
 
Abstract—The utilization and engineering of thermo-optic 

effects have found broad applications in integrated photonic 

devices, facilitating efficient light manipulation to achieve various 

functionalities. Here, we perform both an experimental 

characterization and theoretical analysis of these effects in 

integrated micro-ring resonators made from high index doped 

silica (HIDS), which have had many applications in integrated 

photonics and nonlinear optics. By fitting the experimental results 

with theory, we obtain fundamental parameters that characterize 

their thermo-optic performance, including the thermo-optic 

coefficient, the efficiency for the optically induced thermo-optic 

process, and the thermal conductivity. The characteristics of these 

parameters are compared to those of other materials commonly 

used for integrated photonic platforms, such as silicon, silicon 

nitride, and silica. These results offer a comprehensive insight 

into the thermo-optic properties of HIDS based devices. 

Understanding these properties is essential for efficiently 

controlling and engineering them in many practical applications.  
 

Index Terms—Integrated optics, thermo-optic effects, 

microring resonator, optical bistability. 

I.   INTRODUCTION 

eat management and control of optical devices is of 

fundamental importance for their practical applications 

[1, 2]. For integrated photonic devices with a compact footprint 

and tight mode confinement, and particularly for materials that 

do not exhibit second-order optical nonlinearities such as the 

Pockels effect [3], the importance of precisely engineering 

their thermo-optic effects is even more pronounced [4, 5]. Over 

the past decade, with the rapid advancement of integrated 

photonics, extensive research has been dedicated to 

investigating and harnessing thermo-optic effects to 

manipulate light in integrated photonic devices, particularly 

those based on centrosymmetric materials [4, 6]. This has 

enabled the realization of a variety of functionalities such as 

mode-locking [7, 8], optical switches [9, 10], logic gates [11], 

power limiters [11, 12], and optical memories [11, 13, 14]. 

As an important complementary metal–oxide–

semiconductor (CMOS)-compatible integrated platform, high 

index doped silica (HIDS) has been extensively utilized for 

diverse linear and nonlinear integrated photonic devices for a 

range of applications [15-22]. HIDS possesses a host of 

attractive optical properties, such as low linear optical 

absorption over a broad band, a reasonably strong Kerr 

nonlinearity (about 5 times that of silica), and negligible 

nonlinear optical absorption [23-26]. The combination of these 
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properties and its strong compatibility with the globally 

established CMOS infrastructure, contributes to the 

exceptional performance and versatility of HIDS devices in 

various applications within the field of integrated photonics. 

Despite its proven success for many optical applications, 

investigation of the thermo-optic effects in HIDS devices has 

not been as extensive as in other integrated photonic devices 

made from other centrosymmetric materials such as silicon and 

silicon nitride [14, 27, 28]. There remains a need for 

exploration and an understanding of the thermo-optic 

properties of HIDS devices to fully leverage their potential in 

integrated photonics. In this paper, we address this issue by 

providing a comprehensive experimental characterization and 

theoretical analysis of these effects in HIDS integrated devices. 

By fitting experimental results with theory, we obtain 

fundamental parameters that characterize the thermo-optic 

properties of HIDS devices, including the thermo-optic 

coefficient, the efficiency for the optically induced thermo-

optic process, and the thermal conductivity. We also provide a 

comparison of these parameters with those of other materials 

used for CMOS- compatible integrated photonic platforms, 

such as silicon, silicon nitride, and silica. These findings 

provide a comprehensive understanding of the thermo-optic 

properties of HIDS devices, important for effectively 

controlling and engineering these devices in many applications. 
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II. DEVICE FABRICATION AND CHARACTERISATION 

Fig. 1(a) shows a schematic of an add-drop MRR made from 

HIDS. A microscope image of the fabricated device is shown 

in Fig. 1(b). The MRR was fabricated via CMOS-compatible 

processes [15, 18]. First, the HIDS film with a refractive index 

of ~1.66 was deposited using plasma enhanced chemical vapor 

deposition (PECVD). Next, waveguides with exceptionally 

low sidewall roughness were formed by employing deep 

ultraviolet photolithography techniques and reactive ion 

etching. Finally, a silica layer with a refractive index of ~1.45 

was deposited via PECVD as the upper cladding. The 

waveguide cross section of both the MRR and the two coupling 

bus waveguides was ~3 µm × ~2 µm. The MRR had a radius 

of ~592.1 µm, which corresponded to a free spectral range 

(FSR) of ~0.4 nm (i.e., ~49 GHz). Note that although there 

were a number of concentric rings in Fig. 1(b), only the central 

ring was coupled with the through / drop bus waveguides to 

form an MRR with a radius of ~592.1 µm ‒ the rest were 

simply used to enable easy identification by eye. A similar 

MRR layout was used in our previous work on HIDS devices 

[25, 26]. The input and output ports of the MRR were 

connected to specially designed mode converters that were 

packaged with fiber pigtails. The fiber-to-chip coupling loss 

was ~1.5 dB / facet, with this low value enabled through the 

use of on-chip mode converters to the pigtailed fibers. 

 
Fig. 1. (a) ‒ (b) Schematic and microscope image of an add-drop microring resonator (MRR) made from high index doped silica (HIDS), respectively. (c) Measured 

transmission spectra of the HIDS MRR for (i) TE and (ii) TM polarizations. (d) Zoom-in views of single (i) TE- and (ii) TM- polarized resonances at ~1550.381 

nm and ~1550.288 nm, respectively. 
 



TABLE І. DEVICE PARAMETERS OF THE HIDS MRR 

 Parameter Symbol Value Source 
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s Refractive index n 

silica: 1.45 
HIDS: 1.60 

[18, 29] 

Electrical conductivity 
(S / m) 

σ 6 × 10-3 [15] 
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Width (μm) W 3 Device structural parameter 

Height (μm) H 2 Device structural parameter 

M
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Ring radius (µm) R 592.1 Device structural parameter 

Field transmission coefficients t1, 2 
a) 

TE: 0.9991 

TM: 0.9992 

Fit results 

from Fig.1(d) 

Round-trip amplitude 
transmission 

a 
TE: 0.9906 
TM: 0.9875 

Fit results 
from Fig. 1(d) 

Intensity build-up factor BUF 
TE: 47.7 

TM: 36.8 

Calculated based on the fitted 

t1, 2 and a 

a) The field transmission coefficients of the two couplers formed by the MRR and the two bus waveguides are assumed to be equal, i.e., t1 = t2. 

Fig. 1(c) shows the measured transmission spectra of a 

fabricated HIDS MRR for both transverse magnetic (TE) and 

transverse electric (TM) polarizations. The wavelength of a 

tunable continuous-wave (CW) laser was scanned at a constant 

input power of ~0 dBm to measure the transmission spectra, 

and a polarization controller (PC) was employed to adjust the 

input polarization. The input power here and in our following 

analysis refers to the power coupled into the device (i.e., the 

on-chip power), with the fiber-to-chip coupling loss being 

subtracted from the laser’s output power. The free spectral 

range (FSR) of the TE- and TM- polarized transmission spectra 

was ~0.4 nm, which corresponded to ~49 GHz. By tuning the 

PC, the maximum polarization extinction ratios for the TE- and 

TM- polarized resonances were > 30 dB. 

Fig. 1(d) shows zoom-in views of single TE- and TM- 

polarized resonances at ~1550.381 nm and ~1550.288 nm. 

There was no significant asymmetry in the measured 

resonance spectral lineshape, indicating that the thermal effect 

at the input power of ~0 dBm was negligible. The full widths 

at half maximum (FWHMs) of the TE- and TM-polarized 

resonances were ~0.0015 nm (~190 MHz) and ~0.0020 nm 

(~250 MHz), respectively, which corresponded to Q factors of 

~1.0 × 106 and ~7.8 × 105, respectively. In addition, the -20-dB 

bandwidths of the TE- and TM- polarized resonances were 

~1.75 GHz and ~1.87 GHz, respectively. By using the 

scattering matrix method [30, 31] to fit the measured spectra 

in Fig. 1(d), we obtained the device parameters for the HIDS 

MRR that will be used for analysis in the subsequent sections. 

These parameters, together with the specific material and 

waveguide parameters, are summarized in Table I.  

III. THERMO-OPTIC COEFFICIENT 

The thermo-optic coefficient of a material is a fundamental 

parameter that indicates how its refractive index changes with 

environmental temperature, which plays an important role in 

the design and engineering of relevant devices [32]. In this 

section, we characterize the thermo-optic coefficient of HIDS 

by measuring the transmission spectra of the HIDS MRR with 

varying chip temperature. 

When there are changes in environmental temperature, the 

thermo-optic effect causes changes in the effective refractive 

index of the HIDS waveguides. Consequently, this leads to a 

shift in the resonance wavelengths of the HIDS MRR. Fig. 2(a) 

shows the TE- and TM- polarized transmission spectra of the 

HIDS MRR when the chip temperature changed from 23 °C to 

30 °C, respectively. We measured the shifts of three resonances, 

including a TE-polarized resonance and two TM-polarized 

resonances (TM1 and TM2). Specially, the TE-polarized 

resonance was located between the two TM-polarized 

resonances. To adjust the temperature of the integrated chip 

mounted on a stage, a temperature controller was employed. 

The input power of the scanned CW laser was maintained as 

~0 dBm (i.e., the same as that in Fig. 1) in order to mitigate 

noticeable thermal effects. It is important to highlight that 

despite the changes in environmental temperature, no 

significant asymmetry was observed in the measured 

resonance spectral lineshape. This observation indicates that 

changes in environmental temperature induced by the 

temperature controller have a minimal impact on the 

asymmetry of the resonance spectral lineshape and does not 



induce significant optical bistability that will be discussed in 

the next section [33]. 

Fig. 2(b) shows the resonance wavelength shifts versus the 

chip temperature, which were extracted from the results in Fig. 

2(a). The TE-polarized resonance redshifted at a rate of ∼14.2 

pm / °C, whereas the two TM-polarized resonances exhibited 

a redshift rate of ∼13.4 pm / °C. Fig. 2(c) depicts the changes 

in the waveguide effective refractive indices versus the chip 

temperature. These results were calculated using the measured 

results in Fig. 2(b), along with the relationship between the 

resonance wavelengths and the waveguide effective refractive 

index given by [34, 35]: 

neff ∙ 2π / λm ∙ L = m ∙ 2π           (1)                            

where neff is the effective refractive index of the HIDS 

waveguide, L is the circumference of the HIDS MRR, and m 

represents the mth resonance, with λm denoting the 

corresponding resonance wavelength.  

 

In Fig. 2(c), the TE mode displays a change in the 

effective refractive index at a rate of ~1.52 × 10-5 /°C, while 

the TM mode changes at a rate of ~1.43 × 10-5 /°C. The 

difference in these rates can be attributed to the asymmetric 

cross section of the HIDS waveguide. Based on these results, 

we further extract the thermo-optic coefficient of the HIDS 

material at various chip temperatures by using Lumerical 

FDTD commercial mode solving software. The results are 

presented in Fig. 2(d). In our simulation, the thermo-optic 

coefficient of silica is assumed to be ~1.09 × 10-5 /°C [36]. The 

thermo-optic coefficients of HIDS in Fig. 2(d) do not show 

significant temperature dependence. We also note that the 

average values of the thermo-optic coefficients of HIDS 

derived from the TE and TM modes exhibit remarkable 

similarity, at ~1.49 × 10-5 /°C and ~1.44 × 10-5 /°C, respectively. 

This close resemblance between the coefficients reflects that 

the HIDS does not exhibit significant anisotropy in terms of its 

thermo-optic coefficient. 

 

Fig. 2. (a) Measured (i) TE- and (ii) TM- polarized transmission spectra of the HIDS MRR when the chip temperature changes from 23 °C to 30 °C, respectively. 

The results presented depict a resonance with TE polarization positioned between two resonances with TM polarization (TM1 and TM2). (b) Resonance wavelength 
shifts versus chip temperature for (i)TE and (ii) TM polarizations extracted from (a). (c) Changes in waveguide effective refractive indices versus chip temperature 

extracted from (b). (d) Thermo-optic coefficient μ versus chip temperature extracted from (c). 

 



IV. OPTICALLY INDUCED THERMO-OPTIC 

RESPONSE 

When a material is illuminated with intense light, optical 

absorption leads to heat generation that raises the local 

temperature. This in turn modifies the material’s refractive 

index, thereby influencing the propagation of light through the 

material. In this optically induced thermo-optic process, the 

change in the material’s refractive index n due to the 

temperature variation induced by the optical field can be 

modeled as [27, 37]:  

n = n0 + n̅2 ∙ I               (2)                              

where n0 is the material’s refractive index when not exposed to 

light, andn2 · I is the refractive index change due to the 

optically induced temperature change, with I denoting the light 

intensity andn2 denoting the coefficient that characterizes the 

efficiency for this process. In this section, we characterize 

then2 of HIDS by measuring the transmission spectra of the 

HIDS MRR at various input powers. It is worth noting that Eq. 

(2) is the same as that used for modeling the nonlinear Kerr 

optical effect [38, 39]. For the optically induced refractive 

index change, in addition to the optically induced thermo-optic 

effect, there will also be a presence of the Kerr optical effect. 

Despite having the same mathematical modeling as shown in 

Eq. (2), these two effects are associated with different physical 

processes that exhibit distinct characteristics. For example, 

compared to the Kerr optical effect that has an ultrafast time 

response on the order of 10-15 s [40, 41], the time response for 

the optically induced thermo-optic effect is much slower, 

typically on the order of 10-6 ‒10-3 s [31, 42].  

When the wavelength of incident light is on resonance with 

the MRR, the incident light power converts into heat more 

 
Fig. 3. (a) Measured transmission spectra of the HIDS MRR at varying input powers for (i) TE and (ii) TM modes. (b) Measured (data points) and fitted (solid 

curves) resonance wavelength shifts versus input power. (c) Waveguide effective refractive index changes versus input power extracted from (b). (d)n2, eff versus 

input power extracted from (c). (e)n2, HIDS versus input power extracted from (d). 

 



efficiently, being enhanced significantly by the ring resonance, 

leading to an efficient change in the effective refractive index 

of the HIDS waveguides caused by the thermo-optic effect. 

This refractive index change also results in a shift in the 

resonance wavelengths of the HIDS MRR. Figs. 3(a-i) and (a-

ii) show measured transmission spectra of the HIDS MRR at 

different input powers for TE and TM polarizations, 

respectively. As the input power increased, a redshift in the 

resonance wavelengths was observed, accompanied by 

increasingly asymmetric resonance spectra. The spectra also 

exhibit a steepened transition edge, indicating the presence of 

the optical bistability [43, 44]. 

Depending on the dominating nonlinear mechanism, the 

resonance wavelengths can experience either a blue or red shift. 

In previous work on bistability in silicon MRRs at room 

temperature, it was observed that the resonance wavelengths 

initially exhibited a blueshift and subsequently transitioned to 

a redshift as the input power increased [45]. This is because the 

free-carrier dispersion (FCD) that results in a decreased 

refractive index of silicon dominates at low powers, whereas 

the thermo-optic effect that leads to an increased refractive 

index dominates at high powers [45]. Here, we only observed 

a redshift in the resonance wavelengths, mainly due to the 

dominating thermo-optic effect and negligible FCD for the 

HIDS MRR [26, 29] and the fact that the magnitude of the all-

optical Kerr component of the index change tends to be much 

smaller for typical CW powers. 

Fig. 3(b) shows the shifts of the resonance wavelength 

versus the input power. For both the TE- and TM- polarizations, 

the positive Δλ (which indicates a redshift) exhibits a nearly 

linear relationship with the input power. By linearly fitting the 

measured results, we obtained the rates for the resonance 

 
Fig. 4. Measured output power versus input power with initial wavelength detunings of (a) δ = ~1.3, (b) δ = ~1.5, and (c) δ = ~1.7. In (a) ‒ (c), (i) and (ii) show the 
results for TE- and TM- polarized resonances centered at ~1550.3758 nm and ~1550.2826 nm, respectively. Point-by-point measurements were taken at an average 

rate of ~1 Hz. 

 



wavelength shift, which were ~0.4655 pm / mW and ~0.3144 

pm / mW for the TE and TM polarizations, respectively.  

Fig. 3(c) shows the changes in the waveguide effective 

refractive indices versus the input power for both TE and TM 

polarizations. These results were calculated based on Eq. (1), 

using the measured results in Fig. 3(b). As the input power 

increased from ~2 mW to ~16 mW, the effective refractive 

indices of TE and TM modes displayed changes of ~6.533 × 

10-6 and ~5.012 × 10-6, respectively. These changes correspond 

to average rates of ~4.985 × 10-7 /mW and ~3.335 × 10-7 /mW, 

respectively.  

In Eq. (2),n2 can also be an effective response for MRR, in 

that it is device geometry dependent, including the Q factor, 

coupling strength, etc. Fig. 3(d) shows the MRR’s effectiven2, 

denoted as n2, eff, versus the input power for both TE and TM 

polarizations, which were extracted from the results in Fig. 

3(c). Then2, eff was calculated by [27] 

n̅2, eff = Δn / I                 (3)                               

where Δn is the refractive index change, and I is the light 

intensity in the MRR given by [27] 

 I = 
Pin ∙ BUF

A
eff 

               (4)                              

In Eq. (4), Pin is the input power, Aeff is the effective mode area 

[26, 46], and BUF is the intensity build-up factor of the MRR 

that can be expressed [47, 48] 

   BUF = 
(1 - t1

2)t2
2a2

1 - 2t1t2a + (t1t2a)
2           (5) 

where t1,2 and a are the fit MRR parameters in Table I.  

In Fig. 3(d), the average values of the extractedn2, eff for the 

TE and TM polarizations are ~3.861 × 10-13 cm2 / W and 

~3.357 × 10-13 cm2 / W, respectively. The difference in these 

responses can be attributed to the asymmetric cross section of 

the HIDS waveguide that results in different optical field 

distributions for the two modes. Based on the results in Fig. 

3(d), we further extract the n2̅ for the HIDS material, denoted 

asn2, HIDS, according to [26, 49]:   

n̅2, eff = 
∬ n0

2(x, y)n̅2(x, y)Sz
2

D
dxdy

∬ n0
2(x, y)Sz

2
D

dxdy
         (6)                               

where D is the integral of the optical fields over the material 

regions, Sz is the time-averaged Poynting vector calculated 

using Lumerical FDTD commercial mode solving software, n0 

(x, y) andn2 (x, y) are the linear refractive index and n2̅ 

profiles over the waveguide cross section, respectively. The 

value ofn2 for silica used in our calculation was ~2.5 × 10-13 

cm2 / W [36, 50]. Fig. 3(e) shows the extracted n2, HIDS versus 

the input power. The average values ofn2, HIDS derived from 

the TE and TM modes are ~3.7 × 10-13 cm2 / W and ~3.1 × 10-

13 cm2 / W, respectively. The close resemblance between them 

reflects that the HIDS does not exhibit significant anisotropy 

in terms of itsn2. The results in Fig. 3(e) also confirm that the 

predominant cause of the observed nonlinearity is thermal in 

nature. This is also supported by the fact that the Kerr nonlinear 

coefficient of HIDS (~1.3 × 10–15 cm2 / W [18, 51]) was over 

two orders of magnitude lower. Although there are minor 

fluctuations inn2, HIDS across various input powers in Fig. 3(d), 

these variations are not significant. Considering the limited 

input power range (i.e., ~2 mW to ~16 mW), it can be inferred 

that then2, HIDS values will exhibit a relatively stable behavior 

[15, 18]. Hence, the slight power-dependent variations inn2, 

HIDS are likely attributable to measurement errors. 

V. OPTICAL BISTABILITY 

Due to a steepened asymmetric transitional edge, optical 

bistability arising from nonlinear thermo-optic effects has been 

used for controlling light with light and achieving optical 

switches [9, 10]. Fig. 4 shows the measured output power as a 

function of the input power when it was progressively 

 
Fig. 5. Measured (data points) and theoretical (solid curves) output power 

versus input power for (a) TE and (b) TM polarizations. The initial wavelength 

detuning δ is ~1.7.  



increased from ~1 mW to ~8 mW. For comparison, we also 

plot the downward output power as the input power was 

subsequently reduced back to ~1 mW. In Figs. 4(a) ‒ (c), we 

show the results for three initial wavelength detunings of δ = 

~1.3, ~1.5, and ~1.7, respectively. The δ is defined as: 

δ = (λlaser - λres) / Δλ           (7)                           

where λlaser is the wavelength of the input CW light, λres is the 

resonance wavelength of the MRR measured at a low input 

CW power of ~0 dBm (i.e., the same as that in Fig. 1 and does 

not induce significant asymmetry in the measured resonance 

spectral lineshape), and Δλ is the 3-dB bandwidth of the 

resonance. In our measurements, we chose a TE-polarized 

resonance centered at λres = ~1550.3758 nm and a TM-

polarized resonance centered at λres = ~1550.2826 nm. During 

the measurements, the maximum polarization extinction ratios 

were kept > 30 dB. 

In Figs. 4(a) ‒ (c), redshifts of the resonance wavelengths 

can be observed for both TE and TM polarizations. During the 

upward sweeping, the output power first exhibited a steady and 

continuous increase, followed by a sudden jump towards 

higher output power. Conversely, during the downward 

sweeping with decreasing input power, there was a sudden 

jump toward lower output power after a gradual decrease in the 

output power. Clearly, the presence of a hysteresis loop 

resulting from the upward and downward wavelength 

sweeping provides evidence for the existence of optical 

bistability in the HIDS MRR [52]. As δ was increased from 

~1.3 to ~1.7, the input power threshold for optical bistability 

increased, and the hysteresis loop became more open. These 

phenomena are similar to those observed in Refs. [53, 54]. We 

also note that the TE-polarized resonance exhibits a more open 

hysteresis loop compared with the TM-polarized resonance at 

the same δ. This observation shows agreement with the 

relatively large redshift of the resonance wavelength for the TE 

 
Fig. 6. (a) Optical mode profiles of the HIDS waveguide for (i) TE and (ii) TM modes. (b) Temperature distribution profiles of the HIDS waveguide for (i) TE and 
(ii) TM modes. In (a)‒(b), the input CW power is ~16 mW and the initial temperature is assumed to be at room temperature of 23 °C. (c) Calculated temperature 

variation versus input power for (i) TE and (ii) TM modes. (d) Thermal conductivity K versus input power for (i) TE and (ii) TM modes. 

 



polarization in Fig. 3(b). 

Fig. 5 shows the measured and theoretical output powers 

versus the input power for both TE and TM polarizations. The 

theoretical curves were calculated based on the theory in Refs. 

[33, 52, 55], using both the device parameters in Table I and 

the fitn2, HIDS in Fig. 3(e). In principle, bistable behavior 

occurs in the resonator response because, under specific 

conditions, the output power yields multiple distinct solutions 

for a given input power. Consequently, the resonator can 

switch between these solutions due to the influence of noise 

[33, 55]. In Fig. 5, the measured results show good agreement 

with the theoretical curves, providing further confirmation of 

the accuracy of the fit thermo-optic property parameters for the 

HIDS devices.  

VI. THERMAL CONDUCTIVITY 

Thermal conductivity, a parameter that defines a material’s 

ability to conduct heat, has been widely used for modeling 

thermal transport for applications related to thermal 

management and energy storage [40, 56-60]. In this section, 

the thermal conductivity of HIDS is characterized by fitting the 

measured transmission spectra of the HIDS MRR at various 

input powers with theoretical simulations.  

Figs. 6(a-i) and (a-ii) show the simulated TE and TM mode 

profiles for the HIDS waveguide. The corresponding effective 

refractive indices were neff_TE = ~1.560 and neff_TM = ~1.558 at 

1550 nm. To further investigate the heat generated in the HIDS 

waveguide, we simulated the cross-sectional temperature 

distribution for both TE and TM polarizations. Figs. 6(b-i) and 

(b-ii) show the steady-state temperature distributions at an 

incident power of 16 mW, which were obtained by solving the 

heat equation [1]:  

-∇ ∙ (K∇T) = q                (8) 

where T is the steady-state temperature distribution, K is the 

thermal conductivity, and q is the heat flux intensity. In Eq. (8), 

∇T denotes the gradient of T, and ∇ acting on the vector 

function K∇T is the corresponding divergence operator. In our 

simulation, the heat source power density D was calculated 

based on the TE and TM mode profiles in Figs. 6(a-i) and (a-

ii) using [61]: 

 D = 
1

2
σ|E|2                  (9)                                

where σ is the electrical conductivity of the waveguide in 

Table I and E is the amplitude of the optical field simulated in 

Fig. 6(a). It is worth noting that the build-up factor BUF in Eq. 

(5) was taken into account when calculating the optical 

intensity in the MRR. In our simulation, the initial temperature 

T0 was set to 23°C, which was the ambient temperature during 

the experiments. 

When there are changes in the input power, the material 

conducts heat, leading to a rise in temperature and a redshift of 

the resonance wavelength. According to the results in Figs. 2(c) 

and 3(c), we calculated the device temperature variation versus 

the input power. As shown in Fig. 6(c), at an input power of 

16mW, the temperature variations for the TE and TM modes 

are ΔT = ~0.4298 °C and ~0.3495 °C, respectively. By fitting 

these temperature variations with the temperature distributions 

in Fig. 6(b), we obtained the thermal conductivity for the 

HIDS, as shown in Fig. 6(d). For the TE and TM polarizations, 

the average values for the fitted thermal conductivity were 

~0.30 W / (m · °C) and ~0.34 W / (m · °C). We note that the 

thermal conductivity of the HIDS is lower than that of silica 

(i.e., ~1.4 W / (m · °C) [61]). This can be attributed to the 

introduction of the doping material that slows down the lattice 

vibration coupling and the energy transfer. The specific values 

depend on the type and concentration of the doping element 

used, as well as the material’s fabrication method and structure. 

In our fabrication, the HIDS was developed by using the high-

index-contrast materials such as Ta2O5 and polymeric systems 

[62, 63]. We note that the thermal conductivity of Ta2O5 is 

much lower than that of silica (i.e., ~0.026 W / (m · °C) [64, 

65]), which could be a reason for the relatively low thermal 

conductivity of HIDS. Another possible reason is that the 

thermal conductivity of silica films grown by PECVD (i.e., 

~1.0 W / (m · °C) [66]) is slightly lower than the previously 

mentioned value of silica. Based on Eq. (8), the low thermal 

conductivity of the HIDS waveguide restricts heat propagation, 

leading to a higher concentration of thermal energy within the 

waveguide. Consequently, this amplifies the temperature 

increase, which, in turn, facilitates the attainment of more 

pronounced optical bistability. 

VII. COMPARISON WITH OTHER INTEGRATED 

PLATFORM MATERIALS 

In this section, we present a summary of the thermo-optic 

property parameters of HIDS devices obtained in Sections III 

‒ VI, together with a comparison of them with those exhibited 

by other materials used for CMOS-compatible integrated 

photonic platforms. As shown in Table II, the thermo-optic 

coefficient of HIDS is higher than that of silica, but lower than 

those of silicon nitride and silicon. This can be attributed to the 

moderate refractive index of HIDS among these materials. In 

terms of the coefficient characterizing the efficiency for the 

optically induced thermo-optic process, HIDS exhibits a value 

that is below that of silicon, yet it surpasses those of silica and 

silicon nitride. This highlights its capability for implementing 

high-performance nonlinear thermo-optic devices. For the 

thermal conductivity, HIDS displays the lowest value among 

these materials. This benefits its applications for thermal mode 

locking in optical microcomb generation [7, 55]. In the process 

of optical microcomb generation, the diminished thermal 

conductivity of HIDS introduces a slow thermal reaction that 

influences the steady-state dynamics of the intracavity power. 

This, in turn, leads to a gradual correlation between the cavity 

detuning and the pump power. Such characteristic decreases 



TABLE II. COMPARISON OF THERMO-OPTIC PROPERTY PARAMETERS OF HIDS                          

AND OTHER INTEGRATED PLATFORM MATERIALS 

Parameter 
Thermo-optic coefficient 

(°C-1) 

Coefficient for optically induced  

thermo-optic process 

(cm2 / W) 

Thermal conductivity 

(W · m-1 °C-1) c) 
Refs. 

silicon 
~1.8 × 10-4 

(∼86 pm / °C) a) 
~7.8 × 10-11 ~149 [37, 67-69] 

silicon nitride 
~2.6 × 10-5 

(∼11 pm / °C) a) 
~1.5 × 10-15 ~29 [27, 70, 71] 

silica 
~1.1 × 10-5 

(∼15 pm / °C) a) 
~2.5 × 10-13 ~1.4 [36, 37, 50] 

HIDS b) 
~1.46 × 10-5  

(∼13.8 pm / °C) a) 
~3.4 × 10-13 ~0.32 This work 

a) Here we also show the corresponding results for the wavelength shifts of resonators caused by temperature variation. Note that these results may vary based on 

the specific device used.  
b) Here we show the average values of the results for the TE and TM polarizations obtained in Sections III ‒ VI. 

c) Note that the thermal conductivity may change with temperature and here we show the results at room temperature.  

the rate of adjustment for power augmentation within the 

cavity in order to generate optical microcombs. As a result, it 

becomes feasible to achieve simple generation of stable soliton 

crystal microcombs through manual tuning of the pump laser 

[22-24]. These results have direct implications for optical 

microcombs realized in this platform [72-97] which will 

impact their classical [98-131] and quantum [132-144] 

applications as well as integrated novel photonic devices 

incorporating new 2D materials [145-181]. 

VIII. CONCLUSION 

In summary, we provide detailed experimental 

characterization and theoretical analysis of the thermo-optic 

effects in integrated HIDS devices that have been successfully 

applied in various linear and nonlinear optical applications. By 

fitting the experimental results with theory, we obtain 

fundamental parameters that define the thermo-optic 

performance of HIDS devices, including the thermo-optic 

coefficient, the efficiency for the optically induced thermo-

optic process, and the thermal conductivity. We also compare 

these parameters with those of other materials used for CMOS-

compatible integrated photonic platforms, such as silicon, 

silicon nitride, and silica. Our finding provides valuable 

insights into the thermo-optic properties of HIDS devices, 

which are crucial for effectively controlling and engineering 

these devices across diverse applications. 
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