CONCLUSION
We demonstrate a photonic Hilbert transformer with variable bandwidth
and RF center frequency. Up to 39 wavelengths or taps are used, enabling
tunable bandwidths from 1.2 to 15.3 GHz and switchable center
frequencies from baseband to 9.5 GHz. Dynamic adjustment of bandwidth
and center frequency is achieved by changing the tap weights. This
micro-comb-based approach provides a solid foundation for the
realization of fully integrated photonic signal processors in future
ultra-high-speed RF systems.
Competing interests: The authors declare no competing interests.
References
[1] M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T.
Chu, B. E. Little, A. J. Lowery, R. Morandotti, A. Mitchell, and D. J.
Moss, “Highly Versatile Broadband RF Photonic Fractional Hilbert
Transformer Based on a Kerr Soliton Crystal Microcomb,” Journal
of Lightwave Technology, vol. 39, no. 24, pp. 7581-7587, 2021.
[2] L. Moura, “Radio Frequency Implementation of the Fractional
Hilbert Transform with Transversal Filters,” Circuits, Systems &
Signal Processing, vol. 26, pp. 407-417, 2007.
[3] A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional
Hilbert transform,” Optics Letters, vol. 21, no. 4, pp. 281-283,
1996/02/15, 1996.
[4] A. D. Poularikas, A. F. Poularikas, and P. A. D, The
Transforms and Applications Handbook : CRC-Press, 1996.
[5] V. K. Peddinti, and R. Kumaresan, “Bandpass phase shifter and
analytic signal generator,” Signal Process., vol. 125, no. C,
pp. 216–220, 2016.
[6] H. P. Bazargani, M. d. R. Fernández-Ruiz, and J. Azaña,
“Tunable, nondispersive optical filter using photonic Hilbert
transformation,” Optics Letters, vol. 39, no. 17, pp. 5232-5235,
2014/09/01, 2014.
[7] H. P. Bazargani, M. R. Fernández-Ruiz, and J. Azaña, ”Tunable
optical filter using photonic Hilbert transformation,” OSA
Technical Digest (online). p. SPM4D.6.
[8] T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb
source based Hilbert transformer for wideband microwave photonic phase
analysis,” Optics Express, vol. 23, no. 17, pp. 22087-22097,
2015/08/24, 2015.
[9] H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF
photonic in-phase and quadrature-phase generation,” Optics
Letters, vol. 33, no. 2, pp. 98-100, 2008/01/15, 2008.
[10] M. Li, and J. Yao, “All-fiber temporal photonic fractional
Hilbert transformer based on a directly designed fiber Bragg grating,”Optics Letters, vol. 35, no. 2, pp. 223-225, 2010/01/15, 2010.
[11] M. Li, and J. Yao, “Experimental Demonstration of a Wideband
Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg
Grating,” IEEE Photonics Technology Letters, vol. 22, no. 21,
pp. 1559-1561, 2010.
[12] M. H. Asghari, and J. Azaña, “All-optical Hilbert transformer
based on a single phase-shifted fiber Bragg grating: design and
analysis,” Optics Letters, vol. 34, no. 3, pp. 334-336,
2009/02/01, 2009.
[13] T. Yang, J. Dong, L. Liu, S. Liao, S. Tan, L. Shi, D. Gao, and
X. Zhang, “Experimental observation of optical differentiation and
optical Hilbert transformation using a single SOI microdisk chip,”Scientific Reports, vol. 4, no. 1, pp. 3960, 2014/02/04, 2014.
[14] Z. Zhang, C. Sima, B. Liu, B. Cai, Y. Gao, M. Zhang, L. Shen,
Y. Yu, M. Huang, Z. Lian, M. T. Posner, J. C. Gates, P. G. R. Smith, and
D. Liu, “Wideband and continuously-tunable fractional photonic Hilbert
transformer based on a single high-birefringence planar Bragg grating,”Optics Express, vol. 26, no. 16, pp. 20450-20458, 2018/08/06,
2018.
[15] C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas,
and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers
based on synthesized planar Bragg grating fabrication,” Optics
Letters, vol. 38, no. 17, pp. 3448-3451, 2013/09/01, 2013.
[16] L. Zhuang, M. R. Khan, W. Beeker, A. Leinse, R. Heideman, and
C. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer
using a ring resonator-based optical all-pass filter,” Optics
Express, vol. 20, no. 24, pp. 26499-26510, 2012/11/19, 2012.
[17] H. Shahoei, P. Dumais, and J. Yao, “Continuously tunable
photonic fractional Hilbert transformer using a high-contrast
germanium-doped silica-on-silicon microring resonator,” Optics
Letters, vol. 39, no. 9, pp. 2778-2781, 2014/05/01, 2014.
[18] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M.
Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic
integrated signal processor,” Nature Photonics, vol. 10, no. 3,
pp. 190-195, 2016/03/01, 2016.
[19] Z. Li, Y. Han, H. Chi, X. Zhang, and J. Yao, “A Continuously
Tunable Microwave Fractional Hilbert Transformer Based on a Nonuniformly
Spaced Photonic Microwave Delay-Line Filter,” Journal of
Lightwave Technology, vol. 30, no. 12, pp. 1948-1953, 2012/06/15, 2012.
[20] Z. Li, H. Chi, X. Zhang, and J. Yao, “A Continuously Tunable
Microwave Fractional Hilbert Transformer Based on a Photonic Microwave
Delay-Line Filter Using a Polarization Modulator,” IEEE Photonics
Technology Letters, vol. 23, no. 22, pp. 1694-1696, 2011.
[21] M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E.
Little, S. T. Chu, and D. J. Moss, “Subpicosecond optical pulse
compression via an integrated nonlinear chirper,” Optics
Express, vol. 18, no. 8, pp. 7625-7633, 2010/04/12, 2010.
[22] D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L.
Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss,
“Supercontinuum generation in a high index doped silica glass spiral
waveguide,” Optics Express, vol. 18, no. 2, pp. 923-930,
2010/01/18, 2010.
[23] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M.
Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A.
M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of
optical sources,” Physics Reports, vol. 729, pp. 1-81,
2018/01/27/, 2018.
[24] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R.
Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation
from a monolithic microresonator,” Nature, vol. 450, no. 7173,
pp. 1214-1217, 2007/12/01, 2007.
[25] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams,
“Microresonator-Based Optical Frequency Combs,” Science, vol.
332, no. 6029, pp. 555-559, 2011.
[26] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster,
A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength
oscillator for on-chip optical interconnects,” Nature Photonics,vol. 4, no. 1, pp. 37-40, 2010/01/01, 2010.
[27] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X.
Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y.
Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled
microresonator,” Optics Letters, vol. 43, no. 9, pp. 2002-2005,
2018/05/01, 2018.
[28] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B.
Papp, “Soliton crystals in Kerr resonators,” Nature Photonics,vol. 11, no. 10, pp. 671-676, 2017/10/01, 2017.
[29] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and T.
J. Kippenberg, “Dynamics of soliton crystals in optical
microresonators,” Nature Physics, vol. 15, no. 10, pp.
1071-1077, 2019/10/01, 2019.
[30] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New
CMOS-compatible platforms based on silicon nitride and Hydex for
nonlinear optics,” Nature Photonics, vol. 7, no. 8, pp. 597-607,
2013/08/01, 2013.
[31] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M.
Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power
continuous-wave nonlinear optics in doped silica glass integrated
waveguide structures,” Nature Photonics, vol. 2, no. 12, pp.
737-740, 2008/12/01, 2008.
[32] H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. Totero
Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss,
B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton
microcombs,” Nature Photonics, vol. 13, no. 6, pp. 384-389,
2019/06/01, 2019.
[33] A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss,
and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked
laser based on a microring resonator,” Optics Express, vol. 20,
no. 24, pp. 27355-27363, 2012/11/19, 2012.
[34] A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera,
L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R.
Morandotti, “Self-locked optical parametric oscillation in a CMOS
compatible microring resonator: a route to robust optical frequency comb
generation on a chip,” Optics Express, vol. 21, no. 11, pp.
13333-13341, 2013/06/03, 2013.
[35] A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E.
Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and
net parametric gain via Four Wave Mixing in a high index doped silica
waveguide,” Optics Express, vol. 18, no. 8, pp. 7634-7641,
2010/04/12, 2010.
[36] V. Torres-Company, and A. M. Weiner, “Optical frequency comb
technology for ultra-broadband radio-frequency photonics,” Laser
& Photonics Reviews, vol. 8, no. 3, pp. 368-393, 2014.
[37] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D.
J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser
based on a nonlinear microcavity,” Nature Communications, vol.
3, no. 1, pp. 765, 2012/04/03, 2012.
[38] L. Di Lauro, J. Li, D. J. Moss, R. Morandotti, S. T. Chu, M.
Peccianti, and A. Pasquazi, “Parametric control of thermal
self-pulsation in micro-cavities,” Optics Letters, vol. 42, no.
17, pp. 3407-3410, 2017/09/01, 2017.
[39] H. Bao, A. Cooper, S. T. Chu, D. J. Moss, R. Morandotti, B. E.
Little, M. Peccianti, and A. Pasquazi, “Type-II micro-comb generation
in a filter-driven four wave mixing laser [Invited],”Photonics Research, vol. 6, no. 5, pp. B67-B73, 2018/05/01, 2018.
[40] Chou, J., Han, Y., and Jalali, B.: ‘Adaptive RF-photonic
arbitrary waveform generator’, IEEE Photonics Technology Letters, 2003,
15, (4), pp. 581-583
[41] X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, and
A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on
Kerr Comb from a Microring,” Journal of Lightwave Technology,vol. 32, no. 20, pp. 3557-3565, 2014/10/15, 2014.
[42] X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E.
Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable
broadband microwave photonic intensity differentiator based on an
integrated optical frequency comb source,” APL Photonics, vol.
2, no. 9, pp. 096104, 2017.
[43] X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J.
Moss, “Microcomb-Based Photonic RF Signal Processing,” IEEE
Photonics Technology Letters, vol. 31, no. 23, pp. 1854-1857, 2019.
[44] X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E.
Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and
microwave functions based on an integrated optical frequency comb
source,” Optics Express, vol. 26, no. 3, pp. 2569-2583,
2018/02/05, 2018.
[45] X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and
A. M. Weiner, “Microcomb-Based True-Time-Delay Network for Microwave
Beamforming With Arbitrary Beam Pattern Control,” Journal of
Lightwave Technology, vol. 36, no. 12, pp. 2312-2321, 2018.
[46] J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “RF Photonics: An Optical
Microcombs’ Perspective,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 24, no. 4, pp. 1-20, 2018.
[47] X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Broadband RF Channelizer
Based on an Integrated Optical Frequency Kerr Comb Source,”Journal of Lightwave Technology, vol. 36, no. 19, pp. 4519-4526,
2018.
[48] X. Xu, J. Wu, M. Tan, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Orthogonally Polarized RF
Optical Single Sideband Generation and Dual-Channel Equalization Based
on an Integrated Microring Resonator,” Journal of Lightwave
Technology, vol. 36, no. 20, pp. 4808-4818, 2018.
[49] Y. Zhang, X. Xu, J. Wu, L. Jia, M. Tan, T. Nguyen, S. T. Chu,
B. Little, R. Morandotti, A. Mitchell, and D. Moss, Continuously
tunable orthogonally polarized RF optical single sideband generator
based on cascaded micro-ring resonators , p.^pp. AU: SPIE, 2019.
[50] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little,
R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true
time delays for phased array antennas using a 49  GHz
FSR integrated optical micro-comb source [Invited],”Photonics Research, vol. 6, no. 5, pp. B30-B36, 2018/05/01, 2018.
[51] X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Advanced Adaptive Photonic RF
Filters with 80 Taps Based on an Integrated Optical Micro-Comb Source,”Journal of Lightwave Technology, vol. 37, no. 4, pp. 1288-1295,
2019/02/15, 2019.
[52] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B.
Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency
comb radio frequency photonic oscillator,” Nature
Communications, vol. 6, no. 1, pp. 7957, 2015/08/11, 2015.
[53] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N.
Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic
microwave generation in the X- and K-band using integrated soliton
microcombs,” Nature Photonics, vol. 14, no. 8, pp. 486-491,
2020/08/01, 2020.
[54] M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J.
Moss, “Photonic RF and microwave filters based on 49 GHz and 200 GHz
Kerr microcombs,” Optics Communications, vol. 465, pp. 125563,
2020/06/15/, 2020.
[55] X. Xu, M. Tan, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E.
Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Broadband Photonic
RF Channelizer With 92 Channels Based on a Soliton Crystal Microcomb,”Journal of Lightwave Technology, vol. 38, no. 18, pp. 5116-5121,
2020.
[56] X. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. Moss, “Photonic
RF Phase-Encoded Signal Generation With a Microcomb Source,”Journal of Lightwave Technology, vol. 38, no. 7, pp. 1722-1727,
2020.
[57] X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “High performance RF filters
via bandwidth scaling with Kerr micro-combs,” APL Photonics,vol. 4, no. 2, pp. 026102, 2019.
[58] M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss,
“Microwave and RF Photonic Fractional Hilbert Transformer Based on a 50
GHz Kerr Micro-Comb,” Journal of Lightwave Technology, vol. 37,
no. 24, pp. 6097-6104, 2019.
[59] M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and
Microwave Fractional Differentiator Based on Photonics,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no.
11, pp. 2767-2771, 2020.
[60] M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss,
“Photonic RF Arbitrary Waveform Generator Based on a Soliton Crystal
Micro-Comb Source,” Journal of Lightwave Technology, vol. 38,
no. 22, pp. 6221-6226, 2020/11/15, 2020.
[61] M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. Moss,
“RF and microwave photonic temporal signal processing with Kerr
micro-combs,” Advances in Physics: X, vol. 6, no. 1, pp. 1-46,
2021.
[62] J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, ”Orthogonally polarized optical
single sideband generation based on integrated microring resonators,”OSA Technical Digest. p. M1B.5.
[63] Mengxi Tan, Xingyuan Xu, Jiayang Wu, Bill Corcoran, Andreas
Boes, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti,
Arnan Mitchell, and David J. Moss, “Integral order photonic RF signal
processors based on a soliton crystal micro-comb source”, IOP Journal
of Optics Vol. 23 (11) 125701 (2021).
[64] Y. Park, M. H. Asghari, R. Helsten, and J. Azana,
“Implementation of Broadband Microwave Arbitrary-Order Time
Differential Operators Using a Reconfigurable Incoherent Photonic
Processor,” IEEE Photonics Journal, vol. 2, no. 6, pp.
1040-1050, 2010.
[65] X. Xu, M. Tan, B. Corcoran, J. Wu, T. G. Nguyen, A. Boes, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, D. G. Hicks, and D. J.
Moss, “Photonic Perceptron Based on a Kerr Microcomb for High-Speed,
Scalable, Optical Neural Networks,” Laser & Photonics Reviews,vol. 14, no. 10, pp. 2000070, 2020.
[66] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T.
Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, and D. J.
Moss, “11 TOPS photonic convolutional accelerator for optical neural
networks,” Nature, vol. 589, no. 7840, pp. 44-51, 2021/01/01,
2021.
[67] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M.
Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D.
Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H.
Bhaskaran, “Parallel convolutional processing using an integrated
photonic tensor core,” Nature, vol. 589, no. 7840, pp. 52-58,
2021/01/01, 2021.
[68] X. Xu, M. Tan, J. Wu, T. Nguyen, S. Chu, B. Little, R.
Morandotti, A. Mitchell, and D. Moss, “High performance RF filters via
bandwidth scaling with Kerr micro-combs,” APL Photonics, vol. 4,
no. 2, pp. 1-8, 2019.
[69] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave
photonics,” Nature Photonics, vol. 13, no. 2, pp. 80-90,
2019/02/01, 2019.
[70] Z. Zhu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang,
“All-positive-coefficient microwave photonic filter with rectangular
response,” Optics Letters, vol. 42, no. 15, pp. 3012-3015,
2017/08/01, 2017.
[71] R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal
Processing of Microwave Signals,” IEEE Journal of Quantum
Electronics, vol. 52, no. 1, pp. 1-13, 2016.
[72] W. Wang, W. Zhang, Z. Lu, S. T. Chu, B. E. Little, Q. Yang, L.
Wang, and W. Zhao, “Self-locked orthogonal polarized dual comb in a
microresonator,” Photonics Research, vol. 6, no. 5, pp. 363-367,
2018/05/01, 2018.
[73] J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S.
Sales, “Microwave Photonic Signal Processing,” Journal of
Lightwave Technology, vol. 31, no. 4, pp. 571-586, 2013/02/15, 2013.
[74] R. A. Minasian, “Photonic signal processing of microwave
signals,” IEEE Transactions on Microwave Theory and Techniques,vol. 54, no. 2, pp. 832-846, 2006.
[75] J. Capmany, and D. Novak, “Microwave photonics combines two
worlds,” Nature Photonics, vol. 1, no. 6, pp. 319-330,
2007/06/01, 2007.
[76] R. Williamson, and R. D. Esman, “RF Photonics,” Journal
of Lightwave Technology, vol. 26, no. 9, pp. 1145-1153, 2008/05/01,
2008.
[77] Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D.
Marpaung, “All-optimized integrated RF photonic notch filter,”Optics Letters, vol. 42, no. 22, pp. 4631-4634, 2017/11/15, 2017.
[78] C. Tseng, and S.-C. Pei, “Design and application of
discrete-time fractional Hilbert transformer,” Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transactions on,vol. 47, pp. 1529-1533, 01/01, 2001.
[79] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B.
E. Little, and D. J. Moss, “CMOS-compatible integrated optical
hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1,
pp. 41-45, 2010/01/01, 2010.
[80] X. Xu, J. Wu, M. Tan, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Broadband Microwave Frequency
Conversion Based on an Integrated Optical Micro-Comb Source,”Journal of Lightwave Technology, vol. 38, no. 2, pp. 332-338,
2020.
- J. A. Davis, D. E. McNamara, and D. M. Cottrell, “Analysis of the
fractional Hilbert transform,” Appl. Opt ., vol. 37, no. 29,
pp. 6911-6913, Oct. 1998.
- C. D. Holdenried, J. W. Haslett, and B. Davies, “A fully integrated
10-Gb/s tapped delay Hilbert transformer for optical single
sideband,” IEEE Microw. Wireless Compon. Lett ., vol. 15, no.
5, pp. 303-305, May 2005.
- H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF
photonic in-phase and quadrature-phase generation,” Opt.
Lett. , vol. 33, no. 2, pp. 98-100, Jan 15. 2008.
- W. Liu, et al ., ”A Fully Reconfigurable Photonic Integrated
Signal Processor,” Nature Photonics , vol. 10, no. 3, pp.
190-196, 2016.
- F. Zeng, and J. Yao, “An Approach to Ultrawideband Pulse Generation
and Distribution Over Optical Fiber,” IEEE Photonics Technol.
Lett ., vol. 18, no. 7, pp. 823-825, Apr. 2006.
- S. Pan, and J. Yao, “Optical generation of polarity- and
shape-switchable ultrawideband pulses using a chirped intensity
modulator and a first-order asymmetric Mach-Zehnder interferometer,”Opt. Lett ., vol. 34, no. 9, pp. 1312-1314, May. 2009.
- Y. Yu, J. Dong, X. Li, and X. Zhang, “Ultra-Wideband Generation Based
on Cascaded Mach-Zehnder Modulators,” IEEE Photonics Technol.
Lett ., vol. 23, no. 23, Dec. 2011.
- A. O.-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, “Tunable
radio-frequency photonic filter based on an actively mode-locked fiber
laser,” Opt. Lett ., vol. 31, no. 6, pp. 709-711, Mar. 2006.
- V. R. Supradeepa, C. M. Long, R. Wu. F. Ferdous, E. Hamidi, D. E.
Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters
with rapid tunability and high selectivity,” Nature Photonics ,
vol. 6, pp. 186-194, Mar. 2012.
- V. T.-Company, and A. M. Weiner, “Optical frequency comb technology
for ultra-broadband radio-frequency photonics,” Laser Photonics
Rev ., vol. 8, no. 3, pp. 368-393, 2014.
- Ghelfi, P., Laghezza, F., Scotti, F., Serafino, G., Capria, A., Pinna,
S., Onori, D., Porzi, C., Scaffardi, M., Malacarne, A., Vercesi, V.,
Lazzeri, E., Berizzi, F., and Bogoni, A.: ‘A fully photonics-based
coherent radar system’, Nature, 2014, 507, (7492), pp. 341-345
- Skolnik, M.: ‘Role of radar in microwaves’, IEEE Transactions on
Microwave Theory and Techniques, 2002, 50, (3), pp. 625-632
- Cundiff, S.T., and Weiner, A.M.: ‘Optical arbitrary waveform
generation’, Nat. Photonics, 2010, 4, (11), pp. 760-766
- Rashidinejad, A., Li, Y., and Weiner, A.M.: ‘Recent Advances in
Programmable Photonic-Assisted Ultrabroadband Radio-Frequency
Arbitrary Waveform Generation’, IEEE Journal of Quantum Electronics,
2016, 52, (1), pp. 1-17
- Ghelfi, P., Scotti, F., Laghezza, F., and Bogoni, A.: ‘Photonic
Generation of Phase-Modulated RF Signals for Pulse Compression
Techniques in Coherent Radars’, Journal of Lightwave Technology, 2012,
30, (11), pp. 1638-1644
- Khan, M.H., Shen, H., Xuan, Y., Zhao, L., Xiao, S., Leaird, D.E.,
Weiner, A.M., and Qi, M.: ‘Ultrabroad-bandwidth arbitrary
radiofrequency waveform generation with a silicon photonic chip-based
spectral shaper’, Nat. Photonics, 2010, 4, (2), pp. 117-122
- Chi, H., and Yao, J.: ‘Photonic Generation of Phase-Coded
Millimeter-Wave Signal Using a Polarization Modulator’, IEEE Microwave
and Wireless Components Letters, 2008, 18, (5), pp. 371-373
- Zhang, Y., and Pan, S.: ‘Generation of phase-coded microwave signals
using a polarization-modulator-based photonic microwave phase
shifter’, Opt. Lett., 2013, 38, (5), pp. 766-768
- Zhu, S., Shi, Z., Li, M., Zhu, N.H., and Li, W.: ‘Simultaneous
frequency upconversion and phase coding of a radio-frequency signal
for photonic radars’, Opt. Lett., 2018, 43, (3), pp. 583-586
- Zhu, S., Li, M., Wang, X., Zhu, N.H., Cao, Z.Z., and Li, W.: ‘Photonic
generation of background-free binary phase-coded microwave pulses’,
Opt. Lett., 2019, 44, (1), pp. 94-97
- Li, Z., Li, W., Chi, H., Zhang, X., and Yao, J.: ‘Photonic generation
of phase-coded microwave signal with large frequency tunability’, IEEE
Photonics Technology Letters, 2011, 23, (11), pp. 712-714
- Liu, W., and Yao, J.: ‘Photonic generation of microwave waveforms
based on a polarization modulator in a Sagnac loop’, Journal of
Lightwave Technology, 2014, 32, (20), pp. 3637-3644
- Wang, J., Shen, H., Fan, L., Wu, R., Niu, B., Varghese, L.T., Xuan,
Y., Leaird, D.E., Wang, X., and Gan, F.: ‘Reconfigurable
radio-frequency arbitrary waveforms synthesized in a silicon photonic
chip’, Nat. Commun., 2015, 6, (1), pp. 1-8
- Ashrafi, R., Li, M., and Azaña, J.: ‘Multi-TBaud optical coding based
on superluminal space-to-time mapping in long period gratings’, Optics
and Photonics Journal, 2013, 3, (2), pp. 126-130
- Rashidinejad, A., and Weiner, A.M.: ‘Photonic radio-frequency
arbitrary waveform generation with maximal time-bandwidth product
capability’, Journal of Lightwave Technology, 2014, 32, (20), pp.
3383-3393
- Jiang, Z., Huang, C.-B., Leaird, D.E., and Weiner, A.M.: ‘Optical
arbitrary waveform processing of more than 100 spectral comb lines’,
Nat. Photonics, 2007, 1, (8), pp. 463-467
- Dai, Y., and Yao, J.: ‘Microwave pulse phase encoding using a photonic
microwave delay-line filter’, Opt. Lett., 2007, 32, (24), pp.
3486-3488
- S. Pan, J. Yao, “Optical generation of polarity- and shape-switchable
ultrawideband pulses using a chirped intensity modulator and a
first-order asymmetric Mach-Zehnder interferometer,” Opt.
Lett ., vol. 34, no. 9, pp. 1312-1314, 2009.
- X. Li, J. Dong, Y. Yu, and X. Zhang, “A Tunable Microwave Photonic
Filter Based on an All-Optical Differentiator,” IEEE Photon.
Technol. Lett ., vol. 23, no. 22, pp. 308-310, Mar. 2011.
- Y. Han, Z. Li, and J. Yao, “A Microwave Bandpass Differentiator
Implemented Based on a Nonuniformly-Spaced Photonic Microwave
Delay-Line Filter,” J. Lightw. Technol ., vol. 29, no. 22, pp.
3470-3475, Nov. 2011.
- R. Ashrafi and J. Azaña, “Figure of merit for photonic
differentiators,” Opt. Exp ., vol. 20, no. 3, pp. 2626-2639,
Jan. 2012.
- F. Zeng and J. Yao, “Ultrawideband Impulse Radio Signal Generation
Using a High-Speed Electrooptic Phase Modulator and a
Fiber-Bragg-Grating-Based Frequency Discriminator,” IEEE
Photon. Technol. Lett ., vol. 18, no. 19, pp. 2062-2064, Oct. 2006.
- P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation,
Modulation, and Transmission for a Reconfigurable Impulse Radio UWB
Over Fiber System,” IEEE Photon. Technol. Lett ., vol. 4, no.
3, pp. 805-816, Jun. 2012.
- Y. Yu, F. Jiang, H. Tang, L. Xu, X. Liu, J. Dong, and X. Zhang,
“Reconfigurable photonic temporal differentiator based on a
dual-drive Mach-Zehnder modulator,” Opt. Exp ., vol. 24, no.
11, pp. 11739-11748, May 2016.
- P. Velanas, A. Bogris, A. Argyris, and D. Syvridis, “High-Speed
All-Optical First- and Second-Order Differentiators Based on
Cross-Phase Modulation in Fibers,” J. Lightw. Technol., vol.
26, no. 18, pp. 3269-3276, Sep. 2008.
- J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, “All-optical
differentiator based on cross-gain modulation in semiconductor optical
amplifier,” Opt. Lett ., vol. 32, no. 20, pp. 3029-3031, Oct.
2007.
- J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, “High-speed
all-optical differentiator based on a semiconductor optical amplifier
and an optical filter,” Opt. Lett ., vol. 32, no. 13, pp.
1872-1874, Jul. 2007.
- F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation
and modulation using SOA-XPM effect and DWDM-based multi-channel
frequency discrimination,” Opt. Exp ., vol. 18, no. 24, pp.
24588-24594, Nov. 2010.
- V. Moreno, M. Rius, J. Mora, M. A. Muriel, and J. Capmany,
“Integrable high order UWB pulse photonic generator based on cross
phase modulation in a SOA-MZI,” Opt. Exp ., vol. 21, no. 19,
pp. 22911-22917, Sep. 2013.
- Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet
generation using a reconfigurable photonic microwave delay-line
filter,” Opt. Exp ., vol. 15, no. 22, pp. 14667-14672, Oct.
2007.
- M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse
generator using an N tap microwave photonic filter and phase
inversion adaptable to different pulse modulation formats,”Opt. Exp ., vol. 17, no. 7, pp. 5023-50332, Mar. 2009.
- B. Mathieu, P. Melchior, A. Oustaloup, C. Ceyral, “Fractional
differentiation for edge detection,” Signal Processing, vol.
83, pp. 2421-2432, Nov. 2003.
- A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-Band
Complex Noninteger Differentiator: Characterization and Synthesis,”IEEE Trans. on Circuit and Systems - I: Fundamental Theory and
Application , vol. 47, no. 1, pp. 25-39, Jan. 2000.
- F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical
Pulses With Durations Ranging From the Picosecond to the Nanosecond
Regime Using Ultrafast Photonic Differentiation,” J. Lightw.
Technol., vol. 27, no. 1, pp. 4623-4633, 2009.
- M. Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Photonic Radio Frequency
Channelizers based on Kerr Optical Micro-combs”, IOP Journal of
Semiconductors Vol. 42 (4), 041302 (2021).
- M. Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Orthogonally polarized
Photonic Radio Frequency single sideband generation with integrated
micro-ring resonators”, IOP Journal of Semiconductors, Vol. 42 (4),
041305 (2021).
- C.Prayoonyong et al., “Frequency comb distillation for optical
superchannel transmission”, Journal of Lightwave Technology Vol. 39
(23) 7383-7392 (2021).
- X. Xu et al, “Photonic perceptron based on a Kerr microcomb for
scalable high speed optical neural networks”, Laser and Photonics
Reviews, vol. 14, no. 8, 2000070 (2020). DOI: 10.1002/lpor.202000070.
- X. Xu, et al., “11 TOPs photonic convolutional accelerator for
optical neural networks”, Nature 589, 44-51 (2021).
- Pasquazi, A. et al. Micro-combs: a novel generation of optical
sources. Physics Reports 729, 1-81 (2018).
- Moss, D. J. et al., “New CMOS-compatible platforms based on silicon
nitride and Hydex for nonlinear optics”, Nature photonics 7, 597
(2013).
- B. Corcoran, et al., “Ultra-dense optical data transmission over
standard fiber with a single chip source”, Nature Communications,
vol. 11, Article:2568, 2020.
- Kues, M. et al. Quantum optical microcombs. Nature Photonics 13, (3)
170-179 (2019). doi:10.1038/s41566-019-0363-0
- C. Reimer, L. Caspani, M. Clerici, et al., “Integrated frequency comb
source of heralded single photons,” Optics Express, vol. 22, no. 6,
pp. 6535-6546, 2014.
- C. Reimer, et al., “Cross-polarized photon-pair generation and
bi-chromatically pumped optical parametric oscillation on a chip”,
Nature Communications, vol. 6, Article 8236, 2015. DOI:
10.1038/ncomms9236.
- L. Caspani, C. Reimer, M. Kues, et al., “Multifrequency sources of
quantum correlated photon pairs on-chip: a path toward integrated
Quantum Frequency Combs,” Nanophotonics, vol. 5, no. 2, pp. 351-362,
2016.
- C. Reimer et al., “Generation of multiphoton entangled quantum states
by means of integrated frequency combs,” Science, vol. 351, no. 6278,
pp. 1176-1180, 2016.
- M. Kues, et al., “On-chip generation of high-dimensional entangled
quantum states and their coherent control”, Nature, vol. 546, no.
7660, pp. 622-626, 2017.
- P. Roztocki et al., “Practical system for the generation of pulsed
quantum frequency combs,” Optics Express, vol. 25, no. 16, pp.
18940-18949, 2017.
- Y. Zhang, et al., “Induced photon correlations through superposition
of two four-wave mixing processes in integrated cavities”, Laser and
Photonics Reviews, vol. 14, no. 7, pp. 2000128, 2020. DOI:
10.1002/lpor.202000128
- C. Reimer, et al.,“High-dimensional one-way quantum processing
implemented on d-level cluster states”, Nature Physics, vol. 15,
no.2, pp. 148–153, 2019.
- Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M.
Battery-operated integrated frequency comb generator. Nature 562, 401
(2018).
- H. Bao, et al., Laser cavity-soliton microcombs, Nature Photonics,
vol. 13, no. 6, pp. 384-389, Jun. 2019.
- Bao, C., et al., Direct soliton generation in microresonators, Opt.
Lett, 42, 2519 (2017).
- M.Ferrera et al., “CMOS compatible integrated all-optical RF spectrum
analyzer”, Optics Express, vol. 22, no. 18, 21488 - 21498 (2014).
- A. Pasquazi, et al., “Sub-picosecond phase-sensitive optical pulse
characterization on a chip”, Nature Photonics, vol. 5, no. 10, pp.
618-623 (2011).
- M. Kues, et al., “Passively modelocked laser with an ultra-narrow
spectral width”, Nature Photonics, vol. 11, no. 3, pp. 159, 2017.
- L. Razzari, et al., “CMOS-compatible integrated optical
hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1, pp.
41-45, 2010.
- M. Ferrera, et al., “Low-power continuous-wave nonlinear optics in
doped silica glass integrated waveguide structures,” Nature
Photonics, vol. 2, no. 12, pp. 737-740, 2008.
- M.Ferrera et al.“On-Chip ultra-fast 1st and 2nd order CMOS compatible
all-optical integration”, Opt. Express, vol. 19, (23)pp. 23153-23161
(2011).
- D. Duchesne, M. Peccianti, M. R. E. Lamont, et al., “Supercontinuum
generation in a high index doped silica glass spiral waveguide,”
Optics Express, vol. 18, no, 2, pp. 923-930, 2010.
- H Bao, L Olivieri, M Rowley, ST Chu, BE Little, R Morandotti, DJ Moss,
… “Turing patterns in a fiber laser with a nested microresonator:
Robust and controllable microcomb generation”, Physical Review
Research 2 (2), 023395 (2020).
- M. Ferrera, et al., “On-chip CMOS-compatible all-optical
integrator”, Nature Communications, vol. 1, Article 29, 2010.
- A. Pasquazi, et al., “All-optical wavelength conversion in an
integrated ring resonator,” Optics Express, vol. 18, no. 4, pp.
3858-3863, 2010.
- A. Pasquazi, Y. Park, J. Azana, et al., “Efficient wavelength
conversion and net parametric gain via Four Wave Mixing in a high
index doped silica waveguide,” Optics Express, vol. 18, no. 8, pp.
7634-7641, 2010.
- M. Peccianti, M. Ferrera, L. Razzari, et al., “Subpicosecond optical
pulse compression via an integrated nonlinear chirper,” Optics
Express, vol. 18, no. 8, pp. 7625-7633, 2010.
- Little, B. E. et al., “Very high-order microring resonator filters
for WDM applications”, IEEE Photonics Technol. Lett. 16, 2263–2265
(2004).
- M. Ferrera et al., “Low Power CW Parametric Mixing in a Low
Dispersion High Index Doped Silica Glass Micro-Ring Resonator with
Q-factor > 1 Million”, Optics Express, vol.17, no. 16,
pp. 14098–14103 (2009).
- M. Peccianti, et al., “Demonstration of an ultrafast nonlinear
microcavity modelocked laser”, Nature Communications, vol. 3, pp.
765, 2012.
- A. Pasquazi, et al., “Self-locked optical parametric oscillation in a
CMOS compatible microring resonator: a route to robust optical
frequency comb generation on a chip,” Optics Express, vol. 21, no.
11, pp. 13333-13341, 2013.
- A. Pasquazi, et al., “Stable, dual mode, high repetition rate
mode-locked laser based on a microring resonator,” Optics Express,
vol. 20, no. 24, pp. 27355-27362, 2012.
- Wu, J. et al. RF Photonics: An Optical Microcombs’ Perspective. IEEE
Journal of Selected Topics in Quantum Electronics Vol. 24, 6101020,
1-20 (2018).
- Xu, X., et al., Photonic microwave true time delays for phased array
antennas using a 49 GHz FSR integrated micro-comb source, Photonics
Research, 6, B30-B36 (2018).
- T. G. Nguyen et al., “Integrated frequency comb source-based Hilbert
transformer for wideband microwave photonic phase analysis,” Opt.
Express, vol. 23, no. 17, pp. 22087-22097, Aug. 2015.
- X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R.
Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband
microwave photonic intensity differentiator based on an integrated
optical frequency comb source,” APL Photonics, vol. 2, no. 9, 096104,
Sep. 2017.
- X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss,
“Microcomb-based photonic RF signal processing”, IEEE Photonics
Technology Letters, vol. 31 no. 23 1854-1857, 2019.
- X. Xu, et al., “Broadband RF channelizer based on an integrated
optical frequency Kerr comb source,” Journal of Lightwave Technology,
vol. 36, no. 19, pp. 4519-4526, 2018.
- X. Xu, et al., “Continuously tunable orthogonally polarized RF
optical single sideband generator based on micro-ring resonators,”
Journal of Optics, vol. 20, no. 11, 115701. 2018.
- X. Xu, et al., “Orthogonally polarized RF optical single sideband
generation and dual-channel equalization based on an integrated
microring resonator,” Journal of Lightwave Technology, vol. 36, no.
20, pp. 4808-4818. 2018.
- M.Tan, X. Xu, J. Wu, B. Corcoran, A. Boes, T. G. Nguyen, Sai T. Chu,
B. E. Little, R.Morandotti, A. Mitchell, and D. J. Moss, “Integral
order photonic RF signal processors based on a soliton crystal
micro-comb source”, IOP Journal of Optics vol. 23 (11) 125701 (2021).
- X. Xu, et al., “Advanced adaptive photonic RF filters with 80 taps
based on an integrated optical micro-comb source,” Journal of
Lightwave Technology, vol. 37, no. 4, pp. 1288-1295, 2019.
- X. Xu, et al., Broadband microwave frequency conversion based on an
integrated optical micro-comb source”, Journal of Lightwave
Technology, vol. 38 no. 2, pp. 332-338, 2020.
- M. Tan, et al., “Photonic RF and microwave filters based on 49GHz and
200GHz Kerr microcombs”, Optics Comm. vol. 465,125563, Feb. 22. 2020.
- X. Xu, et al., “Broadband photonic RF channelizer with 90 channels
based on a soliton crystal microcomb”, Journal of Lightwave
Technology, Vol. 38, no. 18, pp. 5116 - 5121, 2020. doi:
10.1109/JLT.2020.2997699.
- X. Xu, et al., “Photonic RF and microwave integrator with soliton
crystal microcombs”, IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 12, pp. 3582-3586, 2020.
DOI:10.1109/TCSII.2020.2995682.
- X. Xu, et al., “Photonic RF phase-encoded signal generation with a
microcomb source”, J. Lightwave Technology, vol. 38, no. 7,
1722-1727, 2020.
- X. Xu, et al., “High performance RF filters via bandwidth scaling
with Kerr micro-combs,” APL Photonics, vol. 4, no. 2, pp. 026102.
2019.
- M. Tan, et al., “Microwave and RF photonic fractional Hilbert
transformer based on a 50 GHz Kerr micro-comb”, Journal of Lightwave
Technology, vol. 37, no. 24, pp. 6097 – 6104, 2019.
- M. Tan, et al., “RF and microwave fractional differentiator based on
photonics”, IEEE Transactions on Circuits and Systems: Express
Briefs, vol. 67, no.11, pp. 2767-2771, 2020.
DOI:10.1109/TCSII.2020.2965158.
- M. Tan, et al., “Photonic RF arbitrary waveform generator based on a
soliton crystal micro-comb source”, Journal of Lightwave Technology,
vol. 38, no. 22, pp. 6221-6226, Oct 22. 2020. DOI:
10.1109/JLT.2020.3009655.
- M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF
and microwave high bandwidth signal processing based on Kerr
Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2021).
DOI:10.1080/23746149.2020.1838946.
- X. Xu, et al., “Advanced RF and microwave functions based on an
integrated optical frequency comb source,” Opt. Express, vol. 26 (3)
2569 2018.
- Kues, M. et al. Quantum optical microcombs. Nature Photonics 13, (3)
170-179 (2019). doi:10.1038/s41566-019-0363-0
- P.Roztocki et al., “Complex quantum state generation and coherent
control based on integrated frequency combs”, Journal of Lightwave
Technology 37 (2) 338-347 (2019).
- S. Sciara et al., “Generation and Processing of Complex Photon States
with Quantum Frequency Combs”, IEEE Photonics Technology Letters 31
(23) 1862-1865 (2019). DOI: 10.1109/LPT.2019.2944564.
- L. Caspani, C. Reimer, M. Kues, et al., “Multifrequency sources of
quantum correlated photon pairs on-chip: a path toward integrated
Quantum Frequency Combs,” Nanophotonics, vol. 5, no. 2, pp. 351-362,
2016.
- C. Reimer et al., “Generation of multiphoton entangled quantum states
by means of integrated frequency combs,” Science, vol. 351, no. 6278,
pp. 1176-1180, 2016.
- M. Kues, et al., “On-chip generation of high-dimensional entangled
quantum states and their coherent control”, Nature, vol. 546, no.
7660, pp. 622-626, 2017.
- P. Roztocki et al., “Practical system for the generation of pulsed
quantum frequency combs,” Optics Express, vol. 25, no.16,
18940-18949, 2017.
- Y. Zhang, et al., “Induced photon correlations through superposition
of two four-wave mixing processes in integrated cavities”, Laser and
Photonics Reviews, vol. 14, no. 7, pp. 2000128, 2020. DOI:
10.1002/lpor.202000128
- C. Reimer, et al.,“High-dimensional one-way quantum processing
implemented on d-level cluster states”, Nature Physics, vol. 15 (2)
148 (2019).
- H. Bao, et al., Laser cavity-soliton microcombs, Nature Photonics,
vol. 13, no. 6, pp. 384-389, Jun. 2019.
- Bao, C., et al., Direct soliton generation in microresonators, Opt.
Lett, 42, 2519 (2017).
- M.Ferrera et al., “CMOS compatible integrated all-optical RF spectrum
analyzer”, Optics Express, vol. 22, (18) 21488 (2014).
- A. Pasquazi, et al., “Sub-picosecond phase-sensitive optical pulse
characterization on a chip”, Nature Photonics, vol. 5, no. 10, pp.
618-623 (2011).
- M. Kues, et al., “Passively modelocked laser with an ultra-narrow
spectral width”, Nature Photonics, vol. 11, no. 3, pp. 159, 2017.
- L. Razzari, et al., “CMOS-compatible integrated optical
hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1, 41-45,
2010.
- M. Ferrera, et al., “Low-power continuous-wave nonlinear optics in
doped silica glass integrated waveguide structures,” Nature
Photonics, vol. 2, no. 12, pp. 737-740, 2008.
- M.Ferrera et al.“On-Chip ultra-fast 1st and 2nd order CMOS compatible
all-optical integration”, Opt. Express, vol. 19, (23)pp. 23153-23161
(2011).
- D. Duchesne, M. Peccianti, M. R. E. Lamont, et al., “Supercontinuum
generation in a high index doped silica glass spiral waveguide,”
Optics Express, vol. 18, no, 2, pp. 923-930, 2010.
- H Bao, L Olivieri, M Rowley, ST Chu, BE Little, R Morandotti, DJ Moss,
… “Turing patterns in a fiber laser with a nested microresonator:
Robust and controllable microcomb generation”, Physical Review
Research 2 (2), 023395 (2020).
- M. Ferrera, et al., “On-chip CMOS-compatible all-optical
integrator”, Nature Communications, vol. 1, Article 29, 2010.
- A. Pasquazi, et al., “All-optical wavelength conversion in an
integrated ring resonator,” Optics Express, vol. 18 (4) 3858 (2010).
- A. Pasquazi, Y. Park, J. Azana, et al., “Efficient wavelength
conversion and net parametric gain via Four Wave Mixing in a high
index doped silica waveguide,” Optics Express, vol. 18, no. 8, pp.
7634-7641, 2010.
- M. Peccianti, M. Ferrera, L. Razzari, et al., “Subpicosecond optical
pulse compression via an integrated nonlinear chirper,” Optics
Express, vol. 18, no. 8, pp. 7625-7633, 2010.
- Little, B. E. et al., “Very high-order microring resonator filters
for WDM applications”, IEEE Phot. Technol. Lett. 16, 2263(2004).
- M. Ferrera et al., “Low Power CW Parametric Mixing in a Low
Dispersion High Index Doped Silica Glass Micro-Ring Resonator with
Q-factor > 1 Million”, Optics Express, vol.17, no. 16,
pp. 14098–14103 (2009).
- M. Peccianti, et al., “Demonstration of an ultrafast nonlinear
microcavity modelocked laser”, Nature Comm., vol. 3, 765, 2012.
- A. Pasquazi, et al., “Self-locked optical parametric oscillation in a
CMOS compatible microring resonator: a route to robust optical
frequency comb generation on a chip,” Optics Express, vol. 21, no.
11, pp. 13333-13341, 2013.
- A. Pasquazi, et al., “Stable, dual mode, high repetition rate
mode-locked laser based on a microring resonator,” Optics Express,
vol. 20, no. 24, pp. 27355-27362, 2012.
- Xu, X., et al., Photonic microwave true time delays for phased array
antennas using a 49 GHz FSR integrated micro-comb source, Photonics
Research, 6, B30-B36 (2018).
- X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss,
“Microcomb-based photonic RF signal processing”, IEEE Photonics
Technology Letters, vol. 31 no. 23 1854-1857, 2019.
- M. Tan et al, “Orthogonally polarized Photonic Radio Frequency single
sideband generation with integrated micro-ring resonators”, IOP
Journal of Semiconductors, Vol. 42 (4), 041305 (2021). DOI:
10.1088/1674-4926/42/4/041305.
- Xu, et al., “Advanced adaptive photonic RF filters with 80 taps based
on an integrated optical micro-comb source,” Journal of Lightwave
Technology, vol. 37, no. 4, pp. 1288-1295 (2019).
- X. Xu, et al., Broadband microwave frequency conversion based on an
integrated optical micro-comb source”, Journal of Lightwave
Technology, vol. 38 no. 2, pp. 332-338, 2020.
- M. Tan, et al., “Photonic RF and microwave filters based on 49GHz and
200GHz Kerr microcombs”, Optics Comm. vol. 465,125563, Feb. 22. 2020.
- X. Xu, et al., “Broadband photonic RF channelizer with 90 channels
based on a soliton crystal microcomb”, Journal of Lightwave
Technology, Vol. 38, no. 18, pp. 5116 - 5121, 2020. doi:
10.1109/JLT.2020.2997699.
- X. Xu, et al., “Photonic RF and microwave integrator with soliton
crystal microcombs”, IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 12, pp. 3582-3586, 2020.
DOI:10.1109/TCSII.2020.2995682.
- X. Xu, et al., “High performance RF filters via bandwidth scaling
with Kerr micro-combs,” APL Photonics, vol. 4 (2) 026102. 2019.
- M. Tan, et al., “Microwave and RF photonic fractional Hilbert
transformer based on a 50 GHz Kerr micro-comb”, Journal of Lightwave
Technology, vol. 37, no. 24, pp. 6097 – 6104, 2019.
- M. Tan, et al., “RF and microwave fractional differentiator based on
photonics”, IEEE Transactions on Circuits and Systems: Express
Briefs, vol. 67, no.11, pp. 2767-2771, 2020.
DOI:10.1109/TCSII.2020.2965158.
- M. Tan, et al., “Photonic RF arbitrary waveform generator based on a
soliton crystal micro-comb source”, Journal of Lightwave Technology,
vol. 38, no. 22, pp. 6221-6226 (2020). DOI: 10.1109/JLT.2020.3009655.
- M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF
and microwave high bandwidth signal processing based on Kerr
Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2021).
DOI:10.1080/23746149.2020.1838946.
- X. Xu, et al., “Advanced RF and microwave functions based on an
integrated optical frequency comb source,” Opt. Express, vol. 26 (3)
2569 (2018).
- M. Tan, X. Xu, J. Wu, B. Corcoran, A. Boes, T. G. Nguyen, S. T. Chu,
B. E. Little, R.Morandotti, A. Lowery, A. Mitchell, and D. J. Moss,
“”Highly Versatile Broadband RF Photonic Fractional Hilbert
Transformer Based on a Kerr Soliton Crystal Microcomb”, Journal of
Lightwave Technology vol. 39 (24) 7581-7587 (2021).
- Bao, C., et al., Direct soliton generation in microresonators, Opt.
Lett, 42, 2519 (2017).
- Yuning Zhang, Yang Qu, Jiayang Wu, Linnan Jia, Yunyi Yang, Xingyuan
Xu, Baohua Jia, and David J. Moss, “Enhanced Kerr nonlinearity and
nonlinear figure of merit in silicon nanowires integrated with 2D
graphene oxide films”, ACS Applied Materials and Interfaces, Vol. 12
(29) 33094−33103 (2020). DOI:10.1021/acsami.0c07852
- D.Moss, “11 Tera-FLOP/s photonic convolutional accelerator and deep
learning optical neural networks”, Research Square, (2021). DOI:
https://doi.org/10.21203/rs.3.rs-493347/v1.
- Moss, David (2020): “11.0 Tera-FLOP/second photonic convolutional
accelerator for deep learning optical neural networks”, TechRxiv.
Preprint. (2020). https://doi.org/10.36227/techrxiv.13238423.v1
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.; Chu, S.;
Little, B.; Hicks, D.; Morandotti, R.; Mitchell, A.; Moss, D. “11
Tera-FLOP per Second Photonic Convolutional Accelerator for Deep
Learning Optical Neural Networks”, Preprints 2020, 2020110420.
- Moss, David (2020): “RF and microwave photonic high bandwidth signal
processing based on Kerr micro-comb sources”, TechRxiv. (2020).
Preprint. DOI:10.36227/techrxiv.12665609.v3
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Linnan Jia, Tania
Moein, Baohua Jia, David J. Moss, “Enhanced nonlinear optical
figure-of-merit at 1550nm for silicon nanowires integrated with
graphene oxide layered films”, Arxiv (2020). arXiv:2004.08043
[physics.optics]
- Moss, David; Jia, Baohua; Wu, Jiayang; Zhang, Yuning; Yang, Yunyi;
Jia, Linnan, Yang Qu, Tania Moein (2020): “Transforming silicon into
a high performing integrated nonlinear photonics platform by
integration with 2D graphene oxide films”, TechRxiv. (2020).
Preprint. DOI:10.36227/techrxiv.12061809.v1.
- A. Frigg, A. Boes, G. Ren, T.G. Nguyen, D.Y. Choi, S. Gees, D. Moss, A
Mitchell, “Optical frequency comb generation with low temperature
reactive sputtered silicon nitride waveguides”, APL Photonics, Vol. 5
(1), 011302 (2020).
- M. Tan, X. Xu, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu,
B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced
applications of Kerr mircocombs”, Paper 11775-1. SPIE 11775,
Integrated Optics: Design, Devices, Systems and Applications VI,
(EOO21) OO107-8, Proc 1177504 (18 April 2021); Integrated Optics
Conference, SPIE Optics and Optoelectronics Symposium, Prague, Czech
Republic. April 19 - 22 (2021), doi.org/10.1117/12.2588733.
- T. Moein, D. Gailevičius, T. Katkus, S.H. Ng, S. Lundgaard, D.J. Moss,
H. Kurt, Vygantas Mizeikis, Kȩstutis Staliūnas, Mangirdas Malinauskas,
Saulius Juodkazis, “Optically-thin broadband graphene-membrane
photodetector”, Nanomaterials, Vol. 10 (3), 407 (2020).
- Moss, David, “Microcombs for Ultrahigh Bandwidth Optical Data
Transmission and Neural Networks.” OSF Preprints. March 8. (2021).
DOI:10.31219/osf.io/ne9wx.
- M. Tan, X. Xu, D. J. Moss, ”Tera-OPs Photonic Convolutional Neural
Networks based on Kerr Microcombs,” Preprints, 2021. DOI:
10.20944/preprints202102.0549.v1.
- M. Tan, X. Xu, D.J. Moss, ”Advanced applications of microcombs: From
optical neural networks to data transmission,” Research Square, April
2021. DOI: 10.21203/rs.3.rs-409803/v1.
- D. J. Moss et al.,”Tunable dispersion and dispersion slope
compensators for 10Gb/s using all-pass multicavity etalons”, IEEE
Phot. Technology Letters, vol. 15, no. 5, 730-732 (2003).
- L.M. Lunardi et al. ,“Tunable dispersion compensators based on
multi-cavity all-pass etalons for 40Gb/s systems”, J. Lightwave
Technology, vol. 20, (12) 2136 (2002).
- A. Della Torre et al., “Mid-infrared supercontinuum generation in a
low-loss germanium-on-silicon waveguide”, APL Photonics Vol. 6,
016102 (2021); doi: 10.1063/5.0033070.
- M. Sinobad, et al., “Mid-infrared supercontinuum generation in
silicon-germanium all-normal dispersion waveguides”, Optics Letters,
Vol. 45 (18), 5008-5011 (2020). DOI: 10.1364/OL.402159.
- M. Sinobad et al., “High coherence at f and 2f of a mid-infrared
supercontinuum in a silicon germanium waveguide”, IEEE Journal of
Selected Topics in Quantum Electronics Vol. 26 (2) 8201008 (2020).
DOI:10.1109/JSTQE.2019.2943358.
- M. Sinobad et al., “Dispersion trimming for mid-infrared
supercontinuum generation in a hybrid chalcogenide Si-Ge waveguide”,
Journal of the Optical Society of America B, Vol. 36 (2) A98-A104
(2019). DOI: 10.1364/JOSAB.36.000A98.
- M. Sinobad et al., “High brightness mid-infrared octave spanning
supercontinuum generation to 8.5μm in chip-based Si-Ge waveguides”,
Optica, Vol. 5 (4) 360-366 (2018). DOI:10.1364/OPTICA.5.000360.
- L. Jin et al., Applied Physics Letters Photonics, Vol, 5 Article
056106, (2020). DOI:10.1063/5.0002941
- L. Carletti et al., “Nonlinear optical properties of Si-Ge waveguides
in the mid-infrared”, Optics Express Vol. 23 (7) 8261–8271 (2015).