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Abstract 

The paper deals with the stability problem of neural networks with discrete and 

leakage interval time-varying delays. Firstly, a novel Lyapunov-Krasovskii functional 

was constructed based on the neural networks leakage time-varying delay systems 

model. The delayed decomposition approach (DDA) and integral inequality 

techniques (IIA) were altogether employed, which can help to estimate the derivative 

of Lyapunov-Krasovskii functional and effectively extend the application area of the 

results. Secondly, by taking the lower and upper bounds of time-delays and their 

derivatives, a criterion on asymptotical was presented in terms of linear matrix 

inequality (LMI), which can be easily checked by resorting to LMI in Matlab Toolbox. 

Thirdly, the resulting criteria can be applied for the case when the delay derivative is 

lower and upper bounded, when the lower bound is unknown, and when no restrictions 

are cast upon the derivative characteristics. Finally, through numerical examples, the 

criteria will be compared with relative ones. The smaller delay upper bound was 

obtained by the criteria, which demonstrates that our stability criterion can reduce the 

conservatism more efficiently than those earlier ones. 
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1. Introduction 

In real-world problems, neural networks (NNs) play an increasingly important role 

in terms of both theory and applications [13]. In recent years, neural networks have 

been extensively studied and successfully applied in many areas such as combinatorial 

optimization, signal processing, associative memory, affine invariant matching, and 

pattern recognition [36]. What is more, the existence of time delays may destroy the 

stability or weaken the performance, which is harmful to the applications of neural 

networks. Thus, stability analysis with time delays has developing more and more 

rapidly to create neural networks with high quality. It is generally known that the 

stability of NNs plays a significant role in their designs for solving practical problems. 

In such applications, it is major importance to ensure that the designed neural network 

is stable [27, 28]. Therefore, the issue of stability analysis of neural networks with time 

delay attracts many researchers[4, 8, 11, 15, 16, 17, 18, 20, 22, 23, 26, 27, 28, 34, 37, 

38, 41, 24, 47, 48, 50, 51], and a number of remarkable results have been built up in the 

open literature. 

On the other hand, the time-delay in the leakage term has a great impact on the 

dynamical behavior of neural networks, and time-delay in the leakage term is always 

not easy to handle, only little attention has been paid towards the stability analysis of 

neural networks and dynamic systems involving time-delay in the leakage term [2, 6, 

8, 12, 24, 25, 26, 31, 38, 39, 46]. There are two typical types of time delays for 

incorporating time delays into neural networks: (i) introduce transmission delays into 

the neural networks, and consider discrete delays; (ii) consider the delays in the leakage 

term. All of the above two types of time delays may alter the dynamics of the neural 

network under consideration. In [39], Shan et al. derived a new stability analysis of 

Delayed neural networks (DNNs) with constant leakage delay. In practice, the leakage 

delay is not a constant. Gopalsamy [12] initially discussed the problem of bidirectional 

associative memory neural networks with constant delays in the leakage term by using 

model transformation technique. In Jiang and Zou [14], the problem of asymptotic 

stability criteria for neural networks with leakage time-varying delays, introducing free- 

weighting matrices, is considered. The derived stability condition is dependent on the 

upper bounds of the transmission delay, the leakage delay as well as their derivation. 

In [2], Banu and Balasubramaniam established the robust stability of DNNs with time-

varying leakage delay and time-varying delay. The authors also given a simple two-
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neuron networks model involving leakage delay and shown that the system is stable 

when leakage delay is 0 and it is unstable when leakage delay is 0.2 through geometrical 

interpretation [26]. In [8], Chen et al. investigated the problem of passivity analysis for 

neural networks with time delay in the leakage term. In [26], Li et al. further studied 

the stability analysis of recurrent neural networks neural networks with time delay in 

the leakage term and impulsive perturbations. Manivannan et al. in [34] considered 

delay-dependent stability criteria for neutral- type neural networks with interval time-

varying delay signals under the effects of leakage delay. In [38], Qiu et al. based on the 

delay-partitioning approach, robust stability analysis for uncertain recurrent neural 

networks with leakage delay was derived.  The lower bounds of the transmission delay 

and leakage delay derivation which is ignored in the existing results is taken into 

account in [2, 6, 8, 12, 24, 25, 26, 31, 38, 39, 46]. Until now, the neural networks model 

with the leakage time-varying delay almost has not been fully investigated. 

Recently, Manivannanc et al. [35] addresses an improved stability criterion for an 

interval time-delayed neural networks (NNs) including neutral delay and leakage delay. 

By proposing a suitable Lyapunov–Krasovskii functionals (LKFs) together with the 

Auxiliary function-based integral inequality (AFBII) and reciprocally convex approach 

(RCC) approach. Cao et al. [5] deals with the robust passivity analysis problem for 

uncertain neural networks with both leakage delay and additive time-varying delays by 

using a more general activation function technique. The information of activation 

function which is ignored in the existing results is taken into account in this paper. 

Moreover, it has been shown in Chen et al. [8] that the leakage delays are difficult to 

handle because it has quick tendency to destabilize the system performance. For simple 

circuits with a small number of cells, the use of fixed constant delays may provide a 

good approximation when modeling them. However, in practical implementation, 

neural networks usually have a spatial nature due to the presence of an amount of 

parallel pathways with a variety of axon sizes and lengths. As a consequence, the time-

delay in neural networks is usually time-varying and belongs to an interval the lower 

bound of which is restricted to be zero. Therefore, stability analyses of neural networks 

with time-varying delays have been widely studied in recent years, and a variety of 

results have been established using the Lyapunov-Krasovskii functional (LKF) method 

in the framework of linear matrix inequality (LMI) [33]. Therefore, the major 

contribution of this study lies in a consideration of new integral inequalities and 



4 

 

improved LKFs, fully taking the relationship between the terms in the Leibniz-Newton 

formula within the framework of linear matrix inequalities (LMIs). Moreover, we 

assume that the lower bound of interval time-varying delay is not restricted to zero. To 

the authors’ best knowledge, the problem of removing some restrictive conditions on 

lower bound of interval time-varying delay when studying neural networks (NNs) with 

leakage term and discrete interval time-varying delays has not been well probed yet, 

which is still an open problem. 

Very recently, to obtain the less conservative results, the delay decomposition 

approach was successfully introduced in [48] for the neural networks with constant 

delay. Followed this, in [7], the authors discussed the problem of stability analysis for 

neural networks with time-varying delay via delay decomposition approach. In [1], the 

authors studied a delay decomposition approach to delay-dependent passivity analysis 

for interval neural networks with time-varying delay. To apply delay decomposition 

technique in our article, discrete and leakage delay intervals are divided into finitely 

many equidistant subintervals. To obtain some less conservative LMI-based stability 

conditions, various kinds of important approaches have been explored, such as , model 

transformation method [9], free-weighting matrix technique [14, 32], delay-partitioning 

method [10, 23, 38, 40, 42, 43], the delay-decomposition approach [1, 4, 7, 11, 28, 29, 

48], and the Wirtinger integral inequality [5]. The problems of improved delay-

dependent robust stability criteria for recurrent neural networks (RNNs) with time-

varying delays [27] and neutral-type recurrent neural networks (NRNNs) [28] are also 

investigated. In [29], author has further discussed the problem of delay-range-

dependent stability analysis of recurrent neural networks with time- varying delay 

belonging to a given interval. Although, Liu [29] has studied the stability of neural 

networks with interval time-varying delay and derived some stability criteria, but the 

obtained criteria are all delay-range-dependent which also do not include the 

information on lower bound of delay-derivative. Therefore, Liu in [30] present a novel 

stability analysis for systems with time-varying delay and its derivative varying within 

intervals. Nevertheless, the leakage term effects on neural networks are neglected in 

these works [27-30], which forms one of the motivation of this paper. 

Motivated by the above discussion, in this paper, we extend the recent results [27 

-30] for the stability problem for neural networks leakage delay systems with interval 

time-varying delays. The main problem is to derive maximum admissible upper bounds 
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(MAUBs) of the time-varying delays such that the concerned systems are asymptotical 

stability for any delay size less than the MAUBs. Accordingly, the obtained MAUBs 

become a key performance index to estimate the conservatism of a delay-derivative-

dependent stability conditions. Compared with recently published article, this paper 

features: 

1) We investigate delay-range-dependent and delay-derivative-dependent stability 

condition for neural networks interval time-varying delay systems with leakage terms 

by considering an augmented system model and utilizing the delayed-decomposition 

and integral inequality approach jointly. 

2) We introduce a novel LKF which depends on both lower and upper bounds of time 

derivative are fully taken into account in the derivation of the delay-derivative- 

dependent stability condition, as a result of which less conservative stability criteria 

are obtained. 

3) Compared with the criteria obtained by different methods, the proposed criterion 

provides bigger MAUBs but requires a smaller number of decision variables. 

 

2. Problem formulation 

Consider the following neural networks (NNs) with leakage term and discrete 

interval time-varying delays: 

 

( ) ( ( )) ( ( )) ( ( ( ))) ,z t Cz t t Ag z t Bg z t h t J                              (1a)  

2 2( ) ( ),  [ ,0], max{ , },z t t t h h h                                       (1b) 

 

where T
1 2( ) [ ( ), ( ), , ( )] n

nz z z z R         is the state vector with the n neurons;

21
( ( )) [ ( )), ( ( )),..., ( ( ))]( n

ng z t t g t g tg z z z R    is called an activation function 

indicating how the j-th neuron responses to its input; T
1 2[ , , , ] n

nJ J J J R   is the 

external bias vector; 1( ,..., )nC diag c c is a diagonal matrix with each 0ic 

controlling the rate with which the i-th unit will reset its potential to the resting state in 

isolation when disconnected from the network and external inputs; ( )ij n n
A a 
   and 

( )ij n n
B b 
  are interconnection matrices representing weight coefficient of the neurons. 

( )h t  and ( )t denote the time-varying discrete delay and leakage delay, respectively.
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( )  n nt R   is the initial state function, ( )( )
i

t i N   is continuous on [ ,0]h   where

2 2max{ , },h h   1 2( )h th h   and 1 2( ) .t    

The time-varying discrete delay ( )h t   and leakage delay ( )t  are differentiable 

function, which satisfies for all 0 :t   

 

1 2 1 2 1 2 1 2( ) [ , ], ( ) [ , ], ( ) [ , ],  ( ) [ , ]d d d dh t h t t th h h h                        (2) 

 

is satisfied, where 1 2 1 2 1 2 1, , , , , , ,d d dh h h h     and 2d  are some positive scalars and 

1 2 1 2, .d d d dh h     Moreover, we assume that 1 1 1 1( ) , ( ) ,t h th h          ; 

that is 1 1 1 2[ , ],[ , ]       and 1 1 1 2[ , ],[ , ]h h h h   2 1(0 1, ,      

2 1)h h   . 

 

Assumption 1: It is assumed that each of the activation functions ( ), 1,2,...,
i

i ng    

possess the following condition 

 

1 2

1 2

( ) ( )
, 1, 2,...,i i

i i

g ga a
i nk k

a a

 


  


                        (3) 

 

where 1 2 1 2(0) 0, , , ,
i

Rg a a a a    and ,i ik k
  are positive scalars. 

 

We note that the existence of an equilibrium point of system (1a) is guaranteed by 

the fixed point theorem. Now letting 
T

1 2[ , , , ]nz z z z
     be an equilibrium of (1a), 

that is ( ) 0,tz
   ( ( )) 0,t h tz

   implies from (1) that 

 

0 ( ( )) ( ( )) ( ( ( ))) ,C t t Ag t Bg t h t Jz z z                            (4) 

 

Introducing the state deviation from equilibrium 

 

( ) ( )x t z t z
                                              (5) 

 



7 

 

where T
1( ) [ ( ), , ( )] ,nx x x     with T

11
( ( )) [ ( ( )), , ( ( ))] ,nn

f x f fx x     and 

( ( )) ( ( ) ) ( ), (0) 0,i ii ii i i i
f g g fx x z z

        1,2,..., .i n                       (6) 

 

Now subtracting (4) from (1) with some algebraic manipulations using (5) and (6), 

it is easy to see that the dynamics of the state deviation is governed by 

 

( ) ( ( )) ( ( )) ( ( ( ))),x t Cx t t Af x t Bf x t h t                                (7) 

 

According to the inequality (3), one can obtain that 

 

( )
, (0) (0) 0, 0, 1, 2,..., .

ii
i i ii i

i

f x
i nf gk k x

x

                        (8) 

 

In the following, we will develop some practically computable stability criteria for 

the system described (7). The following lemmas are useful in deriving the criteria. First, 

we introduce the following integral inequality approach (IIA), which be used in the 

proof of ours. 

 

Lemma 1 [27-30]. For any positive semi-definite matrices 

0

332313

232212

131211





















XXX

XXX

XXX

X

TT

T  the following integral inequality holds  

33 1 1( ) ( )

 

( ) ( ) ( , ) ( , )                                            (9)
t t TT

t h t t h t
s x s ds t s X t s dsx X  

 
  

 

 

where 

11 12 13

12 22 23

13 23 0

T

T T

X X X

X X X X

X X

 
 


 
  

and
T T T T

1
( , ) ( ) ( ( )) ( ) .t s t t h t sx x x        

  Secondary, the following Schur complement result, which is essential in the proofs 

of Theorems 1, 2, and Corollaries 1- 3 are introduced. 

 

Lemma 2 [3]. The following matrix inequality 
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( ) ( )

0,
( ) ( )T

Q x S x

x R xS

 
 

 
                                        (10a) 

where )( and )()(),()( xSxRxRxQxQ TT
  depend on affine on ,x is equivalent to 

    ( ) 0,R x                                   (10b) 

( ) 0,Q x                                   (10c) 

and  

1( ) ( ) ( ) ( ) 0.TQ x S x x xSR
                                   (10d) 

 

3. Main results 

The main aim is to derive maximum admissible upper bounds (MAUBs) of the time-

delay such that the concerned system is asymptotically stable for any delay size less 

than the MAUBs. Accordingly, the obtained MAUBs become a key performance index 

to measure the conservatism of delay-range-dependent and delay-derivative dependent 

stability conditions. The discrete delay interval 1 2[ , ]h h  is divided into two subintervals 

as 1 1[ , ]h h  and 1 2[ , ]h h  2 1(0 1, ).h h      The leakage delay interval 

1 2[ , ]   is divided into two subintervals as 1 1[ , ]   and 1 2[ , ]   

2 1(0 1, ).       Then, the sufficient condition, which is depend on both the upper 

and lower bounds of the delay derivative, will be given in terms of linear matrix 

inequalities is derived in the following Theorems 1 and 2.  

 

Theorem 1: If 1 1 1 1( ) , ( ) ,t h th h         (0 1),  for given 1 2, ,d d 

1 ,dh 2 ,dh 1 1 2( , ,..., ),mdiag k k kK
    and 2 1 2( , ,..., )  ( =1,2,..., ),mdiag i mk k kK

    the system 

(7) is asymptotically stable if there exist symmetry positive-definite matrices

0,TP P  0,
T

i i
Q Q  0T

j jR R  ( 1,2,...,10;i    1,2,...,6),j    positive diagonal 

matrices 0,D  0,E  1 0, 2 0,   positive semi-definite matrices

11 12 13

12 22 23

13 23 33

0,T

T T

X X X

X X X X

X X X

 
 

 
 
  

11 12 13

12 22 23

13 23 33

0,T

T T

Y Y Y

Y Y Y Y

Y Y Y

 
 

 
 
  

11 12 13

12 22 23

13 23 33

0,T

T T

Z Z Z

Z Z Z Z

Z Z Z

 
 

 
 
  

  

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

0, 0,T T

T T T T

U U U V V V

U VU U U V V V

U U U V V V

   
   

   
   
      

  

11 12 13

12 22 23

13 23 33

0,T

T T

W W W

W W W W

W W W

 
 

 
 
  

 such 
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that the following LMIs hold: 

 

11 12 13 14 15 19

12 22 23 25 26 212

13 23 33 34 312

14 34 44 48 412

15 25 55

26 66 67

67 77

48 88 89 810

19 89 99

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T

T T

T T

T T

T

T

T

T T

     

     

    

    

  

  
 

 

   

  

810 1010 1011

1011 1111

212 312 412 1212

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

T

T T T

 
 
 
 
 
 
 
 
 


 
 
 
 
 
   
 

  
     

 

(11a) 

1 33 2 33 3 33 4 5 633 33 330, 0, 0, 0, 0, 0U V WR X R Y R Z R R R                

(11b) 

where 

11 2 1 1 11 13 131 1 11 13 131 4 6 9

12 1 2 13 1 2 1 1 2

14 1 2 15 12 13 23 191 1 12 13 23

22 11 13 131 25 4

2 ,

, ( ),

, , ,

(1 ) (1 )

TT

T T T T

TT T T

T
d d

Q Q Q Q h U U UK K X X X

PC DC EC PA DA EAK K K K K K

PB DB EB h U U UK K X X X

Q Q Y Y Y





 

            

          

          

        22 23 23

23 25 12 13 23 26 12 13 23 212

33 1 34 312 44 2

48 2 1 2 412 55 22 23 23 11 13 1312 1

66 3 2

,

, , , ,

2 , , , 2 ,

( ), , ,

T

T T TT T T

T T T T T

T T T

Y Y Y

D EC C CY Y Y Y Y Y

DA EA DB EBA D A E A

Q QK K B X X X Y Y Y

Q



 



 

              

               

              

  22 23 23 11 13 13

67 12 13 23 77 22 23 233 5

88 2 2 1 1 2 11 13 13 22 23 2310 9

89 81012 13 23 12 13 23

99 7

(1 ) ,

(1 ) , (1 ) ,

2 (1 ) (1 ) ,

, ,

T T

T T

T T
d d

T T T

Q Y Y Y Z Z Z

Q QZ Z Z Z Z Z

Q Qh h V V V V V VK K

V V V V V V

Q

  

   

 

 

      

          

            

      

  1 22 23 23 11 13 136

1010 22 23 23 11 13 138 7

1011 1111 121212 13 23 22 23 238 10

1 2 3 4 5 61 1

,

(1 ) ,

(1 ) , (1 ) , ,

(1 ) (1 ) .

T T

T T

T T

Q h U U U V V V

Q Q V V V W W W

Q QW W W W W W

hR R R R R R



  

   

     

     

        

             

        
 

Proof: The main problem of stability analysis is how to construct appropriate Lyapunov 

functions which are widely used in various fields [26, 49].We extend the recent results 

[27-30] for the stability problem for neural networks leakage delay systems with 
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interval time-varying delays. Since we construct the Lyapunov- Krasovskii functional 

candidate ( )tV x  for the neural networks (NNs) with leakage term and discrete interval 

time-varying delays as follows: 

 

1 2 3( ) ( ) ( ) ( )t t t tV x V x V x V x                                  (12) 

where 

1 1

1 1 2

2

( ) ( )

1 0 0
1

2 1 2 3

( )

4 5( )

( ) ( ) ( ) 2 [ ( ( ) ) ( ( )) ],

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j
n

t tx xT
t j j j jj j

j

t t tT T T
t t t t

t t tT T

t t t

t Px t s s ds s s dsf fV x x d k e k

s x s ds s x s ds s x s dsQ Q QV x x x x

s x s ds s x s dsQ Qx x

 

  



 

 



  

   



 

      

    

  

 1 1

1 1 2

2

1

1 1

6 7 8

( )

9 10( )

0

1 23

3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( )

( ) (

t t th hT T T

t t th h h

t t h tT T

t h t t h

t tT T
t t t

T

s x s ds s x s ds s x s dsQ Q Qx x x

s x s ds s x s dsQ Qx x

s x s dsd s x s dsdV x x xR R

s x sx R







   
 

  

   



 



    

   

  

    

 1

2 1

1 1

1 2

0

4

5 6

) ( ) ( )

( ) ( ) ( ) ( ) .

t t T

t th

t th hT T

t th h

dsd s x s dsdx R

s x s dsd s x s dsdx xR R



 



  

 

 

 

   

  

    

   

    

  

 

The time derivative of ( )tV x with respect to time along the trajectory of system (7) 

is as follows. First, the derivative of 1( )tV x  is 

1 21( ) 2 ( ) ( ) 2[ ( ( )) ( )] ( ) 2[ ( ) ( ( ))] ( )
T TT

t t Px t f x t x t Dx t x t f x t Ex tx x K KV       (13) 

Second, the time-derivative of 2( )tV x  can be obtained as 

1 1 1 12 1 1 2

1 12

1 1 2 23 3 4

4 5

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ( ))(1 ( )) ( ( )) ( ( ))(1 ( )) ( ( ))

(

T T T
t

T

T T T

T T

T

t x t t x t t x tQ Q Qx x x xV

t x tQx

t x t t x t t x tQ Q Qx x x

t t t x t t t t t x t tQ Qx x

tx

   

  

    

     

      

    

        

       

 2 2 1 1 1 15 6 6 7

1 1 1 17 8

2 28 9 9

10

) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ))(1 ( )) ( ( ))

( ( ))(1 ( )) ( (

T T T

T T

T T T

T

x t t x t t x t t x tQ Q Q Qx x h h x h h

t x t t x tQ Qx h h x h h

t x t t x t t h t h t x t h tQ Q Qx h h x x

t h t h t x t h tQx

 

   

        

         

       

    2 210

1 11 4 6 9 2 1

1 13 2

2 2 1 23 5 5 4

1 1 17 6 8

)) ( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

( )( ) ( ) ( ( ))((1 ) (1 ) ) ( ( ))

( )( ) ( ) ( )(

T

T T

T

T T
d d

T T

t x tQx h h

t x t t x tQ Q Q Q Q Qx x

t x tQ Qx

t x t t h t x t tQ Q Q Qx x

t x t tQ Q Qx h h x h

 

  

   



  

       

     

          

        17

2 2 1 28 10 10 9

) ( )

( )( ) ( ) ( ( ))((1 ) (1 ) ) ( ( ))       (14)T T
d d

x tQ h

t x t t h t x t h tQ Q Q Qx h h x h h

 

          
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Finally, calculating the time-derivative of 3( )tV x lead to 

1

1 1

1

2

1

1 1 2 213

3 3 41

4 5 5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )(1 ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t tT T T T
t t t

tT T T

t

t T T T

t h

t x t s x s ds t x t s x s dsx x x x xR R R RV

t x t s x s ds t x tx x x hR R R

s x s ds t x t sx x xR R R



 







 





  

 





   

   

 
1

1

1

2

1

1 1

1 2

6 6

1 2 3 4 5 6 11 1

2 3

( )

( )(1 ) ( ) ( ) ( )

( )[ (1 ) (1 ) ] ( ) ( ) ( )

( ) ( ) ( ) ( )

t h

t h

t hT T

t h

tT T

t

t tT T T

t t

x s ds

t x t s x s dsx xR R

t x t s x s dsx h xR R R R R R R

s x s ds s x s dsx x xR R







 

 

 

     



 

 





  

  



   

         

   
1

1 1

1

2

1

1 1

4 5

6

1 2 3 4 5 61 1

1 33 2 33 3 33

( ) ( ) ( ) ( )

( ) ( )

( )[ (1 ) (1 ) ] ( )

( )( ) ( ) ( )( ) ( ) ( )(

t t h T

t th h

t h T

t h

T

t tT T T

t t

s x s ds s x s dsxR R

s x s dsx R

t x tx hR R R R R R

s x s ds s x s ds sx x xR X R Y R







 

     



  

 





  

 



       

      
1

2

1 1

1 1 2
4 5 633 33 33

) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

t

t

t t th hT T T

t t th h h

x s dsZ

s x s ds s x s ds s x s dsx U x V x WR R R









 



  

   



       

1 1

1 1 2

1 1

1 1 2

33 33 33

33 33 33

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )                          (15)

t t tT T T

t t t

t t th hT T T

t t th h h

s x s ds s x s ds s x s dsx x xX Y Z

s x s ds s x s ds s x s dsx U x V x W

 

  





  

   

  

   

    

    

 

For 1 1( )t      and 1 1( ) ,h th h    that is 1 1[ , ]   and 1 1[ , ]h h 

(0 1,   2 1 2 1, ),h h       by utilizing Lemma 1 and the Leibniz–Newton 

formula, we have 

1 1

1 1 2

1 1

1 1 2

1

33 33 33

33 33 33

33 33

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

t t tT T T

t t t

t t th hT T T

t t th h h

t T T

t

s x s ds s x s ds s x s dsx x xX Y Z

s x s ds s x s ds s x s dsx U x V x W

s x s ds s x sx xX Y

 

  







  

   

  

   



    

    

  
1

1

2 1 1

1 1

2

( )

33( )

( )

33 33 33

33 33( )

2 2

) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )   

t t t T

t t t

t t t h tT T T

t t th h

t th hT T

t h t t h

T

ds s x s dsx Y

s x s ds s x s ds s x s dsx x U x VZ

s x s ds s x s dsx V x W

t t

 

  







 

 

  

  

   

  

 

 

    

  

                                                                                                       (16)

    

where 

1 1 22

1 1 2

( )= ( ) ( ( )) ( ) ( ) ( )

( ( )) ( ) ( ) ( ) ,           

T T T T T T

T T T T

t t t t t t tx x x x x

t h t t t tx x h x h x h

    



     

     
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11 13 17

22 23 24

13 23 33

24 44 45

45 55

66 67 68

17 67 77

68 88 89

89 99

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

T T

T

T

T T

T

T

   
 

   
   
 

   
    
 

   
   
 
   
 

  

, and 

11 11 13 13 13 12 13 231 1 11 13 13 1

17 22 11 13 13 22 23 231 12 13 23

23 12 13 23 24 12 13 23

33 22 23 23 11 13 131

44 22 23 23

, ,

, ,

, ,

,

(1

TT T

T T T

T T T

T T

T

h U U UX X X X X X

h U U U Y Y Y Y Y Y

Y Y Y Y Y Y

X X X Y Y Y

Y Y Y

 

 

 







         

         

     

     

    11 13 13

45 12 13 23 55 22 23 23

66 6711 13 13 22 23 23 12 13 23

68 7712 13 23 1 22 23 23 11 13 13

88 22 23 23 11 1

) ,

(1 ) , (1 ) ,

, ,

, ,

(1 )

T

T T

T T T T

T T T

T

Z Z Z

Z Z Z Z Z Z

V V V V V V V V V

V V V h U U U V V V

V V V W

 

   

  

 

  

  

        

         

         

      3 13

89 9912 13 23 22 23 23

,

(1 ) , (1 ) .

T

T T

W W

W W W W W W   



        

 

With the operator for the term 

1 2 3 4 5 61 1( )[ (1 ) (1 ) ] ( )T t x tx hR R R R R R              as follows:  

 

1 2 3 4 5 61 1

3 3

( )[ (1 ) (1 ) ] ( )

( ) ( )                                                                                                     (17)

T

T

t x tx hR R R R R R

t t

     

 

      

 
  

where

11 12 13

12 22 233

13 23 33

( ) ( ( )) ( ( )) ( ( ( ))) , ,
T TT T T

T T

t t t x t x t h tf fx 

   
            
    

and 

11 12 13 22 23 33

1 2 3 4 5 61 1

, , , , ,

(1 ) (1 ) .

T T T T T TC A B A B BC C C A A B

hR R R R R R     

                  

        
 

In addition, from the Assumption 2, there exist diagonal matrices 1 0  and

2 0,  the following inequalities can be deduced: 

1 1 2

1 1 1 2

2 1 1

2[ ( ) ( ( ))] [ ( ( )) ( )]

2 ( ( )) ( ( )) 2 ( ) ( ) ( ( ))

2 ( ) ( ) 0                                                                                          (18)

T

T T

T

x t f x t f x t x tK K

x t f x t t f x tf x K K

t x tx K K

 

    

 
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  and 

1 2 2

2 2 1 2

2 2 1

2[ ( ( )) ( ( ( )))] [ ( ( ( ))) ( ( ))]

2 ( ( ( ))) ( ( ( ))) 2 ( ( )) ( ) ( ( ( )))

2 ( ( )) ( ( )) 0                                                    

T

T T

T

x t h t f x t h t f x t h t x t h tK K

x t h t f x t h t t h t f x t h tf x K K

t h t x t h tx K K

     

        

                      (19)

             

Combining (13)-(19), we obtain 

1

1 1

1 1

2 1 1

2

1 33 2 33

3 33 4 533 33

6 33

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

t tT T T
t t t

t t t hT T T

t t th h

T

t

V t t s x s ds s x s dsx x xR X R Y

s x s ds s x s ds s x s dsx x U x VR Z R R

s x s dsx WR



 








  

  

   



      

       

 1                                                                                  (20)
t h

h

 



 

where 

1

1 2 1 1 2

( ) [ ( ) ( ( )) ( ( )) ( ( ( ))) ( )

( ) ( ) ( ( )) ( ) ( ) ( )],

T TT T T T

T T T T T T

t t t t x t x t h t tf fx x x

t t t h t t t tx x x x h x h x h

 

  

   

       
 

11 12 13 14 15 19

12 22 23 24 25 26

13 23 33 34

14 24 34 44 48

15 25 55

26 66 67

67 77

48 88 89 810

19 89 99

810

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

T T

T T T

T T

T

T

T

T T

T

     

     

   

    

  

    

 

   

  

 1010 1011

1011 1111

0,

0 0 0 0 0 0 0 0 0 T

 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 

  

and 

 

11 2 1 1 11 13 131 1 11 13 131 4 6 9

12 1 2 13 1 2 1 1 2

14 1 2 15 12 13 23 191 1 12 13 23

22 11 13 131 25 4

2 ,

, ( ),

, , ,

(1 ) (1 )

TT

T T T T

TT T T

T
d d

Q Q Q Q h U U UK K X X X

PC DC EC PA DA EAK K K K K K

PB DB EB h U U UK K X X X

Q Q Y Y Y





 

            

          

          

        22 23 23

23 24 25 12 13 23

26 12 13 23 33 1

34 44 2 48 2 1 2

55 22 23 23 11 13 1312 1

6

,

, , ,

, 2 ,

, 2 , ( ),

,

TT

T T T T T T

T T T T T T

T T

T T

CCY Y Y

D E A BC C C C Y Y Y

DA EA AY Y Y A D A E A

DB EB B BA B K K

Q Q X X X Y Y Y









   

            

           

             

       

6 22 23 23 11 13 133 2

67 12 13 23 77 22 23 233 5

88 2 2 1 1 2 11 13 13 22 23 2310 9

(1 ) ,

(1 ) , (1 ) ,

2 (1 ) (1 ) ,

T T

T T

T T
d d

Q Q Y Y Y Z Z Z

Q QZ Z Z Z Z Z

Q Qh h V V V V V VK K

  

   

 

        

          

            
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89 81012 13 23 12 13 23

99 1 22 23 23 11 13 137 6

, ,

,

T T T

T T

V V V V V V

Q Q h U U U V V V

 



      

       
 

1010 22 23 23 11 13 138 7

1011 111112 13 23 22 23 238 10

1 2 3 4 5 61 1

(1 ) ,

(1 ) , (1 ) ,

(1 ) (1 ) .

T T

T T

Q Q V V V W W W

Q QW W W W W W

hR R R R R R

  

   

     

        

          

        

 

 

Theorem 2: If 1 2 1 2( ) , ( ) ,t h th h         (0 1),  for given 1 2, ,d d 

1 ,dh 2 ,dh 1 1 2( , ,..., ),mdiag k k kK
    and 2 1 2( , ,..., )  ( =1,2,..., ),mdiag i mk k kK

    the system 

(7) is asymptotically stable if there exist symmetry positive-definite matrices

0,TP P  0,
T

i i
Q Q  0T

j jR R  ( 1,2,...,10;i  1,2,...,6),j   positive diagonal 

matrices 0,D   0,E   1 0,  2 0,    positive semi-definite matrices

11 12 13

12 22 23

13 23 33

0,T

T T

X X X

X X X X

X X X

 
 

 
 
  

11 12 13

12 22 23

13 23 33

0,T

T T

Y Y Y

Y Y Y Y

Y Y Y

 
 

 
 
  

11 12 13

12 22 23

13 23 33

0,T

T T

Z Z Z

Z Z Z Z

Z Z Z

 
 

 
 
  

  

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

0, 0,T T

T T T T

U U U V V V

U VU U U V V V

U U U V V V

   
   

   
   
      

  

11 12 13

12 22 23

13 23 33

0,T

T T

W W W

W W W W

W W W

 
 

 
 
  

 such 

that the following LMIs hold: 

11 12 13 14 15 19

12 23 21222 26 2

13 23 33 34 312

14 34 44 48 412

15 55 56

66 6726 56

67 7727

48 88 810

19 99 910

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

T

T T

T T

T

T T

T T

T

T

     

    

    

    

  

  
 

 

  

 

7

1010 1011810 910

1011 1111

212 312 412 1212

0

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T T

T

T T T

 
 
 
 
 
 
 
 
 


 
 
 
 

 
   
 

  
     

 

(21a) 

1 33 2 33 3 33 4 5 633 33 330, 0, 0, 0, 0, 0U V WR X R Y R Z R R R               (21b) 

where 
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11 13 13 22 23 231 222 5 4

12 13 23 12 13 2326 27

12 13 23 12 13 23 12 13 2356 810 910

(1 ) (1 ) (1 ) (1 ) ,

(1 ) , (1 ) ,

, (1 ) , ,

T T
d d

T T T

T T TT

Q Q Z Z Z Z Z Z

Z Z Z Z Z Z

W W W V V VY Y Y

    

   

   

           

        

           

 

 

Proof: By 1 2 1 2( ) , ( ) .t h th h          Similar to (16), straightening out 

the integral term 
1

2
33( ) ( )

t T

t
s x s dsx Z





 


  and

1

2
33( ) ( )

t h T

t h
s x s dsx W

 


  into two parts 

as
2

( )

33( ) ( ) ,
t t T

t
s x s dsx Z










1

33( )
( ) ( )

t T

t t
s x s dsx Z





 


 and 

2

( )

33( ) ( ) ,
t h t T

t h
s x s dsx W




  

1

33( )
( ) ( ) ,

t h T

t h t
s x s dsx W

 


 we have 

1 1

1 1 2

1 1

1 1 2

1

33 33 33

33 33 33

33 33

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

t t tT T T

t t t

t t th hT T T

t t th h h

t T T

t

s x s ds s x s ds s x s dsx x xX Y Z

s x s ds s x s ds s x s dsx U x V x W

s x s ds s x sx xX Y

 

  







  

   

  

   



    

    

  
1

1 2

1 1

1 1

1

2

( )

33

33 33 33( )

( )

33 33( )

) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )               

t t t T

t t

t t t hT T T

t t t th h

t h t t hT T

t t h th

ds s x s dsx Z

s x s ds s x s ds s x s dsx x U x VZ

s x s ds s x s dsx W x W



 



 



 

  

  

   

  

 

 

    

                                       (22)

 

 

Proof: Based on Theorem 1, it is easy to obtain Theorem 2 by applying the same 

procedures of Theorem 1. 

Furthermore, this criterion is the leakage delay is constant, and at the same time, 

is dependent on the derivative of the discrete time delay. This criterion can easily be 

extended to neural networks (NNs) with leakage term and discrete interval time-varying 

delay. The following Corollaries 1 and 2 have presented criteria that depend only on 

the size of the discrete delays derivation, and not on the size of the leakage delay 

derivation. 

 

Corollary 1: If 1 1( ) ,h th h    (0 1),  for given 1 ,dh 2 ,dh

1 1 2( , ,..., ),mdiag k k kK
     and 2 1 2( , ,..., )  ( =1,2,..., ),mdiag i mk k kK

    the system (7) is 

asymptotically stable if there exist symmetry positive-definite matrices 0,TP P 

0,
T

i i
Q Q  0T

j jR R  ( 5,6,...,10;i  4,5,6),j    positive diagonal matrices 0,D 

0,E  1 0, 2 0,   positive semi-definite matrices  

11 12 13

12 22 23

13 23 33

0,T

T T

U U U

U U U U

U U U

 
 

 
 
  
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11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

0, 0,T T

T T T T

V V V W W W

V WV V V W W W

V V V W W W

   
   

   
   
      

such that the following LMIs hold: 

11 12 13 14 16

12 22 23 29

13 23 33 34 39

14 34 44 45 49

45 55

16 66 67

67 77 78

48 78 88

29 39 49 99

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

00 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

T

T T

T T

T

T

T

T T

T T T

     
 
    
     
 
     
    
 
   
   
 
   
 

    

          (23a) 

4 5 633 33 330, 0, 0,U V WR R R                   (23b) 

where 

2 1 1 11 13 1311 1 11 13 135 6 9

1 2 12 13 23 1 2 1 1 212 13

1 214 16 1 12 13 23

2 ,

, ( ),

, ,

TT

T T T T T

TT T

Q Q Q h U U UK K Z Z Z

PC DC EC PA DA EAK K Z Z Z K K K K

PB DB EB h U U UK K





           

             

      

 

22 23 2322 235

3 4 5 629 1

133 34

3 4 5 6 2 2 1 239 1 44 45

3 4 5 649 1

55 1 10

, ,

[ (1 ) ],

2 , ,

[ (1 ) ], 2 , ( ),

[ (1 ) ],

(1 )

T TT

T

T T T T

T

T

d

D EQ C CZ Z Z

C hR R R R

DA EA DB EBA D A E

hA R R R R K K

hB R R R R

Qh



   

   

   

        

     

       

           

    

  2 2 12 11 13 13 22 23 239

56 12 13 23 57 12 13 23

66 1 22 23 23 11 13 137 6

77 22 23 23 11 13 138 7

78 12 13 23 88 8

(1 ) 2 ,

, ,

,

(1 ) ,

(1 ) ,

T T
d

T T T

T T

T T

T

Qh V V V V V VK K

V V V V V V

Q Q h U U U V V V

Q Q V V V W W W

W W W

 

 



  

 

        

      

       

        

      22 23 2310

3 4 5 699 1

(1 ) ,

[ (1 ) ].

TQ Q W W W

hR R R R

 

   

    

     

 

Proof: Choose the following Lyapunov-Krasovskii functional candidate to be  

 

( ) ( )

1 0 0
1

( ) ( ) ( ) 2 [ ( ( ) ) ( ( )) ]   (24)j j
n

t tx xT
a t j j j jj j

j

t Px t s s ds s s dsf fV x x d k e k
 



      
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1

1 1

1

2 2

2 5 6 7

( )

8 9 10( )

0

3 43

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )      (25)

( ) ( ) ( ) ( )

t t t hT T T
b t t t th h

t t t h th T T T

t t h t th h

t T T
c t t

s x s ds s x s ds s x s dsQ Q QV x x x x

s x s ds s x s ds s x s dsQ Q Qx x x

s x s dsd s xV x x xR R







 


 

  

  

  

 

    

    

  
1

1 1

1 2

0

5 6

( )

( ) ( ) ( ) ( )                     (26)

t

th

t th hT T

t th h

s dsd

s x s dsd s x s dsdx xR R





  



 

 

  

    

 

    

 

 

 The proof can be completed in a similar formulation to Theorem 1. 

 

Corollary2: If 1 2( )h th h   (0 1),  for given 1 ,dh 2 ,dh

1 1 2( , ,..., ),mdiag k k kK
    and 2 1 2( , ,..., )  ( =1,2,..., ),mdiag i mk k kK

    the system (7) is 

asymptotically stable if there exist symmetry positive-definite matrices 0,TP P 

0,
T

i i
Q Q  0T

j jR R  ( 5,6,...,10;i   4,5,6),j   positive diagonal matrices 0,D 

0,E  1 0, 2 0,    positive semi-definite matrices  

11 12 13

12 22 23

13 23 33

0,T

T T

U U U

U U U U

U U U

 
 

 
 
  

 

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

0, 0,T T

T T T T

V V V W W W

V WV V V W W W

V V V W W W

   
   

   
   
      

such that the following LMIs hold: 

11 12 13 14 16

12 22 23 29

13 23 33 34 39

14 34 44 45 49

45 55 57 58

16 66 67

7757 67

48 8858

29 39 49 99

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

00 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

T

T T

T T

T

T

T T

TT

T T T

     
 
    
     
 
     
      
 
   
  
 

  
     

          (27a) 

4 5 633 33 330, 0, 0,U V WR R R                  (27b) 

where 

2 2 11 2 11 13 1355 10 9

22 23 23 12 13 2357

(1 ) (1 ) 2 (1 )

(1 ) , (1 ) ,

T
d d

T T T

Q Qh h W W WK K

W W W W W W

 

   

        

       
 

12 13 23 12 13 2358 67
(1 ) , .T T

W W W V V V           
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When both the leakage delay and discrete delays are constant, ( ) , ( ) ,t h t h  

neural networks (NNs) with leakage term and discrete delays (1) will become the 

following model: 

 

( ) ( ) ( ( )) ( ( )),x t Cx t Af x t Bf x t h                                  (28) 

 

Then, for system (36), we have the following Corollary 3. 

 

Corollary 3: For given , ,h 1 1 2( , ,..., ),mdiag k k kK
    and 2 1 2( , ,..., )mdiag k k kK

    

( =1,2,..., ),i m the system (36) is asymptotically stable if there exist symmetry positive- 

definite matrices 0,TP P  0,
T

i i
Q Q  0T

j jR R  ( , )i j a b    positive diagonal 

matrices 0,D   0,E   1 0,  2 0,   and positive semi-definite matrices

11 12 13

12 22 23

13 23 33

0,T

T T

X X X

X X X X

X X X

 
 

 
 
  

11 12 13

12 22 23

13 23 33

0,T

T T

Y Y Y

Y Y Y Y

Y Y Y

 
 

 
 
  

  such that the following LMIs 

hold: 

11 12 13 14 15

12 22 23 26

13 23 33 34 36

14 34 44 45 46

15 45 55

26 36 46 66

0

0 0

0
0,

0

0 0 0

0 0

T

T T

T T

T T

T T T

     
 
    
     

   
     
   
 

    

              (29a) 

33 330, 0,a bR X R Y                 (29b) 

where 

11 11 13 13 11 13 13 2 1 1

12 1 2 12 13 23 13 1 2 1 1 2

14 1 2 15 12 13 23 22 22 23 23

23 26 33

2 ,

, ( ),

, , ,

, ( ),

T T

a b

T T T

T T T

a

T T T
a b

hQ Q X X X Y Y Y K K

PC DC EC PA DA EAK K X X X K K K K

PB DB EB h QK K Y Y Y X X X

D E h DC C C R R









         

             

            

        1

34 36 44 2 45 2 1 2

46 55 2 1 1 22 23 23 66

2 ,

, ( ), 2 , ( ),

( ), 2 , ( ).

T T

T T T
a b

T T
a b a bb

A D EA EA A

D E hB B A R R K K

h h hQB R R K K Y Y Y R R



 

    

            

             

 

 

 

4. Examples 
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  In this section, four examples will be used to check the feasibility and improvement 

of the proposed stability criteria. 

 

Example 1. Consider the following neural networks (NNs) with leakage term and 

discrete interval time-varying delays: 

 

( ) ( ( ) ( ( )) ( ( ( ))),x t Cx t t Af x t Bf x t h t                          (30) 

where 

1 2

8 0 0.5 0.2 0.6 0.1
, , , {0,0} {1,1}.

0 7 0.7 0.5 1.2 0.8
C A B diag diagK K

      
                 

Solution: We assume 2 10.5, 0.5,d dh h    for different and 1h using Corollary 1 in 

this example, some MAUBs 2h can be obtained for guaranteeing the asymptotic 

stability, which are listed in Table 1. From Table 1, the lower bound discrete delay 1h

increases the MAUBs 2h  increases. If leakage delay  increases the MAUBs 2h

decreases. When 0.157  for different 1h the maximum allowable values of 2h as same

0.157  . 

Moreover, for the fast time-varying delay, let 2 11.5, 1.5,d dh h    the MAUBs

2h for different   and 1h using Corollary 1is listed in Table 2. When 0.157  for 

different 1h the maximum allowable values of 2h as same 0.157  . 

Furthermore, the leakage delay and discrete delays are constant ( ( )t  and 

( )h t h ), the neural networks (NNs) with leakage term and discrete delays (1) will 

become the following model: 

 

( ) ( ) ( ( )) ( ( )),x t Cx t Af x t Bf x t h                          (31) 

 

As in [24], we assume that the time-varying delay ( )h t is not differentiable. Using 

Corollary 3 in this paper, some maximum allowable values of   can be obtained for 

guaranteeing the asymptotic stability, which is listed in Table 3. 

To confirm the obtained result, when 0.1h  and 0.1771,    under the initial 

condition T
(0) [ 1,   1]x   is given in Fig. 1. 

Let 0.156  and 1 0,dh   the MAUBs 2h for different 2dh by different methods is 

listed in Table 4. From Table 4, if 2dh increases the MAUBs 2h decreases. 
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For comparison with some existing stability criteria, let 0.17   the MAUBs 2h

for different 2dh by different methods is listed in Table 5. It is seen from this Table 5 

that our criterion in this paper is less conservative than those in Chen et al. [8] 

 

Example 2. Consider the following neural networks (NNs) with leakage term and 

discrete interval time-varying delays: 

 

( ) ( ) ( ( )) ( ( ( ))),x t Cx t Af x t Bf x t h t                            (32) 

where 

 1 2

1.5 0 0.5 0.2 0.4 0.1
, , , {0,0} {1,1}.

0 1.3 0.4 0.3 0.1 0.2
C A B diag diagK K

     
         
     

 

 

Solution: To compare of our result with existing ones, the maximum allowable leakage 

delay   for different discrete delay h  obtained is listed in Table 6. It is clear that the 

obtained results are significantly better than those in Chen et al. [8]. To confirm the 

obtained result, when 0.1h   and 0.7329,    under the initial condition 

T
(0) [ 1,   1]x   is given in Fig. 2.  

Taking different 2d  and 2dh  ( 1 1 1 1 0, 0.5d dh h        ), and from 

Theorem 1, we obtain maximum allowable 2 is shown in Table 7. From Table 7, if 

2d increases the maximum allowable 2 decreases, if 2dh increases the maximum 

allowable 2  also decreases. Similarly, for various ,  the maximum allowable 

discrete delay h   for different leakage delay  obtained is summarized in Table 8. 

From Table 8, if leakage delay increases the maximum allowable discrete delay h

decreases. 

 

Example 3 Consider the following neural networks (NNs) with leakage term and 

discrete interval time-varying delays: 

 

( ) ( ( )) ( ( )) ( ( ( ))),x t Cx t t Af x t Bf x t h t                        (33) 

where 
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1 2

1.3 0 0.5 0.2 0.6 0.1
, , , {0,0}, {1,1}.

0 0.9 0.7 0.5 1.2 0.8
C A B diag diagK K

      
         

      
 

Solution: With the condition 2 1( ) [ , ]h t h h and 2 1( ) [ , ]d dh t h h  for the fast fast-

varying delay case, maximum allowable 2h  for different 1h and 1k with 1 1.5,dh  

2 1.5,dh  20.1, {1,1},diagK   0.5,  1 1 1{ , },diag k kK  our results obtained by 

Theorem 1 to system (41) is shown in Table 9. From Table 9, if activation function 

lower bound 1k  increases the maximum allowable discrete delay MAUBs 2h  

increases. If the lower bound discrete delay 1h  increases the maximum allowable 

discrete delay MAUBs 2h also increases. 

To confirm the obtained result, when discrete delay 2 0.5051h  sec and leakage delay

0.1  sec, under the initial condition T
(0) [ 1,   1]x   is given in Fig. 3. 

With the condition 2 1( ) [ , ]h t h h and 2 1( ) [ , ]d dh t h h  for the fast slow-varying delay 

case, maximum allowable   for different 1h  and 1k  with 1 20.5, 0.5,d dh h   0.1, 

20.5, {1,1},diagK   and 1 1 1{ , }diag k kK  is described in Table 10. From Table 10, 

if activation function lower bound 1k  increases the maximum allowable discrete delay 

MAUBs 2h  increases. If the lower bound discrete delay 1h increases the maximum 

allowable discrete delay MAUBs 2h  decreases. However, from Table 10, one may 

observe that the MAUBs 2h  are same, when the change of 1k  is small. 

For 1 2 ,d dh h   maximum allowable 2h   for different   with 1 0.1,h 

1 {0.5,0.5},diagK  2 {1,1},diagK  0.5,  by using Theorem 1 is listed in Table 11. 

From Table 11, if leakage delay   increases the maximum allowable discrete delay 

MAUBs 2h decreases. 

Let 1 0.1,h  for given 1 21.5, 1.5,d dh h   maximum allowable 2h  for different

1k  with 21 1 20.1, 1.5, 1.5, 0.1, , {1,1},d d diagh h h K      1 1 1{ , },diag k kK  0.1, 

by using Corollary 1 is listed in Table 12. From Table 12, if activation function lower 

bound 1k  increases the maximum allowable discrete delay MAUBs 2h decreases. 

Let 1 1,h   for given 1 21.5, 1.5,d dh h    maximum allowable 2h   for different 1k

with 21 1, 0.1, , {1,1},diagh K   1 1 1{ , },diag k kK  0.1,  by using Corollary 1 is 

listed in Table 13. From Table 13, if activation function lower bound 1k  increases the 

maximum allowable discrete delay MAUBs 2h increases. However, from Table 13, one 
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may observe that the MAUBs 2h  are same with different values of 1k  when 

1 0.4k  , which shows the limited adaptive ranges of the development results in this 

paper. So there is still some room for us to develop and explore. In the future, we will 

do some further studies on this problem. 

 

Example 4. Consider a delayed recurrent neural network with parameters as follows: 

 

( ) ( ) ( ( )) ( ( ( ))),x t Cx t Af x t Bf x t h t                                (34) 

where 

1.2769             0            0            0

         0    0.6321            0            0
,

         0            0    0.9230            0

         0           0             0    0.4480

C A

 
 
 
 
 
 

-0.0370    0.4852   -0.3351    0.2336

-1.6033    0.5988   -0.3224    1.2352
,

 0.3394   -0.0860   -0.3824   -0.5785

-0.1311    0.3253   -0.9534   -0.5015

 
 
 
 
 
 

 

 0.8674   -1.2405   -0.5325    0.0220

 0.0474   -0.9164    0.0360    0.9816
,   diag(0.1137,0.1279,0.7994,0.2368)

 1.8495    2.6117   -0.3788    0.8428

-2.0413    0.5179    1.1734   -0.2775

B K

 
 
  
 
 
 

.  

Solution: For comparison with some existing stability criteria, let 1 10, 0, 0,dh h     

the results obtained in [11, 15-22, 27, 28, 37, 38, 41-48, 50, 51]. In this paper, we have 

used the maximum possible number of decision variables in our LMIs. In Table 14, we 

also give a comparative result on the number of decision variables to be determined to 

obtain the MAUBs 2h  of the time-varying delays. From Table 14, the criterion of 

Corollary 1 reduces decision variables comparing to those of [17, 19, 20, 21, 38, 41, 44, 

47]. Although the number of decision variables of Corollary 1 is bigger than those of 

[11, 15, 16, 22, 27, 28, 37, 42, 43, 45, 48, 51], the MAUBs 2h provided by Corollary 1 

are obviously larger than those reported in [11, 15, 16, 22, 27, 28, 37, 42, 43, 45, 48, 

51]. Therefore, the proposed methods are superior to the existing ones [11, 15-22, 27, 

28, 37, 38, 41-48, 50, 51]. Furthermore, taking different 2  dh ( 1 10.8, 0, 0dh h    ), 

and from Corollary1, we obtain MAUBs 2h is shown in Table 15. From Table 15, if 

2d increases the maximum allowable 2h decreases. 

To confirm the obtained result, when discrete delay 2 2.9382 0.1sin th   sec and 

leakage delay 0.8  sec., under the initial condition 
T

(0) [ 1,   1, -1, 1]x   is given in 
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Fig. 4. Moreover, for Comparison, let 10.5, 3,h    and 1 0dh   , for different 2  dh

the MAUBs 2h is shown in Table 16. It can be seen from the Table 16 that our results 

are significantly better than those in [4, 18, 23, 34, 48]. 

 

5、Conclusion 

This paper mainly discusses the stability of neural networks with discrete and 

leakage time-varying delay systems with delay-range-dependence and delay-derivative 

-dependence. The main results include the following four parts:  

Firstly, through various inequality transformations based on interval matrix, using 

time-decomposition method, LMI is used to discuss and analyze the stability analysis 

of time-varying time-delay derivative of neural network with time-varying time-delay 

system. The Lyapunov function or functional of a neural network with leaky time- 

varying time delay system is constructed, and the selection of matrix parameters such 

as positive definite matrix and integral term coefficients in the Lyapunov function or 

functional is attributed to the solution of a set of LMI values to obtain The existence of 

Lyapunov function or functional of neural network with leaky time-varying time-delay 

system guarantees the relative stability of the time-delay interval of the control system. 

This makes the selection of the matrix parameters of the Lyapunov function or the 

functional no longer blind, thus greatly reducing the conservativeness of stable 

judgment. At the same time, the delay decomposition approach is proposed by the 

researchers. The selection of Lyapunov function matrix and the decomposition of 

intervals are all measures to generalize Lyapunov function, and the introduction of the 

concept of extended Lyapunov function method is to increase the degrees of freedom 

of the Lyapunov function. The calculation complexity (calculation load and variable 

quantity) is reduced, which is more convenient in practical applications such as system 

analysis and controller design. 

Secondly, based on the differential system Lyapunov-Krasovskii stability theory 

combined with linear matrix inequalities, integral inequalities and matrix 

decomposition processing methods, we obtain sufficient conditions to ensure that the 

neural network with leakage time-varying time delay system is asymptotically stable 

and related to the time delay interval . At present, the treatment of discrete delays in 

literature methods requires that its derivative must be less than 1, namely, which to a 

certain extent makes the application of the obtained results have certain limitations. 
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This project breaks through the method proposed in the existing literature for the first 

time for a neural network with leaky time-varying time-delay system and proposes a 

stability analysis with both time-varying discrete time-delay derivatives and both upper 

and lower bounds can be measured simultaneously, which undoubtedly expands its 

application. In order to better solve the stability analysis problem of the time-delay 

control system, research and establish a less conservative stability criterion, for the 

mathematical model of the Markov jump saturation actuator system with time-varying 

time delay, by constructing an innovation The Lyapunov-Krasovskii functional, which 

combines the generalized convex set with integral inequality and other methods to 

estimate the upper bound of the derivative function of the Lyapunov-Krasovskii 

functional, effectively widens the scope of the conclusion. 

Thirdly, in practical applications, due to the existence of parameter uncertainties, the 

stability study of the time-delay correlation of time-varying time-delay systems with 

time-varying time delay derivatives and neural network-like neural networks is more 

important. In the previous steps, respectively. Two methods for stability analysis of 

time-delay correlation of time-varying time-delay systems with time-varying time-

delay derivatives and neural network-like neural networks are introduced: inequality 

method and endpoint matrix method. They have their own advantages and 

disadvantages. The advantages and disadvantages of the inequality method have been 

introduced above. For the endpoint matrix method, because of its calculation process, 

the endpoint matrix of the symmetric interval matrix is involved. According to the 

characteristics of the endpoint matrix, for the LMI, the calculation difficulty will 

increase correspondingly in terms of complexity. In order to reduce the above-

mentioned disadvantages, in recent years, experts and scholars have obtained an 

equivalent description based on interval matrix. Through this equivalent description, 

the uncertainty system described by the interval matrix is transformed into a general 

deterministic system can greatly reduce the dimensions and computational complexity 

of linear matrix inequalities (LMI).  

Finally, in control theory research and practice, system analysis software packages 

such as Matlab are more and more widely used, and the corresponding linear matrix 

inequality (LMI) is introduced in the research method of this project. Compared with 

the limitations of the general method, it makes it easy to solve some complex control 

problems, and the results obtained are less conservative than traditional norm 
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estimation methods. In addition, the discussion of the system by each method proves 

the effectiveness of the proposed method through case analysis. Due to the introduction 

of a new Lyapunov-Krasovskii (LK) energy function with a smaller integral term, the 

number of matrix variables that appear in the proposed LMI condition is small, thereby 

reducing the computational complexity (calculation load) of the upper or lower bound 

of the estimated delay with variable quantity. 
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