A. D. R. 2019. ATSDR’s Substance Priority List.In: REGISTRY., A. F. T. S. A. D. (ed.) Available online:
www.atsdr.cdc.gov/spl/index.html
ATSDR, A. F. T. S. A. D. R. 1999. Toxicological Profile for Mercury.; Department of Health and Human Services, Public Health Service.Atlanta, GA, USA.
BALI, A. S., SIDHU, G. P. S. & KUMAR, V. 2020. Root exudates ameliorate
cadmium tolerance in plants: A review. Environmental Chemistry
Letters, 18, 1243-1275.
BASTA, N. T., RYAN, J. A. & CHANEY, R. L. 2005. Trace element chemistry
in residual-treated soil: key concepts and metal bioavailability.J Environ Qual, 34, 49-63.
BHADURI, A. M. & FULEKAR, M. H. 2012. Antioxidant enzyme responses of
plants to heavy metal stress. Reviews in Environmental Science and
Bio-Technology, 11, 55-69.
BUNDSCHUH, M., FILSER, J., LÜDERWALD, S., MCKEE, M. S., METREVELI, G.,
SCHAUMANN, G. E., SCHULZ, R. & WAGNER, S. 2018. Nanoparticles in the
environment: where do we come from, where do we go to? Environ Sci
Eur, 30, 6.
CAO, D., CHEN, W., XIANG, Y., MI, Q., LIU, H., FENG, P., SHEN, H.,
ZHANG, C., WANG, Y. & WANG, D. 2021. The efficiencies of inorganic
mercury bio-methylation by aerobic bacteria under different oxygen
concentrations. Ecotoxicology and Environmental Safety,207, 111538.
CARRASCO-GIL, S., ALVAREZ-FERNANDEZ, A., SOBRINO-PLATA, J., MILLAN, R.,
CARPENA-RUIZ, R. O., LEDUC, D. L., ANDREWS, J. C., ABADIA, J. &
HERNANDEZ, L. E. 2011. Complexation of Hg with phytochelatins is
important for plant Hg tolerance. Plant Cell and Environment,34, 778-791.
CARRASCO-GIL, S., SIEBNER, H., LEDUC, D. L., WEBB, S. M., MILLÁN, R.,
ANDREWS, J. C. & HERNÁNDEZ, L. E. 2013. Mercury Localization and
Speciation in Plants Grown Hydroponically or in a Natural Environment.Environmental Science & Technology, 47, 3082-3090.
CATALDO, D. A., GARLAND, T. R. & WILDUNG, R. E. 1983. Cadmium Uptake
Kinetics in Intact Soybean Plants. Plant Physiology, 73,844-848.
CEASAR, S. A., LEKEUX, G., MOTTE, P., XIAO, Z., GALLENI, M. &
HANIKENNE, M. 2020. di-Cysteine Residues of the Arabidopsis thaliana
HMA4 C-Terminus Are Only Partially Required for Cadmium Transport.Frontiers in Plant Science, 11.
CHANEY, R. L. 2015. How Does Contamination of Rice Soils with Cd and Zn
Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers.Current Pollution Reports, 1, 13-22.
CHANG, J. D., HUANG, S., KONISHI, N., WANG, P., CHEN, J., HUANG, X. Y.,
MA, J. F. & ZHAO, F. J. 2020. Overexpression of the manganese/cadmium
transporter OsNRAMP5 reduces cadmium accumulation in rice grain.Journal of Experimental Botany, 71, 5705-5715.
CHAO, D. Y., CHEN, Y., CHEN, J. G., SHI, S. L., CHEN, Z. R., WANG, C.
C., DANKU, J. M., ZHAO, F. J. & SALT, D. E. 2014. Genome-wide
Association Mapping Identifies a New Arsenate Reductase Enzyme Critical
for Limiting Arsenic Accumulation in Plants. Plos Biology, 12.
CHAO, D. Y., SILVA, A., BAXTER, I., HUANG, Y. S., NORDBORG, M., DANKU,
J., LAHNER, B., YAKUBOVA, E. & SALT, D. E. 2012. Genome-Wide
Association Studies Identify Heavy Metal ATPase3 as the Primary
Determinant of Natural Variation in Leaf Cadmium in Arabidopsis
thaliana. Plos Genetics, 8.
CHATTERJEE, S., SAU, G. B. & MUKHERJEE, S. K. 2009. Plant growth
promotion by a hexavalent chromium reducing bacterial strain,
Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology
& Biotechnology, 25, 1829-1836.
CHEN, B. D., NAYUKI, K., KUGA, Y., ZHANG, X., WU, S. L. & OHTOMO, R.
2018. Uptake and Intraradical Immobilization of Cadmium by Arbuscular
Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron
Radiation mu X-Ray Fluorescence Analysis. Microbes and
Environments, 33, 257-263.
CHIARUCCI, A. & BAKER, A. J. M. 2007. Advances in the ecology of
serpentine soils. Plant and Soil, 293, 1-2.
CLEMENS, S. 2019. Metal ligands in micronutrient acquisition and
homeostasis. Plant Cell and Environment, 42, 2902-2912.
CLEMENS, S. & MA, J. F. 2016. Toxic Heavy Metal and Metalloid
Accumulation in Crop Plants and Foods. Annual Review of Plant
Biology, Vol 67, 67, 489-512.
COCCINA, A., CAVAGNARO, T. R., PELLEGRINO, E., ERCOLI, L., MCLAUGHLIN,
M. J. & WATTS-WILLIAMS, S. J. 2019. The mycorrhizal pathway of zinc
uptake contributes to zinc accumulation in barley and wheat grain.BMC Plant Biology, 19, 133.
DARY, M., CHAMBER-PEREZ, M. A., PALOMARES, A. J. & PAJUELO, E. 2010.
”In situ” phytostabilisation of heavy metal polluted soils using Lupinus
luteus inoculated with metal resistant plant-growth promoting
rhizobacteria. Journal of Hazardous Materials, 177,323-330.
DE OLIVEIRA, V. H. & TIBBETT, M. 2018. Tolerance, toxicity and
transport of Cd and Zn in Populus trichocarpa. Environmental and
Experimental Botany, 155, 281-292.
DE OLIVEIRA, V. H., ULLAH, I., DUNWELL, J. M. & TIBBETT, M. 2020.
Mycorrhizal symbiosis induces divergent patterns of transport and
partitioning of Cd and Zn in Populus trichocarpa. Environmental
and Experimental Botany, 171, 103925.
DUAN, G. L., KAMIYA, T., ISHIKAWA, S., ARAO, T. & FUJIWARA, T. 2012.
Expressing ScACR3 in Rice Enhanced Arsenite Efflux and Reduced Arsenic
Accumulation in Rice Grains. Plant and Cell Physiology,53, 154-163.
DUBEAUX, G., NEVEU, J., ZELAZNY, E. & VERT, G. 2018. Metal Sensing by
the IRT1 Transporter-Receptor Orchestrates Its Own Degradation and Plant
Metal Nutrition. Molecular Cell, 69, 953-+.
ERENOGLU, B., EKER, S., CAKMAK, I., DERICI, R. & RÖMHELD, V. 2000.
Effect of iron and zinc deficiency on release of phytosiderophores in
barley cultivars differing in zinc efficiency. Journal of Plant
Nutrition, 23, 1645-1656.
FAHR, M., LAPLAZE, L., BENDAOU, N., HOCHER, V., EL MZIBRI, M., BOGUSZ,
D. & SMOUNI, A. 2013. Effect of lead on root growth. Frontiers in
Plant Science, 4.
FAO, T. S. O. F. I. I. T. W. 2015.
FENG, S. S., TAN, J. J., ZHANG, Y. X., LIANG, S., XIANG, S. Q., WANG, H.
& CHAI, T. Y. 2017. Isolation and characterization of a novel
cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum
nigrum. Plant Cell Reports, 36, 281-296.
FONTANILI, L., LANCILLI, C., SUZUI, N., DENDENA, B., YIN, Y.-G., FERRI,
A., ISHII, S., KAWACHI, N., LUCCHINI, G., FUJIMAKI, S., SACCHI, G. A. &
NOCITO, F. F. 2016. Kinetic Analysis of Zinc/Cadmium Reciprocal
Competitions Suggests a Possible Zn-Insensitive Pathway for
Root-to-Shoot Cadmium Translocation in Rice. Rice, 9,16.
FRAUSTO DA SILVA JJR, W. R. 2001. The biological chemistry of the
elements: the inorganic chemistry of life, New York, Oxford University
Press.
GAO, X., AKHTER, F., TENUTA, M., FLATEN, D. N., GAWALKO, E. J. & GRANT,
C. A. 2010. Mycorrhizal colonization and grain Cd concentration of
field-grown durum wheat in response to tillage, preceding crop and
phosphorus fertilization. J Sci Food Agric, 90, 750-8.
GREGER, M., KABIR, A. H., LANDBERG, T., MAITY, P. J. & LINDBERG, S.
2016. Silicate reduces cadmium uptake into cells of wheat.Environmental Pollution, 211, 90-97.
GUO, B., LIU, C., DING, N. F., FU, Q. L., LIN, Y. C., LI, H. & LI, N.
Y. 2016. Silicon Alleviates Cadmium Toxicity in Two Cypress Varieties by
Strengthening the Exodermis Tissues and Stimulating Phenolic Exudation
of Roots. Journal of Plant Growth Regulation, 35,420-429.
GUSTIN, J. L., LOUREIRO, M. E., KIM, D., NA, G., TIKHONOVA, M. & SALT,
D. E. 2009. MTP1-dependent Zn sequestration into shoot vacuoles suggests
dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating
plants. Plant Journal, 57, 1116-1127.
GWOREK, B., DMUCHOWSKI, W. & BACZEWSKA-DĄBROWSKA, A. H. 2020. Mercury
in the terrestrial environment: a review. Environmental Sciences
Europe, 32, 128.
HAMMOND, J. P., BOWEN, H. C., WHITE, P. J., MILLS, V., PYKE, K. A.,
BAKER, A. J., WHITING, S. N., MAY, S. T. & BROADLEY, M. R. 2006. A
comparison of the Thlaspi caerulescens and Thlaspi arvense shoot
transcriptomes. New Phytol, 170, 239-60.
HANIKENNE, M., TALKE, I. N., HAYDON, M. J., LANZ, C., NOLTE, A., MOTTE,
P., KROYMANN, J., WEIGEL, D. & KRAMER, U. 2008. Evolution of metal
hyperaccumulation required cis-regulatory changes and triplication of
HMA4. Nature, 453, 391-U44.
HAYAT, S., HAYAT, Q., ALYEMENI, M. N., WANI, A. S., PICHTEL, J. &
AHMAD, A. 2012. Role of proline under changing environments: a review.Plant Signal Behav, 7, 1456-66.
HAYDON, M. J. & COBBETT, C. S. 2007. Transporters of ligands for
essential metal ions in plants. New Phytologist, 174,499-506.
HODGE, A. 2009. Root decisions. Plant Cell Environ, 32,628-40.
HU, M., LI, F. B., LIU, C. P. & WU, W. J. 2015. The diversity and
abundance of As(III) oxidizers on root iron plaque is critical for
arsenic bioavailability to rice. Scientific Reports, 5.
HUI, F. Q., LIU, J., GAO, Q. K. & LOU, B. G. 2015. Piriformospora
indica confers cadmium tolerance in Nicotiana tabacum. Journal of
Environmental Sciences, 37, 184-191.
ISHIMARU, Y., TAKAHASHI, R., BASHIR, K., SHIMO, H., SENOURA, T.,
SUGIMOTO, K., ONO, K., YANO, M., ISHIKAWA, S., ARAO, T., NAKANISHI, H.
& NISHIZAWA, N. K. 2012. Characterizing the role of rice NRAMP5 in
Manganese, Iron and Cadmium Transport. Scientific Reports, 2.
JAIN, A., SINILAL, B., DHANDAPANI, G., MEAGHER, R. B. & SAHI, S. V.
2013. Effects of Deficiency and Excess of Zinc on Morphophysiological
Traits and Spatiotemporal Regulation of Zinc-Responsive Genes Reveal
Incidence of Cross Talk between Micro- and Macronutrients.Environmental Science & Technology, 47, 5327-5335.
JEONG, J. & EIDE, D. J. 2013. The SLC39 family of zinc transporters.Mol Aspects Med, 34, 612-9.
KAMBE, T., TSUJI, T., HASHIMOTO, A. & ITSUMURA, N. 2015. The
Physiological, Biochemical, and Molecular Roles of Zinc Transporters in
Zinc Homeostasis and Metabolism. Physiol Rev, 95,749-84.
KELLER, C., MCGRATH, S. P. & DUNHAM, S. J. 2002. Trace metal leaching
through a soil-grassland system after sewage sludge application. J
Environ Qual, 31, 1550-60.
KHARE, D., MITSUDA, N., LEE, S., SONG, W. Y., HWANG, D., OHME-TAKAGI,
M., MARTINOIA, E., LEE, Y. & HWANG, J. U. 2017. Root avoidance of toxic
metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis
thaliana. New Phytologist, 213, 1257-1273.
KOTECHA, M., MEDHAVI, CHAUDHARY, S., MARWA, N., DEEBA, F., PANDEY, V. &
PRASAD, V. 2019. Metals, Crops and Agricultural Productivity: Impact of
Metals on Crop Loss. In: SRIVASTAVA, S., SRIVASTAVA, A. K. &
SUPRASANNA, P. (eds.) Plant-Metal Interactions. Cham: Springer
International Publishing.
KOZHEVNIKOVA, A. D., SEREGIN, I. V., ERLIKH, N. T., SHEVYREVA, T. A.,
ANDREEV, I. M., VERWEIJ, R. & SCHAT, H. 2014a. Histidine-mediated xylem
loading of zinc is a species-wide character in Noccaea caerulescens.New Phytol, 203, 508-519.
KOZHEVNIKOVA, A. D., SEREGIN, I. V., VERWEIJ, R. & SCHAT, H. 2014b.
Histidine promotes the loading of nickel and zinc, but not of cadmium,
into the xylem in Noccaea caerulescens. Plant Signal Behav,9, e29580.
KRISHNA, A. T. P., MAHARAJAN, T., VICTOR ROCH, G., IGNACIMUTHU, S. &
ANTONY CEASAR, S. 2020. Structure, Function, Regulation and Phylogenetic
Relationship of ZIP Family Transporters of Plants. Frontiers in
Plant Science, 11.
KRUPA, P. & KOZDROJ, J. 2004. Accumulation of heavy metals by
ectomycorrhizal fungi colonizing birch trees growing in an industrial
desert soil. World Journal of Microbiology & Biotechnology,20, 427-430.
KUMARI, S., AMIT, JAMWAL, R., MISHRA, N. & SINGH, D. K. 2020. Recent
developments in environmental mercury bioremediation and its toxicity: A
review. Environmental Nanotechnology, Monitoring & Management,13, 100283.
LEE, S., JEONG, H. J., KIM, S. A., LEE, J., GUERINOT, M. L. & AN, G.
2010. OsZIP5 is a plasma membrane zinc transporter in rice. Plant
Mol Biol, 73, 507-17.
LEKEUX, G., LAURENT, C., JORIS, M., JADOUL, A., JIANG, D., BOSMAN, B.,
CARNOL, M., MOTTE, P., XIAO, Z., GALLENI, M. & HANIKENNE, M. 2018.
di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer
nanomolar affinity for zinc and are essential for HMA4 function in vivo.Journal of Experimental Botany, 69, 5547-5560.
LETERME, B., BLANC, P. & JACQUES, D. 2014. A reactive transport model
for mercury fate in soil—application to different anthropogenic
pollution sources. Environmental Science and Pollution Research,21, 12279-12293.
LI, D., XU, X., HU, X., LIU, Q., WANG, Z., ZHANG, H., WANG, H., WEI, M.,
WANG, H., LIU, H. & LI, C. 2015. Genome-Wide Analysis and Heavy
Metal-Induced Expression Profiling of the HMA Gene Family in Populus
trichocarpa. Frontiers in plant science, 6, 1149-1149.
LI, J., SUN, Y., JIANG, X., CHEN, B. & ZHANG, X. 2018. Arbuscular
mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by
influencing arsenic speciation and partitioning. Ecotoxicol
Environ Saf, 157, 235-243.
LI, Y. J., DHANKHER, O. P., CARREIRA, L., LEE, D., CHEN, A., SCHROEDER,
J. I., BALISH, R. S. & MEAGHER, R. B. 2004. Overexpression of
phytochelatin synthase in Arabidopsis leads to enhanced arsenic
tolerance and cadmium hypersensitivity. Plant and Cell
Physiology, 45, 1787-1797.
LILAY, G. H., PERSSON, D. P., CASTRO, P. H., LIAO, F., ALEXANDER, R. D.,
AARTS, M. G. M. & ASSUNÇÃO, A. G. L. 2021. Arabidopsis bZIP19 and
bZIP23 act as zinc sensors to control plant zinc status. Nature
plants, 7, 137-143.
LINDSAY, E. R. & MAATHUIS, F. J. M. 2016. Arabidopsis thaliana NIP7;1
is involved in tissue arsenic distribution and tolerance in response to
arsenate. Febs Letters, 590, 779-786.
LINDSAY, E. R. & MAATHUIS, F. J. M. 2017. New Molecular Mechanisms to
Reduce Arsenic in Crops. Trends in Plant Science, 22,1016-1026.
LIU, X. S., FENG, S. J., ZHANG, B. Q., WANG, M. Q., CAO, H. W., RONO, J.
K., CHEN, X. & YANG, Z. M. 2019. OsZIP1 functions as a metal efflux
transporter limiting excess zinc, copper and cadmium accumulation in
rice. Bmc Plant Biology, 19.
LÓPEZ-MILLÁN, A.-F., ELLIS, D. R. & GRUSAK, M. A. 2004. Identification
and Characterization of Several New Members of the ZIP Family of Metal
Ion Transporters in Medicago Truncatula. Plant Molecular Biology,54, 583-596.
LU, C., ZHANG, L., TANG, Z., HUANG, X.-Y., MA, J. F. & ZHAO, F.-J.
2019. Producing cadmium-free Indica rice by overexpressing OsHMA3.Environment International, 126, 619-626.
LUX, A., MARTINKA, M., VACULIK, M. & WHITE, P. J. 2011. Root responses
to cadmium in the rhizosphere: a review. Journal of Experimental
Botany, 62, 21-37.
MA, J. F., YAMAJI, N., MITANI, N., XU, X. Y., SU, Y. H., MCGRATH, S. P.
& ZHAO, F. J. 2008. Transporters of arsenite in rice and their role in
arsenic accumulation in rice grain. Proceedings of the National
Academy of Sciences of the United States of America, 105,9931-9935.
MA, M., DU, H. & WANG, D. 2019. Mercury methylation by anaerobic
microorganisms: A review. Critical Reviews in Environmental
Science and Technology, 49, 1893-1936.
MAISCH, M., LUEDER, U., KAPPLER, A. & SCHMIDT, C. 2020. From Plant to
Paddy-How Rice Root Iron Plaque Can Affect the Paddy Field Iron Cycling.Soil Systems, 4.
MAJUMDER, A., BHATTACHARYYA, K., BHATTACHARYYA, S. & KOLE, S. C. 2013.
Arsenic-tolerant, arsenite-oxidising bacterial strains in the
contaminated soils of West Bengal, India. Science of the Total
Environment, 463, 1006-1014.
MARSCHNER, P. 2012. Mineral Nutrition of Higher Plants , Academic
Press.
MCLAUGHLIN, M. J., HAMON, R. E., MCLAREN, R. G., SPEIR, T. W. & ROGERS,
S. L. 2000. Review: A bioavailability-based rationale for controlling
metal and metalloid contamination of agricultural land in Australia and
New Zealand. Soil Research, 38, 1037-1086.
MEHARG, A. A. & RAHMAN, M. 2003. Arsenic contamination of Bangladesh
paddy field soils: Implications for rice contribution to arsenic
consumption. Environmental Science & Technology, 37,229-234.
MIGEON, A., BLAUDEZ, D., WILKINS, O., MONTANINI, B., CAMPBELL, M. M.,
RICHAUD, P., THOMINE, S. & CHALOT, M. 2010. Genome-wide analysis of
plant metal transporters, with an emphasis on poplar. Cellular and
Molecular Life Sciences, 67, 3763-3784.
MILNER, M. J., SEAMON, J., CRAFT, E. & KOCHIAN, L. V. 2013. Transport
properties of members of the ZIP family in plants and their role in Zn
and Mn homeostasis. Journal of Experimental Botany, 64,369-381.
MOREL, M., CROUZET, J., GRAVOT, A., AUROY, P., LEONHARDT, N., VAVASSEUR,
A. & RICHAUD, P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb
vacuolar storage in Arabidopsis. Plant Physiol, 149,894-904.
MOSA, K. A., KUMAR, K., CHHIKARA, S., MCDERMOTT, J., LIU, Z. J.,
MUSANTE, C., WHITE, J. C. & DHANKHER, O. P. 2012. Members of rice
plasma membrane intrinsic proteins subfamily are involved in arsenite
permeability and tolerance in plants. Transgenic Research,21, 1265-1277.
MUTHERT, L. W. F., IZZO, L. G., VAN ZANTEN, M. & ARONNE, G. 2020. Root
Tropisms: Investigations on Earth and in Space to Unravel Plant Growth
Direction. Frontiers in Plant Science, 10.
NAIR, A., JUWARKAR, A. A. & SINGH, S. K. 2007. Production and
characterization of siderophores and its application in arsenic removal
from contaminated soil. Water Air and Soil Pollution,180, 199-212.
NOCTOR, G., MHAMDI, A. & FOYER, C. H. 2016. Oxidative stress and
antioxidative systems: recipes for successful data collection and
interpretation. Plant Cell and Environment, 39,1140-1160.
NONG, X. Y., ZHANG, C. L., CHEN, H. X., RONG, Q., GAO, H. F. & JIN, X.
D. 2020. Remediation of Cd, Pb and as Co-contaminated Paddy Soil by
Applying Different Amendments. Bulletin of Environmental
Contamination and Toxicology, 105, 283-290.
ORTEGA-VILLASANTE, C., RELLÁN-ALVAREZ, R., DEL CAMPO, F. F.,
CARPENA-RUIZ, R. O. & HERNÁNDEZ, L. E. 2005. Cellular damage induced by
cadmium and mercury in Medicago sativa. J Exp Bot, 56,2239-51.
PALM, E., GUIDI NISSIM, W., MANCUSO, S. & AZZARELLO, E. 2021.
Split-root investigation of the physiological response to heterogeneous
elevated Zn exposure in poplar and willow. Environmental and
Experimental Botany, 183, 104347.
PARK, J., SONG, W. Y., KO, D., EOM, Y., HANSEN, T. H., SCHILLER, M.,
LEE, T. G., MARTINOIA, E. & LEE, Y. 2012. The phytochelatin
transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and
mercury. Plant Journal, 69, 278-288.
PEREZ;, A. P. & EUGENIO, N. R. 2018. Status of local soil contamination
in Europe: Revision of the indicator “Progress in the management
contaminated sites in Europe”. Luxembourg,.
PINTO, A. P., SIMOES, I. & MOTA, A. M. 2008. Cadmium impact on root
exudates of sorghum and maize plants: A speciation study. Journal
of Plant Nutrition, 31, 1746-1755.
PODAR, D., SCHERER, J., NOORDALLY, Z., HERZYK, P., NIES, D. & SANDERS,
D. 2012. Metal selectivity determinants in a family of transition metal
transporters. J Biol Chem, 287, 3185-96.
PRASAD, A. S. 2014. Impact of the discovery of human zinc deficiency on
health. J Trace Elem Med Biol, 28, 357-63.
RAJ, D. & MAITI, S. K. 2019. Sources, toxicity, and remediation of
mercury: an essence review. Environmental Monitoring and
Assessment, 191, 566.
REMANS, T., THIJS, S., TRUYENS, S., WEYENS, N., SCHELLINGEN, K., KEUNEN,
E., GIELEN, H., CUYPERS, A. & VANGRONSVELD, J. 2012. Understanding the
development of roots exposed to contaminants and the potential of
plant-associated bacteria for optimization of growth. Ann Bot,110, 239-52.
REMY, E., CABRITO, T. R., BATISTA, R. A., TEIXEIRA, M. C., SA-CORREIA,
I. & DUQUE, P. 2012. The Pht1;9 and Pht1;8 transporters mediate
inorganic phosphate acquisition by the Arabidopsis thaliana root during
phosphorus starvation. New Phytol, 195, 356-371.
REN, X. M., GUO, S. J., TIAN, W., CHEN, Y., HAN, H., CHEN, E., LI, B.
L., LI, Y. Y. & CHEN, Z. J. 2019. Effects of Plant Growth-Promoting
Bacteria (PGPB) Inoculation on the Growth, Antioxidant Activity, Cu
Uptake, and Bacterial Community Structure of Rape (Brassica napus L.)
Grown in Cu-Contaminated Agricultural Soil. Frontiers in
Microbiology, 10.
RENU, K., CHAKRABORTY, R., MYAKALA, H., KOTI, R., FAMUREWA, A. C.,
MADHYASTHA, H., VELLINGIRI, B., GEORGE, A. & VALSALA GOPALAKRISHNAN, A.
2021. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic,
Mercury, Nickel and Cadmium) - induced hepatotoxicity – A review.Chemosphere, 271, 129735.
RIDDLE, S. G., TRAN, H. H., DEWITT, J. G. & ANDREWS, J. C. 2002. Field,
laboratory, and X-ray absorption spectroscopic studies of mercury
accumulation by water hyacinths. Environ Sci Technol,36, 1965-70.
ROSENZWEIG, A. C. 2002. Metallochaperones: bind and deliver. Chem
Biol, 9, 673-7.
SATOH-NAGASAWA, N., MORI, M., NAKAZAWA, N., KAWAMOTO, T., NAGATO, Y.,
SAKURAI, K., TAKAHASHI, H., WATANABE, A. & AKAGI, H. 2011. Mutations in
Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the
Translocation of Zinc and Cadmium. Plant and Cell Physiology,53, 213-224.
SCHWESIG, D. & KREBS, O. 2003. The role of ground vegetation in the
uptake of mercury and methylmercury in a forest ecosystem. Plant
and Soil, 253, 445-455.
SHI, S., WANG, T., CHEN, Z., TANG, Z., WU, Z., SALT, D. E., CHAO, D. Y.
& ZHAO, F. J. 2016. OsHAC1;1 and OsHAC1;2 Function as Arsenate
Reductases and Regulate Arsenic Accumulation. Plant Physiol,172, 1708-1719.
SHIM, D., HWANG, J. U., LEE, J., LEE, S., CHOI, Y., AN, G., MARTINOIA,
E. & LEE, Y. 2009. Orthologs of the class A4 heat shock transcription
factor HsfA4a confer cadmium tolerance in wheat and rice. Plant
Cell, 21, 4031-43.
SHIN, H., SHIN, H. S., DEWBRE, G. R. & HARRISON, M. J. 2004. Phosphate
transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in
phosphate acquisition from both low- and high-phosphate environments.Plant J, 39, 629-42.
SILVER, S. A. & HOBMAN, J. L. 2007. Mercury Microbiology:
Resistance Systems, Environmental Aspects, Methylation, and Human
Health, Berlin, Heidelberg, Springer.
SINGH, S., TRIPATHI, D. K., CHAUHAN, D. K. & DUBEY, N. K. 2016.
Glutathione and Phytochelatins Mediated Redox Homeostasis and Stress
Signal Transduction in Plants: An Integrated Overview. Plant Metal
Interaction: Emerging Remediation Techniques , 285-310.
SONG, W.-Y., YAMAKI, T., YAMAJI, N., KO, D., JUNG, K.-H., FUJII-KASHINO,
M., AN, G., MARTINOIA, E., LEE, Y. & MA, J. F. 2014. A rice ABC
transporter, OsABCC1, reduces arsenic accumulation in the grain.Proceedings of the National Academy of Sciences, 111,15699-15704.
SONG, Y., JIN, L. & WANG, X. J. 2017. Cadmium absorption and
transportation pathways in plants. International Journal of
Phytoremediation, 19, 133-141.
SPAGNOLETTI, F. N., BALESTRASSE, K., LAVADO, R. S. & GIACOMETTI, R.
2016. Arbuscular mycorrhiza detoxifying response against arsenic and
pathogenic fungus in soybean. Ecotoxicology and Environmental
Safety, 133, 47-56.
SUZUKI, M., TAKAHASHI, M., TSUKAMOTO, T., WATANABE, S., MATSUHASHI, S.,
YAZAKI, J., KISHIMOTO, N., KIKUCHI, S., NAKANISHI, H., MORI, S. &
NISHIZAWA, N. K. 2006. Biosynthesis and secretion of mugineic acid
family phytosiderophores in zinc-deficient barley. Plant J,48, 85-97.
TANAKA, N., KAWACHI, M., FUJIWARA, T. & MAESHIMA, M. 2013. Zinc-binding
and structural properties of the histidine-rich loop of Arabidopsis
thaliana vacuolar membrane zinc transporter MTP1. FEBS Open Bio,3, 218-24.
TANG, L., MAO, B., LI, Y., LV, Q., ZHANG, L., CHEN, C., HE, H., WANG,
W., ZENG, X., SHAO, Y., PAN, Y., HU, Y., PENG, Y., FU, X., LI, H., XIA,
S. & ZHAO, B. 2017. Knockout of OsNRAMP5 using the CRISPR/Cas9 system
produces low Cd-accumulating indica rice without compromising yield.Sci Rep, 7, 14438.
TASHAKOR, M., YAACOB, W. Z. W. & MOHAMAD, H. 2013. Serpentine Soils,
Adverse Habitat for Plants. American Journal of Environmental
Sciences, 9.
THORNE, S. J., HARTLEY, S. E. & MAATHUIS, F. J. M. 2020. Is Silicon a
Panacea for Alleviating Drought and Salt Stress in Crops?Frontiers in plant science, 11, 1221-1221.
TOGNACCHINI, A., SALINITRO, M., PUSCHENREITER, M. & VAN DER ENT, A.
2020. Root foraging and avoidance in hyperaccumulator and excluder
plants: a rhizotron experiment. Plant and Soil, 450,287-302.
TÓTH, G., HERMANN, T., DA SILVA, M. R. & MONTANARELLA, L. 2016. Heavy
metals in agricultural soils of the European Union with implications for
food safety. Environment International, 88, 299-309.
TRIPATHI, R. D., SRIVASTAVA, S., MISHRA, S., SINGH, N., TULI, R., GUPTA,
D. K. & MAATHUIS, F. J. 2007. Arsenic hazards: strategies for tolerance
and remediation by plants. Trends Biotechnol, 25,158-65.
TURNAU, K., GAWROŃSKI, S., RYSZKA, P. & ZOOK, D. 2012.
Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from
the Trzebionka Mining Works (Southern Poland). In: KOTHE, E. &
VARMA, A. (eds.) Bio-Geo Interactions in Metal-Contaminated
Soils. Berlin, Heidelberg: Springer Berlin Heidelberg.
UENO, D., YAMAJI, N., KONO, I., HUANG, C. F., ANDO, T., YANO, M. & MA,
J. F. 2010. Gene limiting cadmium accumulation in rice. Proc Natl
Acad Sci U S A, 107, 16500-5.
USEPA; UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2007. Treatment
Technologies for Mercury in Soil, Waste, and Water.
VALLEE, B. L. A. & ULMER, D. D. 1972. Biochemical Effects of Mercury,
Cadmium, and Lead. Annual Review of Biochemistry, 41,91-128.
VERRET, F., GRAVOT, A., AUROY, P., LEONHARDT, N., DAVID, P., NUSSAUME,
L., VAVASSEUR, A. & RICHAUD, P. 2004. Overexpression of AtHMA4 enhances
root-to-shoot translocation of zinc and cadmium and plant metal
tolerance. FEBS Letters, 576, 306-312.
VON WIREN, N., MARSCHNER, H. & ROMHELD, V. 1996. Roots of
Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.Plant Physiology, 111, 1119-1125.
WATTS-WILLIAMS, S. J., SMITH, F. A., MCLAUGHLIN, M. J., PATTI, A. F. &
CAVAGNARO, T. R. 2015. How important is the mycorrhizal pathway for
plant Zn uptake? Plant and Soil, 390, 157-166.
WHITING, S. N., LEAKE, J. R., MCGRATH, S. P. & BAKER, A. J. M. 2000.
Positive responses to Zn and Cd by roots of the Zn and Cd
hyperaccumulator Thlaspi caerulescens. New Phytologist,145, 199-210.
WHO, W. H. O. 2013. Research for universal health coverage.
WILSON, N. 2018. Nanoparticles: Environmental Problems or Problem
Solvers? BioScience, 68, 241-246.
WONG, C. K. E., JARVIS, R. S., SHERSON, S. M. & COBBETT, C. S. 2009.
Functional analysis of the heavy metal binding domains of the
Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New
Phytologist, 181, 79-88.
WU, C., YE, Z., SHU, W., ZHU, Y. & WONG, M. 2011. Arsenic accumulation
and speciation in rice are affected by root aeration and variation of
genotypes. Journal of Experimental Botany, 62,2889-2898.
WU, L., LI, X., MA, L., BORRISS, R., WU, Z. & GAO, X. 2018. Acetoin and
2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure
in Arabidopsis thaliana and Nicotiana benthamiana. Journal of
Experimental Botany, 69, 5625-5635.
WUANA, R. A. & OKIEIMEN, F. E. 2011. Heavy Metals in Contaminated
Soils: A Review of Sources, Chemistry, Risks and Best Available
Strategies for Remediation. ISRN Ecology, 2011, 402647.
XU, J., SHI, S., WANG, L., TANG, Z., LV, T., ZHU, X., DING, X., WANG,
Y., ZHAO, F.-J. & WU, Z. 2017. OsHAC4 is critical for arsenate
tolerance and regulates arsenic accumulation in rice. New
Phytologist, 215, 1090-1101.
YU, H. Y., WANG, X. Q., LI, F. B., LI, B., LIU, C. P., WANG, Q. & LEI,
J. 2017. Arsenic mobility and bioavailability in paddy soil under iron
compound amendments at different growth stages of rice.Environmental Pollution, 224, 136-147.
ZANELLA, L., FATTORINI, L., BRUNETTI, P., ROCCOTIELLO, E., CORNARA, L.,
D’ANGELI, S., DELLA ROVERE, F., CARDARELLI, M., BARBIERI, M., SANITA DI
TOPPI, L., DEGOLA, F., LINDBERG, S., ALTAMURA, M. M. & FALASCA, G.
2016. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic
plus cadmium accumulation and detoxification. Planta,243, 605-622.
ZHANG, J., MARTINOIA, E. & LEE, Y. 2018. Vacuolar Transporters for
Cadmium and Arsenic in Plants and their Applications in Phytoremediation
and Crop Development. Plant and Cell Physiology, 59,1317-1325.
ZHANG, T., KULIYEV, E., SUI, D. & HU, J. 2019. The histidine-rich loop
in the extracellular domain of ZIP4 binds zinc and plays a role in zinc
transport. The Biochemical journal, 476, 1791-1803.
ZHAO, F. J., MA, J. F., MEHARG, A. A. & MCGRATH, S. P. 2009. Arsenic
uptake and metabolism in plants. New Phytologist, 181,777-794.
ZHOU, Z. S., HUANG, S. Q., GUO, K., MEHTA, S. K., ZHANG, P. C. & YANG,
Z. M. 2007. Metabolic adaptations to mercury-induced oxidative stress in
roots of Medicago sativa L. Journal of Inorganic Biochemistry,101, 1-9.