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Abstract— Feedback control plays a crucial role in improving 

system accuracy and stability for a variety of scientific and 

engineering applications. Here, we theoretically and 

experimentally investigate the implementation of feedback 

control in microwave photonic (MWP) transversal filter systems 

based on optical microcomb sources, which offer advantages in 

achieving highly reconfigurable processing functions without 

requiring changes to hardware. We propose four different 

feedback control methods including (1) one-stage spectral power 

reshaping, (2) one-stage impulse response reshaping, (3) two-

stage spectral power reshaping, and (4) two-stage synergic 

spectral power reshaping and impulse response reshaping. We 

experimentally implement these feedback control methods and 

compare their performance. The results show that the feedback 

control can significantly improve not only the accuracy of comb 

line shaping as well as temporal signal processing and spectral 

filtering, but also the system’s long-term stability. Finally, we 

discuss the current limitations and future prospects for 

optimizing feedback control in microcomb-based MWP 

transversal filter systems implemented by both discrete 

components and integrated chips. Our results provide a 

comprehensive guide for the implementation of feedback control 

in microcomb-based MWP filter systems in order to improve 

their performance for practical applications. 

Index Terms— Integrated optics, microwave photonics, optical 

microcombs, feedback control.   

 

I.  
 INTRODUCTION 

icrowave transversal filter systems with highly 

reconfigurable transfer functions have been widely used 

for achieving a variety of spectral filtering and signal 

processing functions [5-7]. Microwave photonic (MWP) 

transversal filter systems, which realize conventional 

 

 
 

microwave transversal filter systems based on photonic 

technologies, can provide  processing bandwidths far beyond 

their electrical counterparts, which are limited by the electrical 

bandwidth bottleneck [8, 9]. They can also offer other 

attractive advantages, such as low loss when processing high-

bandwidth signals, strong immunity to electromagnetic 

interference, and wide-band tunability [1, 8]. 

In MWP transversal filter systems, in order to achieve a 

high processing accuracy, a large number of optical carriers 

are required as discrete taps to sample the microwave signals 

to be processed. Conventional multi-wavelength sources such 

as discrete laser arrays [10-12] and fibre Bragg grating arrays 

[13-15] have been utilized to provide the discrete taps. 

Nevertheless, there exists a significant limitation in the 

available tap numbers (typically < 10) since their system size 

and complexity greatly increase with the tap number. In 

contrast, optical microcombs can simultaneously generate a 

large number of separated wavelengths based on micro-scale 

resonators with compact device footprint [6, 16-20], which 

makes them attractive for serving as multi-wavelength sources 

in the MWP transversal filter systems. Compared to laser 

frequency combs generated by electro-optic (EO) modulation 

[21-23] or mode-locked fiber lasers [24, 25], the large comb 

spacings of optical microcombs also yield large operation 

bandwidths for the MWP transversal filter systems by 

providing wide Nyquist bands between adjacent wavelength 

channels. Recently, a diverse range of functions have been 

realized based on microcomb-based MWP transversal filter 

systems implemented by either discrete components or 

integrated chip, such as differentiation [3, 26], integration [2], 

Hilbert transform [27, 28], arbitrary waveform generation [29, 

30], filtering [17, 31], image processing [32], and 

neuromorphic computing [1, 4, 33, 34].  
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Fig. 1. Transversal filter systems. (a) General diagram of a microwave transversal filter system. (b) General diagram and processing flow of a microwave 

photonic (MWP) transversal filter system with a multi-wavelength continuous-wave (CW) source. EOM: electro-optic modulator. PD: photo detector. MW: 

microwave. 

 Feedback control techniques are of fundamental 

importance in many applications owing to their ability to 

enhance system stability and accuracy. They enable dynamic 

adjustments based on real-time measurements, ensuring that 

systems achieve desired response and maintain stable working 

states in the presence of disturbances or uncertainties. In 

MWP transversal filter systems with optical microcomb 

sources, the errors are mainly induced by imperfect response 

of experimental components [35-37], which can also be 

reduced by introducing feedback control. Here, we investigate 

feedback control in microcomb-based MWP transversal filter 

systems. We propose four different feedback control methods, 

including one-stage spectral power reshaping, one-stage 

impulse response reshaping, two-stage spectral power 

reshaping, and two-stage synergic spectral power reshaping 

and impulse response reshaping. We experimentally 

demonstrate feedback control based on these methods, and 

provide detailed comparison of their performance in 

improving the system accuracy with respect to comb line 

shaping, temporal signal processing, spectral filtering, as well 

as in enhancing the system stability in working for long times. 

Finally, we discuss the current challenges and future prospects 

for further improving the performance of feedback control in 

the systems implemented by both discrete components and 

integrated chips. These results provide valuable insights for 

the implementation of feedback control in microcomb-based 

MWP filter systems, facilitating improvements in their 

performance for practical applications.   

II. MICROCOMB-BASED MICROWAVE PHOTONIC 

TRANSVERSAL FILTER SYSTEMS 

Transversal filter systems perform filtering functions when 

signals propagate in delay media, where different delayed 

signal replicas are tapped, weighted, and then summed to 

generate filter outputs. The system can be implemented by 

different configurations that provide delay elements, discrete 

taps, and a mechanism for weighting as well as summing the 

weighted replicas [38]. Fig. 1(a) shows the general diagram of 

a microwave transversal filter system. As the input signal 

propagates through the filter system, it is delayed by a delay 

line consisting of a series of delay elements, each with a time 

delay of ΔT. After propagation through each delay element 

along the delay line, the delayed signal in each channel is 

weighted according to the designed tap coefficient. The 

delayed and weighted signals for different channels are then 

summed to produce the ultimate output. By adjusting the tap 

coefficients, different spectral responses can be achieved. In 

addition to spectral filtering, transversal filter systems can be 

used for temporal signal processing [39], where impulse 

responses for different processing functions can be realized 

via design of the inverse Fourier transform of the spectral 

responses [40]. 

Fig. 1(b) shows the general diagram and processing flow of 

a MWP transversal filter system with a multi-wavelength 

continuous-wave (CW) source. An input microwave signal is  
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Fig. 2. Experimental schematic of a microcomb-based MWP transversal filter system together with experimental error sources that induce processing errors. 

CW pump: continuous-wave pump. EDFA: erbium-doped fibre amplifier. PC: polarization controller. MRR: microring resonator. OSS: optical spectral shaper. 

EOM: electro-optic modulator. MW: microwave. SMF: single-mode fibre. PD: photodetector. RB: response bandwidth. TR: transmission response. TOD: third-

order dispersion. 

multicast onto different wavelength channels of the multi-

wavelength source by using an electro-optic modulator 

(EOM). After the EO modulation, the microwave replicas are 

delayed by a dispersive module, which creates a time delay 

between adjacent channels. The delayed replicas then go 

through an optical spectral shaping module to get weights 

based on the designed tap coefficients. Finally, the delayed 

and weighted replicas are summed after photo detection and 

converted into an output microwave signal. 

The spectral transfer function of the MWP transversal filter 

system can be expressed as [41, 42] 

H(ω) = ∑
N-1

n=0
ane

-jωnΔT,                          (1) 

where ω is the angular frequency, N is the number of taps, an 

(n = 0, 1, 2, …, N-1) is the tap weight of the nth tap, and ΔT is 

the time delay between adjacent taps. Note that the spectral 

transfer function in Eq. (1) is consistent with the spectral 

response of the microwave transversal filter system in Fig. 

1(a), although the system is implemented using MWP 

technologies. In contrast to the use of multiple electrical delay 

elements, attenuators, and accumulators in a microwave 

transversal filter system, a MWP transversal filter system 

employs only an optical delay module, an optical shaping 

module, and a PD to realize the delay, weighting, and sum 

functions, respectively. This makes MWP transversal filter 

systems provide an attractive advantage in achieving a low 

system complexity compared to microwave transversal filter 

systems, particularly given that the processing performance of 

a transversal filter system improves for an increased tap 

number [26]. 

 Fig. 2 shows a microcomb-based MWP transversal filter 

system, which consists of a microcomb generation module and 

a transversal filter module. In the microcomb generation 

module, a CW light is amplified by an erbium-doped fibre 

amplifier (EDFA) and used to pump a nonlinear microring 

resonator (MRR) with a high quality (Q) factor. A polarization 

controller (PC) is employed to adjust the polarization of the 

light fed into the MRR. The generated optical microcomb 

from the MRR, which serves as the multi-wavelength CW 

source in Fig. 1(b), is sent to the subsequent transversal filter 

module. In the transversal filter module, a spool of single-

mode fibre (SMF) is employed as the dispersive module. In 

principle, only one OSS is needed to shape the microcomb to 

achieve the target tap coefficients. Nevertheless, for practical 

systems, particularly when the initial optical microcomb 

generated by the MRR exhibits significant variations in power 

among its comb lines, two OSSs can be employed to improve 

the shaping accuracy and facilitate feedback control. As 

illustrated in Fig. 2, the first OSS after the MRR can be used 

to flatten the initial optical microcomb, thus leading to higher 

signal-to-noise ratios of the comb lines as well as improved 

loss control range for the second OSS. The second one in the 

transversal filter module is employed to shape the comb lines 

according to the designed tap coefficients. 

The microcomb-based MWP transversal filter system in 

Fig. 2 is essentially equivalent to the digital signal processing 

(DSP) filter in Fig. 1(a) but implemented by photonic 

hardware, which can not only maintain the high processing 

speed of photonic processing but also enable improved 
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processing accuracy than optical analogue processing based on 

passive optical filters [41]. By programming the optical 

spectral shaping module to apply different tap coefficients, the 

same system setup can perform different functions without 

any changes of the hardware.  

For microcomb-based MWP transversal filter systems used 

for spectral filtering or signal processing, the filtering or 

processing errors are induced by both theoretical limitations 

and imperfect response of the experimental components in 

Fig. 2. When the tap number N is high enough (e.g., > 40, as 

in the case of optical microcombs), the accuracy is mainly 

constrained by the experimental factors [35]. As labelled in 

Fig. 2, the imperfect response of the experimental components 

is induced by several factors including (ⅰ) intensity and phase 

noise of optical microcomb, (ⅱ) shaping errors of the OSSs, 

(ⅲ) uneven gain and noise of the EDFA, (ⅳ) chirp, limited 

response bandwidth (RB), and uneven transmission response 

(TR) of the EOM, (ⅴ) third-order dispersion (TOD) of the 

SMF, and (ⅵ) shot noise, limited RB, and uneven TR of the 

PD. 

The factors (i) ‒ (vi) cause imperfect amplitude or phase 

response by introducing errors to the tap coefficients (i.e., an 

in Eq. (1), n = 0, 1, 2, …, N-1) or time delay between adjacent 

taps (i.e., ∆T in Eq. (1)). Among the various factors, the rapid 

fluctuations in the intensity and phase induced by optical 

microcomb and PD, typically exceeding 1 GHz, can be 

effectively alleviated by using advanced mode-locking 

technologies and highly sensitive PDs [16, 43]. With the 

 

Fig. 3. Feedback control based on one-stage spectral power reshaping in a microcomb-based MWP transversal filter system. (a) Schematic of system setup. PC: 

polarization controller. EOM: electro-optic modulator. SMF: single-mode fiber. OSS: optical spectral shaper. PD: photo detector. OC: optical coupler. OSA: 

optical spectrum analyzer. (b) Flowchart of spectral power reshaping process in the feedback control loop. 
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exception of these two fast-changing error sources, the 

majority of error sources are relatively stable or change much 

more gradually, making them amenable to compensation 

through the implementation of feedback control aimed at 

adjusting the tap coefficients and time delays to match the 

designed values. In the following sections, the feedback 

control in microcomb-based MWP transversal filter systems is 

introduced and discussed in detail. In Section III, we 

introduce the principle of various feedback control methods. 

In Section Ⅳ, we experimentally implement feedback control 

based on different methods and compare their performance. In 

Section V, we discuss the current challenges and future 

prospects. 

III. FEEDBACK CONTROL METHODS FOR 

MICROCOMB-BASED MICROWAVE PHOTONIC 

TRANSVERSAL FILTER SYSTEMS  

In this section, we introduce various feedback control 

methods for microcomb-based MWP transversal filter systems. 

Depending on the number of feedback loops, the different 

methods are categorized as one-stage and two-stage feedback 

 

Fig. 4. Feedback control based on one-stage impulse response reshaping in a microcomb-based MWP transversal filter system. (a) Schematic of system setup. 

PC: polarization controller. EOM: electro-optic modulator. SMF: single-mode fiber. OSS: optical spectral shaper. PD: photo detector. (b) Flowchart of impulse 

response reshaping process in the feedback control loop. 
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control, which are discussed in subsections A and B, 

respectively. Following these, comparison between different 

feedback control methods is provided in subsection C.  

A. One-stage feedback control  

There are two typical methods to realize one-stage feedback 

control in microcomb-based MWP transversal filter systems, 

namely, spectral power reshaping and impulse response 

reshaping. The former is used to calibrate the spectral intensity 

of comb lines according to the designed tap coefficients, 

whereas the latter aims to calibrate the temporal impulse 

response of the transversal filter system according to the ideal 

impulse response of a specific processing function. 

      Fig. 3(a) illustrates the schematic diagram for feedback 

control based on spectral power reshaping. The optical 

microcomb generated by the microcomb generation module 

(not shown in Fig. 3(a)) features non-uniform power 

distributions [31] and enters the transversal filter module. 

Within this module, an OSS is inserted before the PD, with the 

purpose of performing spectral shaping to achieve the desired 

tap coefficients. To realize feedback control for calibration, 

the shaped optical spectrum of the output from the OSS is 

recorded by an optical spectrum analyzer (OSA), which is sent 

to a computer to compare with the ideal tap coefficients and 

then generate the calibrated tap coefficients that are fed into 

the OSS for spectral power reshaping.   

 Figure 3(b) shows the flowchart of the spectral 

reshaping process in the feedback control loop at each 

iteration, where a and a’ are the data for the measured comb 

spectrum and the reshaped comb spectrum after calibration, 

respectively. When the calibrated data a’ are applied to the 

OSS, one iteration is finished. After that, the reshaped comb 

lines after calibration will be treated as the new data a and 

employed as the new input of the feedback control loop for a 

subsequent iteration. The system normally requires multiple 

iterations to effectively reduce the comb power shaping errors, 

which can improve the signal-to-noise ratio and ensure more 

uniform link gain across the different wavelength channels. 

Fig. 4(a) shows the schematic diagram for feedback 

control based on impulse response reshaping. A microwave 

signal is used as an input signal to test the impulse response of 

the MWP transversal filter system. The reshaping is performed 

channel by channel with the same input microwave signal 

being modulated onto the corresponding comb line. Measured 

tap weights (i.e., peak intensities of the impulse response) are 

obtained from the PD output recorded by the oscilloscope and 

are then subtracted from the designed tap weights to generate 

error signals, which is used to calibrate the attenuation of 

comb line intensity in the OSS. Fig. 4(b) shows the flowchart 

of the impulse response reshaping process in the feedback 

control loop at each iteration, where b and b’ are the measured 

impulse response and calibrated tap coefficients, respectively. 

When the calibrated data b’ is returned to the OSS, one 

iteration is completed. Afterwards, the reshaped comb lines 

after calibration are treated as new data b and used as new 

input to the feedback loop for subsequent iterative processes. 

The system can effectively reduce the error caused by the non-

ideal impulse response of the system after several iterations, 

thus making the output impulse response approach the ideal 

impulse response. 

For the transversal filter system in Fig. 1(a), the tap 

coefficients an (n = 0, 1, 2, …, N–1) can be either positive or 

negative values. In the context of the microcomb-based MWP 

transversal filter systems, the different signs of the tap 

coefficients can be realized by dividing all the wavelength 

channels into two groups (one with positive tap coefficients 

and the other with negative tap coefficients) and introducing a 

phase difference of π between them. To introduce the π phase 

difference, one can either use a dual-drive Mach-Zehnder 

modulator (DD-MZM) that has two complementary output 

ports to replace the EOM in Fig. 3(a), or employ the 

complementary output ports of the OSS connecting to a 

balanced PD (BPD) as shown in Fig. 4(a). The former needs 

separate spectral reshaping processes for the two groups of 

wavelength channels, which would increase the complexity of 

the feedback control. Whereas, this is not necessary for the 

latter because the two groups of wavelength channels are 

combined for differential detection and only generate one 

output microwave signal for impulse response reshaping. As a 

result, impulse response reshaping method shows advantages 

in achieving a low system complexity compared to the spectral 

power reshaping approach for processing functions in which 

both positive and negative tap coefficients are needed. 

B. Two-stage feedback control 

 On the basis of one-stage feedback control in subsection A, 

two-stage feedback control with two feedback loops can be 

used to further improve the comb shaping accuracy in 

microcomb-based MWP transversal filter systems.  

Fig. 5 presents a schematic diagram of two-stage feedback 

control based on spectral power reshaping. The spectrum of 

the initially generated microcomb is pre-shaped via the first 

OSS. Subsequently, the second OSS is employed to further 

shape the pre-shaped microcomb based on designed tap 

coefficients. The first-stage feedback control before the 

transversal filter module is used to calibrate the intensity 

errors of comb lines at the comb pre-shaping stage, and the 

second-stage feedback control, which is implemented within 

the transversal filter module, focuses on addressing the 

intensity errors of tap coefficients. The two-stage feedback 

control based on spectral power reshaping includes all the 

optical components of the microcomb-based MWP transversal 

filter system in the feedback loops. This allows for the 

mitigation of comb shaping inaccuracies induced by all 

different optical components. 

By incorporating the process flow shown in Fig. 4(b), the 

flowchart of the two-stage feedback control based on spectral 

power reshaping is shown in Fig. 6. First, spectral power 

reshaping is used to calibrate the pre-shaped microcomb, 

resulting in the generation of a microcomb with uniform comb 

lines that is then directed to the transversal filter module. In 

the transversal filter module, spectral power reshaping is also 
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used to correct the error of tap coefficients, yielding the 

ultimate output following the two-stage reshaping and 

feedback control. 

Fig. 7 shows a schematic diagram of two-stage feedback 

control based on synergic spectral power reshaping and 

impulse response reshaping. The first OSS is employed to pre-

shape the spectrum of the initially generated microcomb, and 

the pre-shaped comb lines are then shaped according to the 

designed tap coefficients via the second OSS. The first-stage 

feedback control based on spectral power reshaping before the 

transversal filter module is used to calibrate the intensity 

errors of comb lines at the comb pre-shaping stage, whereas 

the second-stage feedback control based on impulse response 

reshaping within the transversal filter module can further 

compensate the non-ideal impulse response of the system 

induced by the components in the transversal filter module. By 

using such two-stage feedback control, all the components of 

the microcomb-based MWP transversal filter system are 

included in the feedback control loops, thus allowing for 

compensation of the comb shaping inaccuracy induced by 

different components and hence significantly reduced overall 

comb shaping errors. 

Fig. 8 shows the flowchart of the two-stage feedback 

control in Fig. 7, which includes the process flow in Fig. 4(b). 

Spectral power reshaping is employed to calibrate the pre-

shaped microcomb, which results in the generation of a 

flattened microcomb that is sent to the transversal filter 

module. In the transversal filter module, impulse response 

reshaping is used to compensate the non-ideal impulse 

response of the system, which generates the ultimate output 

after two-stage reshaping and feedback control. 

C. Comparison of different feedback control methods 

In this section, we briefly compare the feedback control 

methods mentioned in subsections A and B. As shown in 

Table I, although one-stage feedback control methods involve 

less numbers of feedback control loops and OSSs, they exhibit 

lower efficacy when compared to the two-stage feedback 

control methods. For example, employing a two-stage 

feedback control with an additional OSS to pre-shape the 

initially generated optical microcomb, which may have non-

uniform power distributions, can improve the signal-to-noise 

ratios of the optical microcomb after amplification and expand 

 

Fig. 5. Feedback control based on two-stage spectral power reshaping in a microcomb-based MWP transversal filter system. CW laser: continuous-wave laser. 

EDFA: erbium-doped fiber amplifier. PC: polarization controller. MRR: micro-ring resonator. OSS: optical spectral shaper. OSA: optical spectrum analyzer. 

EOM: electro-optic modulator. SMF: single-mode fiber. OC: optical coupler. PD: photo detector. 

 

Fig. 6. Flowchart of two-stage feedback control based on spectral power 

reshaping. 
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the variation range for the tap coefficients. For spectral power 

reshaping method, since the OSS is inserted before the PD, it 

cannot compensate for the errors caused by the PD. 

Nevertheless, it remains effective in compensating for the 

errors arising from the optical microcomb, EOM, SMF, and 

OSS. In contrast, the impulse response reshaping method has 

the capability to address the errors introduced by the PD as 

well. For processing functions that require both positive and 

negative tap coefficients, the impulse response reshaping 

method shows advantages due to its lower system complexity. 

In contrast, the spectral power reshaping method needs to 

separate spectral reshaping processes for two sets of 

wavelength channels with different signs. 

IV. EXPERIMENT RESULTS AND PERFORMANCE 

COMPARISON 

 In this section, we experimentally implement feedback 

control based on the different methods discussed in Section 

III and compare their performance in improving the accuracy 

of microcomb-based MWP transversal filter systems. To 

simplify, we designate the four feedback control methods in 

our following discussion in this section as follows: (A) one-

stage spectral power reshaping, (B) one-stage impulse 

response reshaping, (C) two-stage spectral power reshaping,  

and (D) two-stage synergic spectral power reshaping and 

impulse response reshaping. 

In our experimental demonstration, the optical microcomb 

was generated by a MRR made from high-index doped silica 

glass [44]. The doped silica offers attractive optical properties 

for generating optical microcombs, such as ultra-low linear 

loss (~0.06 dB/cm), a moderate nonlinear parameter (~233 W-

1 · km-1), and a negligible nonlinear loss even at extremely 

high intensities (~25 GW · cm-2) [44]. The MRR was designed 

to have a radius of ~592 μm, which resulted in a comb spacing 

of Δλ = ~0.4 nm or ~49 GHz. The Q factor of the MRR was 

~1.5 million. In the microcomb generation module, a CW 

light, amplified to ~32.1 dBm using an EDFA, was employed 

to pump the MRR. The polarization of the CW pump was 

aligned with a TE-polarized resonance of the MRR at 

~1551.23 nm via a PC. When the wavelength of the CW pump 

was swept across the MRR’s resonance, optical parametric 

 

Fig. 7. Feedback control based on two-stage synergic spectral power reshaping and impulse response reshaping in a microcomb-based MWP transversal filter 

system. CW laser: continuous-wave laser. EDFA: erbium-doped fiber amplifier. PC: polarization controller. MRR: micro-ring resonator. OSS: optical spectral 

shaper. OSA: optical spectrum analyzer. EOM: electro-optic modulator. SMF: single-mode fiber. PD: photo detector. 

 

Fig. 8. Flowchart of two-stage feedback control based on synergic spectral 

power reshaping and impulse response reshaping. 
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oscillation occurred, leading to the generation of a soliton 

crystal optical microcomb based on thermal mode locking 

[31]. By using a temperature controller to maintain the MRR’s 

temperature, we were able to sustain the stable mode-locking 

for the soliton crystal microcomb for a long time in our 

experiments (e.g., ~48 hours [45]). 

In the transversal filter module, the comb lines were 

modulated by the input microwave signal via an EOM 

(iXblue) with an operation bandwidth of 40 GHz. The 

generated microwave replicas were transmitted through a 

spool of SMF with a dispersion parameter of D2 = ~17.4 

ps/nm/km and a length of L = ~5.124 km, which introduced a 

time delay of ∆T = D2 ‧ L‧ Δλ = ~35.7 ps between adjacent 

wavelength channels. For all the methods, the comb lines were 

spectrally shaped by an OSS (Finisar) before the BPD to 

achieve the designed tap coefficients. The shaped output from 

the OSS was then monitored by an OSA (Anritsu) and 

transmitted to a computer to derive calibrated tap coefficients. 

For Methods C and D, the optical microcomb from the 

microcomb generation module was first shaped by an OSS 

(Finisar) to achieve uniform power distribution in the comb 

lines. For Methods B and D, peak intensities of the impulse 

response (i.e., measured tap coefficients) were extracted from 

the output recorded by a high bandwidth real-time 

oscilloscope (Keysight) connected to a BPD (Finisar). 

In our experimental demonstration, we first took equal tap 

weights (i.e., an = 1 (n = 0, 1, 2, …, N–1)) with uniform power 

distribution in different taps as an example to show the 

effectiveness for different feedback control methods. Fig. 9 

shows the optical spectra and impulse response of selected 

comb lines after one-stage feedback control based on Methods 

A and B, respectively. In Figs. 9(a) ‒ (c), we show the results 

for 10, 20, and 80 comb lines, respectively. In each of them, 

we show the results after 2 and 10 calibration iterations. For 

comparison, the corresponding results without any feedback 

control and the power distribution before spectral shaping are 

also shown. As can be seen, the introducing of feedback 

control can effectively improve the uniformity for all different 

tap numbers, and the uniformity further improves as the 

number of iteration increases from 2 to 10.  

To quantitatively characterize the uniformity of different 

taps in Fig. 9, we introduce the concept of average deviation 

(AD), which is defined as 

AD = 
1

N
∑

|Pn-Pavg|

Pavg

N-1
n=0                               (2) 

where Pn  (n = 0, 1, 2, …, N–1)  is the power of the tap 

corresponding to the tap coefficient ai, and Pavg = (P0  + P1 + 

P2 + … + Pn-1) / N is the average of the powers across all the 

different taps. Figs. 9(d-ⅰ) and (d-ⅰi) show the ADs versus the 

number of iterations for Methods A and B, respectively. For 

each method, we show the results for 10, 20, and 80 comb 

lines. The values at iteration = 0 correspond to the results 

without any feedback control. For both methods, the ADs 

decrease with increasing number of iterations, showing 

agreement with the trend in Figs. 9(a) – (c). As the number of 

iterations increases, the decrease in ADs becomes more 

gradual, with only a minimal decrease in the ADs when the 

number of iterations exceeds 4. This suggests that a large 

number of iterations is not necessary. We also note that 

achieving the same AD value for more taps requires a higher 

number of iterations. Depite this, for all scenarios, low AD 

values < 0.005 can be attained after just 4 iterations. 

In Fig. 10, we show the optical spectra and impulse 

response of selected comb lines after two-stage feedback 

control based on Methods C and D, respectively. Figs. 10(a) 

and (b) show the results for 10 and 20 comb lines, 

respectively. In each of them, we present the results after the  

TABLE I. COMPARISON OF DIFFERENT FEEDBACK CONTROL METHODS. FCL: FEEDBACK CONTROL LOOP. EOM: ELECTRO-OPTIC 

MODULATOR. SMF: SINGLE-MODE FIBRE. OSS: OPTICAL SPECTRAL SHAPER. PD: PHOTODETECTOR. OSA: OPTICAL SPECTRUM 

ANALYZER. OSC: OSCILLOSCOPE. 

Method 

One-stage feedback control Two-stage feedback control 

Spectral power 

reshaping 

Impulse response 

reshaping 
Spectral power reshaping 

Spectral power & 

impulse response 

reshaping 

No. of FCLs 1 1 2 2 

No. of OSSs 1 1 2 2 

Included components 

microcomb, EOM, 

SMF, 

OSS 

microcomb, EOM, 

SMF,  

OSS, PD 

microcomb, EOM, SMF, 

OSSs 

microcomb, EOM, SMF, 

OSSs, PD 

Monitoring instruments OSA, computer OSC, computer OSA, computer 
OSA, OSC,  

computer 

Variation range for tap coefficients small small large large 

Complexity in achieving tap 

coefficients with different signs 
high low high low 
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first-stage and second-stage feedback control, and the number 

of iterations is 4. The power distribution of the comb lines 

before spectral shaping is also shown for comparison. For both 

methods, by employing the second-stage feedback control, the 

uniformity of the different taps is further improved on the 

basis of the first-stage feedback control. Fig. 10(c) shows the 

ADs versus the number of iterations for Methods C and D, 

which were calculated based on Eq. (2) using the results in 

Figs. 10(a) and (b). The values at iteration = 0 represent the 

results without any feedback control. Similar to the trend 

observed in Fig. 9d, the ADs decrease with increasing number 

of iterations. We also note that for both methods low AD 

values < 0.005 can be achieved after just 2 iterations. 

The AD values in Fig. 9(d-ⅰ) were calculated based on the 

measured optical spectra of comb lines (which were recorded 

by an OSA). On the other hand, the AD values in Fig. 9(d-iⅰ)  

 

Fig. 9. Experimental results of one-stage feedback control. (a) ‒ (c) Results of 10, 20, and 80 comb lines, respectively, where (i) and (ii) show the optical spectra 

for feedback control based on Method A and the impulse response for feedback control based on Method B, respectively. In each figure, the power distribution 

of the comb lines before shaping, the shaping results without any feedback control, and the shaping results after 2 and 10 calibration iterations are shown for 

comparison. (d) Average deviations (ADs) versus the number of iterations for (i) Method A and (ii) Method B calculated based on the results in (a) ‒ (c). 
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were calculated based on the measured impulse responses 

(which were recorded by an oscilloscope). Therefore, the AD 

values in these two figures cannot be directly compared to 

evaluate the performance for Methods A and B. Similarly, the 

AD values in Fig. 10(c-ⅰ) and Fig. 10(c-iⅰ) cannot be directly 

compared to evaluate the performance for Methods C and D. 

To directly compare the performance of different feedback 

control methods, we further employed the microcomb-based 

MWP transversal filter systems to perform temporal signal 

processing and spectral filtering. The root mean square error 

(RMSE) is introduced to characterize the discrepancy from the 

measured result to the ideal result, which can be expressed as 

RMSE = √∑
n

i=1

(Yi - yi)
2

n
                                 (3) 

where Y1, Y2, …, Yn are the values of ideal output, y1, y2, …, yn 

are values of measured output, and n is the number of sampled 

points. 

 

Fig. 10. Experimental results of two-stage feedback control. (a) ‒ (b) Results of 10 and 20 comb lines, respectively. (i) shows the optical spectra for feedback 

control based on Method C. (ii) shows the optical spectra and impulse response for feedback control based on Method D. In each figure, the power distribution of 

the comb lines before shaping and the shaping results after the 1st-stage and the 2nd-stage feedback control are shown for comparison. (c) Average deviations 

(ADs) versus the number of iterations for (i) Methods C and (ii) Method D calculated based on the results in (a) and (b).  
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In Fig. 11, we compare the performance for the 

microcomb-based MWP transversal filter system that 

performs temporal integration. A Gaussian pulse with a full  

width at half maximum (FWHM) of ~0.2 ns generated by an 

AWG (Keysight) was used as the input microwave signal. The 

tap number was N = 20, which resulted in an integration 

window of tw = N × ∆T = ~0.7 ns. Fig. 11(a) shows the 

temporal waveform for the input Gaussian pulse and the 

measured output waveforms when employing feedback 

control methods A – D. For comparison, the ideal integration 

result without any errors, the system output without feedback 

control, and the theoretical output assuming that all the system 

components have perfect responses are also shown. In our 

calculation of the ideal integration result and the theoretical 

output, we used the output waveform from the AWG captured 

by an oscilloscope as the input signal, which helped 

circumvent additional errors induced by the difference 

between the practical input pulse and the ideal Gaussian pulse. 

As can be seen, the implementation of feedback control results 

in a closer match between the system output and the ideal 

output compared to the system without any feedback control. 

Among all the different feedback control methods, the output 

of Method D exhibits the closest match with the ideal 

integration result, highlighting its superiority in improving the 

processing accuracy.  

Fig. 11(b) shows the RMSEs between the ideal output and 

the other results in Fig. 11(a). The RMSE for the theoretical 

output assuming that all the system components have perfect 

responses is induced by the theoretical limitation of the 

transversal filter system, which arises from the theoretical 

approximation of a continuous impulse response (that 

corresponds to an infinite tap number) using a practical system 

having a finite tap number. The RMSE values for Methods A 

and B are higher than those for Methods C and D, showing a 

trend similar to the results in Figs. (9) and (10) and further 

confirming the improved performance for the two-stage 

feedback control. Although Method D exhibits the lowest 

RMSE value among the four methods, it is still higher than the 

RMSE for the theoretical output, indicating that there were 

remaining errors in the system that cannot be compensated by 

employing the current feedback control methods. These errors 

were mainly fast varying errors, such as the amplitude and 

phase errors induced by microcombs and the PD. 

To assess the system’s stability in operating for a long time, 

we measured the system outputs both with the implementation 

of feedback control based on Method D and without feedback 

control. The outputs were recorded every 30 minutes, 

spanning a period of 5 hours. Fig. 11(c) shows the calculated 

RMSEs based on the recorded system outputs versus running 

time. As can be seen, the absence of feedback control resulted 

in an obvious decline in the processing accuracy as the system 

ran over time. In contrast, the implementation of feedback 

control enabled the system to maintain stable operation with a 

high level of processing accuracy over a significantly 

extended duration. These results further highlight the 

importance of implementing feedback control in practical 

systems. 

We also compare the performance for the microcomb-based 

MWP transversal filter system that performs low-pass 

filtering. Fig. 12(a) shows the measured RF response of the 

system recorded by a vector network analyzer (VNA, Anritsu) 

when implementing feedback control based on Methods A – 

 

Fig. 11. Performance comparison of different feedback control methods for microcomb-based MWP transversal filter system that performs temporal integration. 

(a) Measured output waveforms when employing feedback control methods A – D. For comparison, the waveforms for the input Gaussian pulse, the ideal 

integration result without any errors, the theoretical output assuming that all the system components have perfect responses, and the system output without 

feedback control are also shown. The shaded area represents the integration window of tw = 0.7 ns. (b) Root mean square errors (RMSEs) between the ideal 

integration result and the other results in (a). The results for the theoretical system output assuming that all the system components have perfect responses and the 

integration result without feedback control are denoted as ‘Theo.’ and ‘W/O’, respectively. (c) RMSEs versus system running time for the system without 

feedback control and with feedback control based on Method D. 
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Fig. 12. Performance comparison of different feedback control methods for microcomb-based MWP transversal filter system that performs low-pass filtering. (a) 

Measured RF response when employing feedback control Methods A – D. For comparison, the theoretical RF response assuming that all the system components 

have perfect responses and the RF response without feedback control are also shown. (b) RMSEs between the theoretical RF response and the other results in (a). 

The result for the system without feedback control is denoted as ‘W/O’. (c) RMSEs versus system running time for the system without feedback control and with 

feedback control based on Method D.  

D. The RF response for the system without feedback control 

and the theoretical RF response calculated based on Eq. (1) 

assuming that all the system components have perfect 

response are also shown for comparison. As expected, 

incorporating feedback control leads to a more accurate 

alignment between the response of the practical system and 

the theoretical response. Similar to that in Fig. 11(a), the 

system response when employing feedback control based on 

Method D exhibits the lowest discrepancies in comparison to 

the theoretical response. Fig. 12(b) shows the calculated 

RMSEs between the theoretical RF response and the measured 

RF response based on the results in Fig. 12(a). Fig. 12(c) 

compares the RMSEs versus running time for the systems with 

feedback control based on Method D and without feedback 

control. The results in these figures show similar trends as 

those in Figs. 11(b) and (c), which confirms that the 

implementation of feedback control works for not only 

temporal processing but also spectral filtering. 

V. DISCUSSION 

Feedback control techniques play an important role 

across various applications due to their capability to improve 

both system accuracy and stability. As evidenced by our 

results in previous sections, feedback control in microcomb-

based MWP transversal filter systems can effectively reduce 

errors caused by experimental components and enhance the 

system stability in working for long times. Despite this, 

though, there are still challenges that need to be addressed. In 

this section, we discuss the limitations and future prospects for 

further improving the feedback control performance.  

Achieving stable mode-locking of optical microcombs is 

critical for their practical applications, including their use in 

MWP transversal filter systems. In our previous discussion, 

we assumed that the generated microcomb was stable and did 

not account for the errors induced by the microcomb’s 

instability in the feedback control, while this needs to be 

considered for application scenarios that require the system to 

operate for long time periods. In the past decade, many 

approaches have been proposed to achieve stable mode-

locking of microcombs, such as frequency scanning [45], 

power kicking [46], forward and backward tuning [47], two-

colour pumping [48], EO modulation [49], self-injection 

locking [50], filter-driven FWM [51], integrated heaters [52], 

and self-referencing [53], cryogenic cooling [54], auxiliary 

laser heating [55], and nonlinear dynamics engineering [56]. 

Recently, significant progress has also been achieved in 

turnkey soliton microcomb generation [56] and piezoelectric 

feedback control of microcombs via integrated actuators [57]. 

These methods open up new avenues towards achieving 

mode-locking of microcombs with high stability in practical 

applications. 

 The performance of feedback control in microcomb-based 

MWP transversal filter systems is also affected by the 

monitoring instruments such as the OSA and oscilloscope. To 

achieve precise spectral power reshaping, a high sampling 

resolution of the OSA is needed for detailed capture of fine 

optical spectral characteristics. On the other hand, the high 

sampling resolution also results in a large number of sampling 

points, which increases the processing time and hence the 

overall feedback control time. As a result, there is a trade-off 

that needs to be considered when selecting the resolution of 

OSA in practical applications. For impulse response 

reshaping, utilizing the oscilloscope’s averaging function, 

which involves capturing waveforms for multiple times and 

then averaging them point by point, can be effective in 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

14 
 

 

14 

 

Figure 13. A schematic showing the concept of a monolithically integrated microcomb-based MWP transversal filter system. CW laser: continuous-wave laser. 

MRR: microring resonator. EOM: electro-optic Mach-Zehnder modulator. PD: photodetector. ART: anti-reflection termination. 

minimizing the influence of noises and improving the 

accuracy of feedback control. Nevertheless, this could also 

result in the increase of processing time and the overall 

feedback control time, which introduces another trade-off in 

the selection of the averaging times of oscilloscope.  

Recently, there has been significant progress towards 

monolithically integrated microcomb-based MWP transversal 

filter systems [14]. Although employing integrated microcomb 

sources to replace discrete laser arrays already brings many 

benefits in terms of SWaP, cost, and complexity, there is much 

more to be gained by further increasing the integration level of 

the overall system. Fig. 13 shows the schematic of an on-chip 

microcomb-based MWP transversal filter system, where the 

CW laser, optical amplifier, EO modulator, dispersive module, 

optical spectral shaping module, and PD are all implemented 

in their integrated forms. In principle, all the components in 

the microcomb-based MWP transversal filter system can be 

integrated on the same chip, and on-chip CW lasers [58], 

optical amplifiers [59], EO modulators [60], dispersive 

elements [61], optical spectral shapers [62, 63], and PDs [64] 

have all been demonstrated. On the basis of these integrated 

components, some complicated subsystems such as 

microcomb generation module consisting of heterogeneously 

integrated pump lasers and microresonators [65] and spectral 

shaping arrays [66, 67] have also been realized. 

For on-chip microcomb-based MWP transversal filter 

systems, feedback control is also needed to improve the 

shaping accuracy and system stability, although the 

development of feedback control technologies in these 

systems is still in its nascent stages. Except for the previously 

mentioned methods for achieving stable mode-locking in the 

microcomb generation module, the transversal filter module 

also needs feedback control to compensate the comb shaping 

errors induced by different components such as EO modulator, 

dispersive module, spectral shaping module, and PD. The 

spectral power reshaping and impulse response reshaping 

methods discussed in Section Ⅲ can also be used for realizing 

feedback control in on-chip microcomb-based MWP 

transversal filter systems. For spectral power reshaping, the 

feedback control can be realized by comparing the output 

optical signal at Port B in Fig. 13 with the ideal one to 

generate the calibrated signal that is applied to the 

microheaters in the spectral shaping module to tailor the 

intensity of comb line in each channel. For impulse response 

reshaping, channel-by-channel power reshaping can be 

realized by modulating the same input RF signal onto the 

corresponding comb line and comparing the measured RF 

output signal at Port A in Fig. 13 with the designed tap 

weights to generate the calibrated signal for adjusting the 

microheaters. Recently, a self-calibrating photonic integrated 

circuits has been demonstrated [68], where the impulse 

response calibration was realized by incorporating an optical 

reference path to establish an on-chip Kramers-Kronig 

relationship and then employing a fast-converging algorithm 

to calculate the tap-value errors from the measured and desired 

impulse responses. This offers new possibilities for realizing 

stable and accurate feedback control in on-chip microcomb 

[80-103] based microwave photonic transversal filter systems, 

[104-136]  potentially aided in terms of integration with the 

advanced functionalities offered by 2D materials [137-159].  

VI. CONCLUSON 

In summary, we demonstrate the effectiveness of 

introducing of feedback control in microcomb-based MWP 

transversal filter systems to improve their performance. We 

propose and experimentally demonstrate four different 
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feedback control methods. The experimental results show that 

the implementation of feedback control enhances not only the 

accuracy of comb line shaping, temporal signal processing, 

and spectral filtering, but also the system stability in working 

for long times. In addition, the two-stage synergic spectral 

power reshaping and impulse response reshaping exhibited the 

best performance in improving the system performance among 

the four methods. Finally, we discuss the challenges and 

prospects for improving the performance of feedback control 

in the systems implemented by both discrete components and 

integrated chips. These results provide a useful guide for the 

implementation of feedback control in microcomb-based 

MWP filter systems, which paves the way for improving their 

performance in practical applications.  
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