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1 Introduction

Since Rabinowitz published his pioneer paper [12] in 1978, more and more mathematicians

have paid more attention to the periodic solutions for the first-order or second-order Hamiltonian

systems. There has been a lot of literature on the study of periodic solutions for Hamiltonian

systems via critical point theory, such as [5, 13, 15–20] and the references therein. In [12],

Rabinowitz consider the following second-order Hamiltonian systems

ü+ V ′(u) = 0, u ∈ RN . (1.1)

He studied the existence of periodic solutions of system (1.1) under the superquadratic condition,

i.e., (AR): there exist µ > 2 and L > 0 such that 0 < µF (t, u) ≤ (▽F (t, u), u) for t ∈ [0, T ]
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and |u| ≥ L. Observe that (AR) plays an important role to show that Palais-Smale sequence is

bounded. Such condition was first introduced by Ambrosetti and Rabinowitz [1], and are useful

in solving superlinear problems such as elliptic equations, dirac equations and wave equations.

Tang and Wu [14] studied the existence of periodic solutions of system (1.1) with subquadratic

and convex potentials, which unifies and generalizes the results in [11, 13, 15, 23]. In [8], Long

proved the existence of period solution for system (1.1) without any convexity assumptions.

This is one of the only papers on the assumption of nonconvexity, see [4, 6, 8–10, 21]. Inspired

by some of ideas of [8], Li [7] obtained the existence of two minimal periodic solutions of system

(1.1) by using a generalized version of the Weierstrass theorem and a new space decomposition

in 2021. To our best knowledge, this is the first result of the existence of multiple minimal

periodic solutions for Hamiltonian systems with subquadratic potentials. However, under the

assumptions of superquadratic potentials and subquadratic potentials for system (1.1), the

existence of periodic solutions with more properties has not been obtained.

Motivated by the above mentioned work, we will study the following second-order Hamilto-

nian systems with a parameter

ü+ λV ′(u) = 0, (1.2)

where λ is a parameter, V ∈ C1(RN , R), V (0) = 0 and V (u) =
∫ u
0 V ′(s)ds.

Next, we assume the following conditions, in which condition (V2) is the superquadratic

assumption for the nonlinear term and condition (V3) is the subquadratic assumption for the

nonlinear term.

(V1) V (−u) = V (u) for any u ∈ RN .

(V2) 0 < µV (u) ≤ V ′(u)u for u ≥M , where µ and M are two positive constants and µ > 2.

(V3) there is a constants 1 < β < 2 such that V (u) ≤ A|u|β + p(t), where p(t) ∈ L1[0, T ];

The new insights presented in the paper are as follows. Firstly, system (1.2) is a generaliza-

tion of system (1.1). If λ = 1, system (1.2) reduces to system (1.1). Secondly, superquadratic

and subquadratic assumptions are imposed on nonlinear term, respectively. In the two cases,

the existence of six periodic solutions and nine periodic solutions are obtained. Finally, com-

pared with [7], we also consider the existence of two odd T/2-antiperiodic nonconstant solutions

with period T .

Our main results are as follows.

Theorem 1.1. Assume that conditions (V1), (V2) hold and there exist a positive constants r

such that (V4)
∫ T
0 V (sin 2π

T t)dt > π2

r max|u|<c1 V (u), where c1 =
√

(24+π2)Tr
24π2 . Then for each
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λ ∈
(

π2

T
∫ T
0 V (sin 2π

T
t)dt

, r
T max|u|<c1

V (u)

)
, system (1.2) has at least two odd T/2-antiperiodic non-

constant solutions with period T .

Corollary 1.1. Assume that conditions (V1), (V2) hold and there exist a positive constants

r such that (V5)
∫ T
0 V (sin 4π

T t)dt ≥ 4π2

r max|u|<c2 V (u), where c2 =
√

Tr
24 . Then for each

λ ∈
(

4π2

T
∫ T
0 V (sin 4π

T
t)dt

, r
T max|u|<c2

V (u)

)
, system (1.2) has at least two odd nonconstant periodic

solutions with period T/2.

Corollary 1.2. Assume that conditions (V1), (V2) hold and there exist a positive constants r

such that (V6)
∫ T
0 V (cos 2π

T t)dt ≥ π2

r max|u|<c3 V (u), where c3 =
√

(24+π2)Tr
24π2 . Then for each

λ ∈
(

π2

T
∫ T
0 V (cos 2π

T
t)dt

, r
T max|u|<c3

V (u)

)
, system (1.2) has at least two even T/2-antiperiodic

nonzero solutions with period T .

Theorem 1.2. Assume that there is a positive constant r and a function v ∈ X with Φ(v) >

2k1, where k1 =
√

(24+π2)Tr
24π2 . Suppose conditions (V1) , (V3) and (V7)

∫ T
0 V (sin 2π

T t)dt >

3π2

2r max|u|<k1 V (u) hold. Then, for each λ ∈
(

3π2

2T
∫ T
0 V (sin 2π

T
t)dt

, r
T max|u|<k1

V (u)

)
, the system

(1.2) has at least three odd T/2-antiperiodic periodic solutions with period T .

Corollary 1.3. Assume that there is a positive constant r and a function v ∈ X with Φ(v) > 2k2,

where k2 =
√

Tr
24 . Suppose conditions (V1), (V3) and (V8)

∫ T
0 V (sin 4π

T t)dt > 6π2

r max|u|<k2 V (u)

hold. Then, for each λ ∈
(

6π2

T
∫ T
0 V (sin 4π

T
t)dt

, r
T max|u|<k2

V (u)

)
, the system (1.2) has at least three

odd periodic solutions with period T/2.

Corollary 1.4. Assume that there is a positive constant r and a function v ∈ X with Φ(v) >

2k3, where k3 =
√

(24+π2)Tr
24π2 . Suppose conditions (V1), (V3) and (V9)

∫ T
0 V (cos 2π

T t)dt >

3π2

2r max|u|<k3 V (u) hold. Then, for each λ ∈
(

3π2

2T
∫ T
0 V (cos 2π

T
t)dt

, r
T max|u|<k3

V (u)

)
, the system

(1.2) has at least three even T/2-antiperiodic solutions with period T .

The following two lemmas are the latest Two-Critical-Point-Theorem and Three-Critical-

Point-Theorem, which will be used to prove Theorem 1.1 and Theorem 1.2.

Lemma 1.3. ([2]) Let X be a reflexive real Banach space and let Φ,Ψ : X → R be two

functionals of class C1 such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that there exist r ∈ R

and ũ ∈ X, with 0 < Φ(ũ) < r, such that

supu∈Φ−1(−∞,r)Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (1.3)
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and for each λ ∈ ∧ =
(Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Iλ = Φ− λΨ satisfies the (PS)-

condition and it is unbounded from below. Then, for each λ ∈ ∧, the functional Iλ(x) admits at

least two nonzero critical points uλ,1, uλ,2 such that I(uλ,1) < 0 < I(uλ,2).

Lemma 1.4. ([3]) Let X be a reflexive real Banach space, Φ : X → R be a coercive and

continuous Gâteaux differentiable functional whose Gâteaux derivative admits a continuous

inverse on X∗, and Ψ : X → R be a continuous Gâteaux differentiable functional whose

derivative is compact with infX Φ = Φ(0) = Ψ(0) = 0. Assume that there a positive constant r

and an element v ∈ X, with 2r < Φ(u), such that

(a1)
supu∈Φ−1 Ψ(u)

r < 2Ψ(v)
3Φ(v) ;

(a2) for all λ ∈
( 3Φ(v)
2Ψ(v) ,

r
supu∈Φ−1 Ψ(u)

)
, the functional Φ− λΨ is coercive.

Then, for each λ ∈
( 3Φ(v)
2Ψ(v) ,

r
supu∈Φ−1 Ψ(u)

)
, the functional Φ−λΨ has at least three distinct critical

point.

2 Preliminaries

In this section, we recall some essential definitions and several lemmas.

Let us consider the spaceX = H1
T = W 1,2(ST , R

N ) with the norm ∥u∥ =
(∫ T

0 |u|
2 + |u̇|2)dt

) 1
2
,

where ST = R/(TS), T > 0. It is well known X is a reflexive Banach space. We can split X into

X = XT
⊕

YT , where XT = {u ∈ H1
T

∣∣u(−t) = −u(t)} and YT = {u ∈ H1
T

∣∣u(−t) = u(t)}. XT

and YT are closed subspaces of X, then they are reflexive Banach space. Moreover, we define

X1
T = {u ∈ XT

∣∣u(t) = −u(t− T/2)} and X2
T = {u ∈ XT

∣∣u(t) = u(t− T/2)}

Y 1
T = {u ∈ YT

∣∣u(t) = −u(t− T/2)} and Y 2
T = {u ∈ YT

∣∣u(t) = u(t− T/2)},

where XT = X1
T

⊕
X2

T and YT = Y 1
T

⊕
Y 2
T . Obviously, for x1 ∈ X1

T , x2 ∈ X2
T , y1 ∈ Y 1

T and

y2 ∈ Y 2
T , we have the following Fourier expansions

x1 =

+∞∑
k=0

b2k+1 sin((2k + 1)ωt) and x2 =

+∞∑
k=1

b2k sin(2kωt)

y1 =

+∞∑
k=0

a2k+1 cos((2k + 1)ωt) and y2 =

+∞∑
k=0

a2k cos(2kωt),

where ω = 2π
T . In these spaces X1

T , X
2
T and Y 1

T , we defined the norm as follows ∥u∥X1
T

=

∥u∥X2
T
= ∥u∥Y 1

T
=
( ∫ T

0 |u̇|
2dt
) 1

2 , and these norms are equivalent to the normal norm ∥u∥. In

addition, let ∥u∥Y 2
T
=
( ∫ T

0 |u|
2 + |u̇|2dt

) 1
2 = ∥u∥. We define energy functional Iλ : X → RN by

Iλ(u) =
1

2

∫ T

0
|u̇|2dt− λ

∫ T

0
V (u(t))dt. (2.1)
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And Iλ(u) can also be represented as Iλ(u) = Φ(u)−λΨ(u), where the functionals Φ(u),Ψ(u) :

X → RN are defined as follows

Φ(u) =
1

2

∫ T

0
|u̇|2dt (2.2)

and

Ψ(u) =

∫ T

0
V (u(t))dt. (2.3)

Obviously, Iλ(u) is a Gâteaux differentiable functional and its Gâteaux derivation is continuous

in u. So its Fréchet derivative ia as follows at the point u is

⟨I ′λ(u), v⟩ =
∫ T

0
(u̇(t), v̇(t))dt− λ

∫ T

0
V ′(u(t))v(t)dt. (2.4)

Definition 2.1. A function u ∈ X is said to be a weak solution of system (1.2) , if u satisfied

⟨I ′λ(u), v)⟩ = 0 for all v ∈ X.

Definition 2.2. A funtion u is said to be a classical solution of system (1.2), if u ∈ C2(R,R)

satisfies equation in system (1.2).

Lemma 2.1. If u ∈ X1
T (or u ∈ Y 1

T ),
∫ T
0 |u(t)|

2dt ≤ T 2

4π2

∫ T
0 |u̇(t)|

2dt and ∥u∥2∞ ≤ T
2π2 (1 +

π2

24 )
∫ T
0 |u̇(t)|

2dt. In addition, if u ∈ X2
T and

∫ T
0 u(t)dt = 0,

∫ T
0 |u(t)|

2dt ≤ T 2

16π2

∫ T
0 |u̇(t)|

2dt and

∥u∥2∞ ≤ T
48

∫ T
0 |u̇(t)|

2dt.

Proof. If u ∈ X1
T , we have

u(t) =

+∞∑
k=0

b2k+1 sin((2k + 1)ωt). (2.5)

The Parseval equality implies that∫ T

0
|u(t)|2dt = T

2

+∞∑
k=0

|b2k+1|2. (2.6)

Since

u̇(t) =

+∞∑
k=0

(2k + 1)ω · b2k+1 cos((2k + 1)ωt) =

+∞∑
k=0

2(2k + 1)π

T
b2k+1 cos((2k + 1)ωt), (2.7)

by (2.5)-(2.7), we have∫ T

0
|u̇(t)|2dt =

+∞∑
k=0

2(2k + 1)2π2

T
|b2k+1|2 ≥

4π2

T 2

+∞∑
k=0

T

2
|b2k+1|2 =

4π2

T 2

∫ T

0
|u(t)|2dt. (2.8)
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By Cauchy-Schwarz inequality, we obtain

|u(t)|2 ≤

(
+∞∑
k=0

|b2k+1|

)2

=

( +∞∑
k=0

T

2(2k + 1)2π2

)( +∞∑
k=0

2(2k + 1)2π2

T
|b2k+1|2

)
, (2.9)

where

+∞∑
k=0

T

2(2k + 1)2π2
=

T

2π2

+∞∑
k=0

1

(2k + 1)2
=

T

2π2

(
1 +

+∞∑
k=1

1

(2k + 1)2

)

≤ T

2π2

(
1 +

+∞∑
k=1

1

4k2

)
=

T

2π2

(
1 +

π2

4× 6

)
=

T

2π2

(
1 +

π2

24

)
.

(2.10)

Bring (2.8) and (2.10) into (2.9), we get

|u(t)|2 ≤ T

2π2

(
1 +

π2

24

)∫ T

0
|u̇(t)|2dt.

If u ∈ X2
T ,

u(t) =

+∞∑
k=1

b2k sin(2kωt), (2.11)

by Parseval equality, ∫ T

0
|u(t)|2dt = T

2

+∞∑
k=1

|b2k|2. (2.12)

Since

u̇(t) =
+∞∑
k=1

2kωb2k cos(2kωt) =
+∞∑
k=1

4kπ

T
b2k cos(2kωt), (2.13)

we have ∫ T

0
|u̇(t)|2dt =

+∞∑
k=1

8k2π2

T
|b2k|2 ≥

16π2

T 2

+∞∑
k=1

T

2
|b2k|2 =

16π2

T 2

∫ T

0
|u(t)|2dt. (2.14)

According to Cauchy-Schwarz inequality and combined with (2.11) and (2.14), we obtain

|u(t)|2 ≤

(
+∞∑
k=1

|b2k|

)2

≤
( +∞∑

k=1

T

8k2π2

)( +∞∑
k=1

8k2π2

T
|b2k|2

)

=

(
T

8π2

+∞∑
k=1

1

k2

)( +∞∑
k=1

8k2π2

T
|b2k|2

)
≤ T

48

∫ T

0
|u̇(t)|2dt.

If u ∈ Y 1
T , we get

u(t) =
+∞∑
k=0

a2k+1 cos((2k + 1)ωt). (2.15)
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According to Parseval equality, it is obvious that∫ T

0
|u(t)|2dt = T

2

+∞∑
k=0

|a2k+1|2. (2.16)

According to

u̇(t) = −
+∞∑
k=0

(2k + 1)ω · a2k+1 sin((2k + 1)ωt) = −
+∞∑
k=0

2(2k + 1)π

T
a2k+1 sin((2k + 1)ωt), (2.17)

we have∫ T

0
|u̇(t)|2dt =

+∞∑
k=0

2(2k + 1)2π2

T
|a2k+1|2 ≥

4π2

T 2

+∞∑
k=0

T

2
|a2k+1|2 =

4π2

T 2

∫ T

0
|u(t)|2dt. (2.18)

By Cauchy-Schwarz inequality, we get

|u(t)|2 ≤

(
+∞∑
k=0

|a2k+1|

)2

=

( +∞∑
k=0

T

2(2k + 1)2π2

)( +∞∑
k=0

2(2k + 1)2π2

T
|a2k+1|2

)

≤ T

2π2

(
1 +

π2

24

)∫ T

0
|u̇(t)|2dt.

(2.19)

Lemma 2.2. ([4, 7]) Suppose that condition (V1) holds. Then, Iλ ∈ C1(XT , R), and u ∈ XT

is a critical point of Iλ restricted to XT if and only if it is a C2-solution of system (1.2) (The

result still holds if we replace XT with YT .)

Lemma 2.3. ([4, 7]) Suppose that (V1) holds. Then, we have

(i) x∗ ∈ X1
T (X

2
T ) is a critical point of Iλ restricted to X1

T (X
2
T ) if and only if it is a critical point

of Iλ in XT , that is, x
∗ is an odd C2-solution of system (1.2).

(i) y∗ ∈ Y 1
T (Y

2
T ) is a critical point of Iλ restricted to Y 1

T (Y
2
T ) if and only if it is a critical point

of Iλ in YT , that is, y
∗ is an odd C2-solution of system (1.2).

Lemma 2.4. The spaces Xi
T (i = 1, 2) and Y 1

T are compactly embedded to C[0, T ], i.e., Xi
T ↪→↪→

C[0, T ](i = 1, 2) and Y 1
T ↪→↪→ C[0, T ].

Proof. In order to prove space X1
T is compactly embedded to C[0, T ], it is sufficient to prove

space X1
T is continuously embedded to space X. Since X ↪→↪→ C[O, T ], from Lemma 2.1, one

has

∥u∥2 = ∥u̇∥2L2 + ∥u∥2L2 ≤ ∥u̇∥2L2 +
T 2

4π2
∥u̇∥2L2 =

T 2 + 4π2

4π2
∥u̇∥2L2 =

T 2 + 4π2

4π2
∥u∥2X1

T
,

which means space X1
T is continuously embedded to space X. Therefore space X1

T is compactly

embedded to C[0, T ]. In the same way , we have X2
T ↪→↪→ C[0, T ] and Y 1

T ↪→↪→ C[0, T ].
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Lemma 2.5. The spaces Xi
T (i = 1, 2) and Y 1

T are reflexive real Banach spaces.

Proof. It is enough to show X1
T is a closed subspace of XT . Let {un} ∈ X1

T and un → u0 as

n → ∞. Following we will show u0 ∈ X1
T . Since {un} ∈ X1

T and un → u0 as n → ∞, then

un(t) = −un(t − T
2 ) and ∥un − u0∥X1

T
→ 0 as n → ∞. By Lemma 2.1 , ∥un − u0∥∞ → 0 as

n → ∞, which means un(t) → u0(t) as n → ∞, t ∈ [0, T ]. So u0(t) = −u0(t − T
2 ). That is ,

u0 ∈ X1
T . Similarly, The spaces X2

T and Y 1
T are reflexive real Banach space.

Lemma 2.6. If (V2) holds and λ > 0, the functional Iλ is unbound from below on X1
T (or

X2
T ,Y

1
T ), and it satisfies the (PS)-condition on X1

T (or X2
T ,Y

1
T ).

Proof. Firstly, we discuss whether Iλ is unbound from below. By (V2), one knows there exist

two constants α, β > 0 such that V (u) ≥ α|u|µ−β, where µ > 2. For some u0 ∈ X1
T /{0}, l ∈ R,

we obtain

Iλ(lu0) =
1

2

∫ T

0
|lu̇0|2dt− λ

∫ T

0
V (lu0)dt.

≤ l2

2
∥u̇0∥2L2 − λlµ

∫ T

0
α|u0|µdt+ λβT → −∞.

Thus, the energy functional Iλ is unbound from below.

Secondly, we prove that Iλ satisfies the (PS)-condition. Let {un} ∈ X1
T be a sequence such

that |Iλ(un)| < M and ⟨I ′λ(un), un⟩ → 0 as n→∞. For n large enough, by (V2), one evaluates

M +
1

µ
∥un∥X1

T
≥ Iλ(un)−

1

µ
⟨I ′λ(un), un⟩ = (

1

2
− 1

µ
)∥un∥2X1

T
− λ(

∫ T

0
V (un)dt−

1

µ

∫ T

0
V ′(un)undt)

≥ (
1

2
− 1

µ
)∥un∥2X1

T
,

where µ > 2. Thus {un} is bounded in X1
T . Since X1

T is a reflexive Banach space, the fact that

{un} is bounded in X1
T means that one has weakly convergent subsequence {unm} such that

unm ⇀ u in X1
T . Moreover, one has

0← ⟨I ′λ(unm)− I ′λ(u), unm − u⟩ = ∥unm − u∥2X1
T
− λ

∫ T

0
(V ′(unm)− V ′(u))(unm(t)− u(t))dt.

By Lemma 2.4, then (X1
T , ∥ · ∥) ↪→↪→ C([0, T ]), which means∫ T

0
(V ′(unm)− V ′(u))(unm(t)− u(t))dt→ 0

as m → ∞. We get ∥unm − u∥2
X1

T
→ 0 as m → +∞. Therefore Iλ satisfies (PS)-condition.

Using the same proof method, if u ∈ X2
T or u ∈ Y 1

T , one knows the functional Iλ is unbound

from below and satisfies the (PS)-condition.
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Lemma 2.7. Φ is coercive on X1
T (or X

2
T ,Y

1
T ) and Φ′ has a continuous inverse on (X1

T )
∗(or(X2

T )
∗,(Y 1

T )
∗).

Proof. By (2.2), it is obvious that Φ is coercive. Moreover, from [[4], Theorem 26], we know Φ′

has a continuous inverse on (X1
T )

∗ if Φ′ is coercive and continuous monotone. Firstly, we know

⟨Φ′(u), u⟩ =
∫ T
0 |u̇(t)|

2dt = ∥u∥2
X1

T
, which yield that Φ′ is coercive.

Secondly, in consideration of

⟨Φ′(u)− Φ(v), u− v⟩ = ∥u(t)− v(t)∥2X1
T
,

we get Φ′ is continuous monotone. Hence, Lemma 2.7 hold.

Lemma 2.8. Ψ′ : X1
T → (X1

T )
∗ is compact with infu∈X1

T
Φ(u) = Φ(0) = Ψ(0) = 0.

Proof. Firstly, by (V1), it is clear that infX1
T
Φ = Φ(0) = Ψ(0) = 0. Secondly, let {un} ∈ X1

T be

a sequence such that un ⇀ u as n → ∞. Since X1
T ↪→↪→ C[0, T ], we know {un} is uniformly

convergent to u in C[0, T ] as n → ∞. According to the fact that V (u) ∈ C1(RN , R), we get

limn→∞ V ′(un) = V ′(u), which obtains

lim
n→∞

sup
v∈X1

T

< Ψ′(un)−Ψ′(u), v >

∥v∥X1
T

= lim
n→∞

sup
v∈X1

T

∫ T
0 (V ′(un)− V ′(u), v)dt

∥v∥X1
T

= 0.

Therefore, Ψ′(u)n is strongly continuous to Ψ′(u) in X1
T . By [[4], Proposition 26.2], Ψ′ is

compact. Similarly, Ψ′ is compact in spaces X2
T and Y 1

T . In addition, we have infu∈X2
T
Φ(u) =

Φ(0) = Ψ(0) = 0 and infu∈Y 1
T
Φ(u) = Φ(0) = Ψ(0) = 0.

3 Proof of main results

Proof of Theorem 1.1

Proof. By (2.2) and Lemma 2.1, we deduce that

Φ−1(−∞, r) = {u ∈ X1
T

∣∣Φ(u) < r} = {u ∈ X1
T

∣∣∥u̇∥2L2 < 2r}

⊆ {u ∈ X1
T

∣∣∥u∥2∞ <
(24 + π2)Tr

24π2
} = {u ∈ X1

T

∣∣∥u∥∞ < c1}.

Therefore

sup
u∈Φ−1(−∞,r)

Ψ(u) < sup
∥u∥∞<c1

∫ T

0
V (u(t))dt < T max

|u|<c1
V (u).

Let ũ = sin(2πT t), we have

Φ(ũ) =
1

2

∫ T

0
| ˙̃u|2dt = 2π2

T 2

∫ T

0
(cos

2π

T
t)2dt =

π2

T
.
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From (V4), we get

Ψ(ũ)

Φ(ũ)
=

T
∫ T
0 V (sin 2π

T t)dt

π2
>

T max|u|<c1 V (u)

r
>

supu∈Φ−1(−∞,r)Ψ(u)

r
.

Hence, inequality (1.2) of Lemma 1.3 is verified. Combining Lemma 2.6 and Lemma 2.8, we

obtain that, for each λ ∈
(

π2

T
∫ T
0 V (sin 2π

T
t)dt

, r
T max|u|<c1

V (u)

)
, system (1.2) has two nonzero critical

points uλ,1, uλ,2.

In addition, it is obvious that X1
T ∩ RN = {0} from the definition of X1

T . So uλ,1 and uλ,2

are not constants. By Lemma 2.3 , we conclude that there are at least two odd T/2-antiperiodic

nonconstant solutions with period T of system (1.2).

Proof of Theorem 1.2

Proof. By (2.2) and Lemma 2.1, one has

Φ−1(−∞, r) = {u ∈ X1
T

∣∣Φ(u) < r} = {u ∈ X1
T

∣∣∥u̇∥2L2 < 2r}

⊆ {u ∈ X1
T

∣∣∥u∥2∞ <
(24 + π2)Tr

24π2
} = {u ∈ X1

T

∣∣∥u∥∞ < k1}.

which deduces that

sup
u∈Φ−1(−∞,r)

Ψ(u) < T max
|u|<k1

V (u).

Let v = sin(2πT t). One has

Φ(v) =
1

2

∫ T

0
|v̇|2dt = 2π2

T 2

∫ T

0
(cos

2π

T
t)2dt =

π2

T
.

Following from (V7), we have

2Ψ(v)

3Φ(v)
=

2T
∫ T
0 V (sin 2π

T t)dt

3π2
>

T max|u|<k1 V (u)

r
>

supu∈Φ−1(−∞,r)Ψ(u)

r
.

Then, combining (2.1) and (V3), we have

Iλ(u) = Φ(u)− λΨ(u) =
1

2

∫ T

0
|u̇|2dt− λ

∫ T

0
V (u)dt ≥ 1

2

∫ T

0
|u̇|2dt− λ

∫ T

0
A|u|β + p(t)dt,

which means Iλ(u)→ +∞ as ∥u∥X → +∞. Thus, Φ− λΨ is coercive. In addition, by Lemma

2.7 and Lemma 2.8, the system (1.2) has at least three odd T/2-antiperiodic periodic solutions

with period T .

Remark 3.1. Similar to the proof of Theorem 1.1 and Theorem 1.2, we get Corollary 1.1-1.2

and Corollary 1.3-1.4
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4 Main examples

Example 4.1. Consider the following second order Hamiltonian systems

ü+ λV ′(u) = 0, (4.1)

where V (u) = u100. Let c1 = 1
100T = 2π and r =

12πc21
24+π2 . We have π2

r max|u|<c1 V (u) =

24π+π3

12c21
max|u|<c1 V (u) < 24π+π3

12 ( 1
100)

98. If v = sin 2π
T t ∈ X1

T , one obtains
∫ 2π
0 (sin t)100dt >

24π+π3

12 ( 1
100)

98. Therefor for v ∈ X1
T , the condition (V4) of Theorem 1.1 is satisfied. According

to Theorem 1.1, for each λ ∈
(

π

2
∫ 2π
0 (sin t)100dt

, 6(100)
98

24+π2

)
, system (4.1) has at least two odd T/2-

antiperiodic nonconstant solutions with period T . In addition, we take v = sin 2t in X2
T , and

take v = cos t in Y 1
T . Using the same proof method as in spaceX1

T , we get the system (4.1)

has at least two odd nonconstant periodic solutions with period T/2, and has at least two even

T/2-antiperiodic nonzero solutions with period T .

Example 4.2. Consider the following second order Hamiltonian systems

ü+ λV ′(u) = 0, (4.2)

where V (u) = u4. Let k1 =
1

100T = 2π, r =
12πk21
24+π2 ,A = 2β = 4

3 , p(t) = u4. Take v(t) = sin t(t ∈

(π4+kπ, 3π4 +kπ)), which means that Φ(v) > 2k1 and V (u) ≤ A|u|β+p(t). If t ∈ (π4+kπ, 3π4 +kπ),

we have v(t) >
√
2
2 . Further we have

∫ 2π
0 V (sin t) > π

2 > 3π2

2r max|u|<k1 V (u), which means

condition (V7) of Theorem 1.2 is satisfied. Therefore for λ ∈
(

3π

4
∫ T
0 (sin t)4dt

, 6π(100)
2

24+π2

)
, the system

(4.2) has at least three odd T/2-antiperiodic periodic solutions with period T . Further, we take

v = sin 2t(t ∈ (π8 + kπ, 3π8 + kπ)) in X2
T and take v = cos t(t ∈ (−π

4 + kπ, π4 + kπ)) in Y 1
T .

Using the same proof method as in space X1
T , one know the system (4.2) has at least three odd

periodic solutions with period T/2, and has at least three even T/2-antiperiodic solutions with

period T .
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