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ABSTRACT 

We propose and theoretically investigate integrated photonic filters based on two coupled Sagnac loop reflectors (SLRs) 

formed by a self-coupled optical waveguide. Recently we investigated integrated photonic filters based on cascaded 

SLRs and coupled SLRs. Here, we advance this field by presenting a unique approach of using coupled SLRs formed by 

a self-coupled optical waveguide. This enables us to achieve high performance filter functions including Fano-like 

resonances and wavelength interleaving with a simpler design and a higher fabrication tolerance by tailoring coherent 

mode interference in the device. Our design takes into account the device fabrication issues as well as the requirements 

for practical applications. As a guide for practical device fabrication, an analysis of the impact of the structural 

parameters and fabrication tolerance on each filter function is also provided. The Fano-like resonances show a low 

insertion loss (IL) of 1.1 dB, a high extinction ratio of 30.2 dB, and a high slope rate (SR) of 747.64 dB/nm. The 

combination of low IL and high SR promises this device for Fano resonance applications. Our device also can achieve 

wavelength de-interleaving function with high fabrication tolerance which is attractive for optical interleavers that need a 

flat-top symmetric filter shape. Optical interleavers and de-interleavers are core elements for signal multiplexing and 

demultiplexing in wavelength division multiplexing optical communication systems. Versatile spectral responses with a 

simple design, compact device footprint, and high fabrication tolerance make this approach highly promising for flexible 

response shaping in a wide variety of applications. 
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1. INTRODUCTION 

Integrated photonic resonators (IPRs) have allowed a variety of functional optical devices, including filters, modulators, 

sensors, switches, and logic gates, thanks to their compact footprint, flexible topology, and great scalability [1-4]. 

Compared to the IPRS formed by photonic crystal structures [5] and gratings [6] that have sub-wavelength cavity 

lengths, the IPRs formed by directional-coupled wire waveguides with longer cavity lengths have smaller free spectral 

ranges (FSRs) that match the spectral grids of state-of-the-art wavelength division multiplexing (WDM) optical 

communication systems, thus making them more widely applicable to these systems. In addition, sub-wavelength 

dimensions of photonic crystal cavity and Bragg grating structures are more prone to fabrication tolerances as compared 

with directional-coupled wire waveguides. Ring resonators (RRs), and Sagnac loop reflectors (SLRs), which are 

essential building blocks for IPRs, are made up of directional couplers. Unlike RRs, which only allow for unidirectional 

light propagation, SLRs allow for bidirectional light propagation as well as mutual coupling between light travelling in 

opposing directions, resulting in a more versatile coherent mode interference and spectral response. Furthermore, a 

standing-wave (SW) resonator made up of cascaded SLRs has a cavity length about half that of a traveling wave (TW) 

resonator made up of a ring resonator with the same FSR, allowing for a more compact device footprint. 

We investigated integrated photonic filters based on cascaded SLRs [7, 8] and coupled SLRs [9, 10] in our previous 

work. Here, we advance this field by presenting the novel approach of using two coupled SLRs with a feedback loop 

formed by a self-coupled wire waveguide that yield different response shapes including Fano-like resonances and 

wavelength de-interleaving [11].  

 

In our design, we take into account the device fabrication issues experienced in Refs. [7, 8] as well as the needs for 

practical applications. As a guide for practical device fabrication, an analysis of the influence of structural parameters 

and fabrication tolerance is also provided. 



 

 
 

 

 

 

 

2. DEVICE CONFIGURATION 

The proposed structure is illustrated schematically in Fig. 1, which consists of two inverse-coupled SLRs with a 

feedback loop formed by a single self-coupled wire waveguide. Table 1 details the device's structural parameters. To 

simplify the discussion, we assume that LSLR1 = LSLR2 = LSLR. The spectral response of the device is calculated using the 

scattering matrix method [7, 9]. In the device model, we use waveguide group index of ng = 4.3350 (transverse electric 

(TE) mode) and propagation loss of α = 55 m-1 (i.e., 2.4 dB/cm), which are in line with our previously fabricated silicon-

on-insulator (SOI) devices [7, 8, 12]. The device is designed based on, but not limited to, the SOI platform. 

 

 
Figure 1. Schematic configuration of device. The definitions of ti (i = 1, 2, 3), LSLRi (i = 1, 2), and LFL are given in Table 1.  

 
Table 1. Definitions of device structural parameters 

Waveguides Length Transmission factor a Phase shift b 

Feedback loop between SLRs (i = 1, 2) LFL af φf 

Sagnac loop in SLRi (i = 1, 2) LSLRi asi φsi 

Directional couplers Field transmission coefficient c Field cross-coupling coefficient c 

Coupler in SLRs (i = 1, 2) ti κi 

Coupler between SLRs t2 κ2 
a af = exp(-αLFL / 2), asi = exp(-αLSLRi / 2), α is the power propagation loss factor. 
b φf = 2πngLFL / λ, φsi = 2πngLSLRi / λ, ng is the group index and λ is the wavelength. 
c ti

2 + κi
2 = 1 for lossless coupling are assumed for all the directional couplers  

 

In the following sections, mode interference in the device is tailored to achieve high-performance filtering functions, 

including Fano-like resonances and wavelength de-interleaving. 
 

3. FANO-LIKE RESONANCES 

Fano resonances are a fundamental physical phenomenon demonstrating an asymmetric spectral lineshape arising from 

quantum interference between discrete and continuum states [13, 14]. They have underpinned many applications such as 



 

 
 

 

 

 

optical switching, data storage, sensing, and topological optics, due to their unique physics and capability of providing 

ultra-narrow spectral linewidths [13-15]. In this section, the spectral response of the device in Fig. 1 is tailored to realize 

Fano-like resonances with high slope rates (SRs) and low insertion loss (IL). The power transmission and reflection 

spectra is depicted in Fig. 2(a). The   device structural parameters are LSLR = 100 µm, LFL = 300 µm, t1 = t3 = 0.82, and t2 

= 0.92. Clearly, there are periodical Fano resonances with identical asymmetric resonant lineshape in each period at 

output port. The high uniformity of the response shape of the resonator could be suitable for applications in WDM 

systems. A zoom-in view of Fig. 2(a) is shown in Fig. 2(b), together with another curve showing the corresponding result 

for another device with the same structural parameters except for a different t2 = 1. As can be seen, when t2 = 1, there is 

no Fano resonance, distinguishing between the device in Fig. 1 and the two cascaded SLRs in Ref. [16]. The Fano 

resonances in Fig. 2(a) show a high extinction ratio (ER) of 30.2 dB and a high SR (defined as the ratio of the ER to the 

wavelength difference between the resonance peak and notch) of 747.64 dB/nm.    

 

 
Figure 2. (a) Power transmission and reflection spectra when LSLR = 100 µm, LFL = 300 µm, t1 = t3 = 0.82, and t2 = 0.92. T: 

Transmission spectrum at output port. R: reflection spectrum at input port. (b) Power transmission spectra at output port for t2 = 0.92 

and t2 = 1. In (b), the structural parameters are kept the same as those in (a) except for t2. 

 
The performance of the Fano-like resonances generated by the coupled SLRs in our prior work [9, 10] and the device in 

Fig. 1 are compared in Table 2. For comparison, the device structural parameters (LSLRi, ng, and α) of all the three 

structures were kept the same except for the transmission coefficients (ti) that were tuned to obtain the highest SR for 

each structure. As compared with previous devices, the device presented here has a much lower IL of 1.1 dB, along with 

a slightly improved SR. The combination of high SR and low IL promises this device for Fano resonance applications. 

We note that a low IL of 1.1 dB is outstanding among the reported Fano-resonance devices on the SOI platform [17, 18], 

which makes the device here more attractive for practical applications. 

 
Table 2. Performance comparison of Fano-like resonances generated by different SLR-based devices. 

Device structure IL (dB) ER (dB) SR (dB/nm) FSR (GHz) Ref. 

Two parallel WC-SLRs a 6.3 13.9 389 692.02 [9] 

Three zig-zag WC-SLRs b 3.7 63.4 721.28 230.68 [10] 

Device in Fig. 1  1.1 30.2 747.64 173 This work 
a WC-SLRs: waveguide coupled SLRs. 
b For comparison, the length of the SLRs (LSLRi, i = 1–3) and the connecting waveguide (Li, i = 1–4) is slightly changed from 115 µm 

in [10] to 100 µm. 

 

In Figs. 3(a)–(c), we further investigate the impact of the device structural parameters including ti (i = 1–3) and length 

variations of feedback loop (∆LFL) on the performance of the Fano resonance. In each figure, we changed only one 

structural parameter, keeping the others the same as those in Fig. 2 (a). In Figs. 3(a)–(c), (i) shows power transmission 

spectra and (ii) shows the corresponding IL and SR for different ti (i = 1–3), and ∆LFL, respectively. The SR decreases 

with ti (i = 1, 3), while the IL first decreases with ti (i = 1, 3) and then remains almost unchanged. The SR decreases with 

t2, while the IL shows an opposite trend, reflecting that both of the two parameters can be improved by enhancing the 



 

 
 

 

 

 

coupling strength between SLR1 and SLR2. As shown in Fig. 3(c), the filter shape remains unchanged while the Fano-

like resonance peak redshifts as ∆LFL increases. This indicates that the resonance wavelengths can be tuned by 

introducing thermo-optic micro-heaters [18] or carrier-injection electrodes [19] along feedback loop to tune the phase 

shift. 

 
Figure 3. (a)–(c) Power transmission spectra (i) and the corresponding IL and SR (ii) for different ti (i = 1–3) and ∆LFL respectively. In 

(a)‒(c), the structural parameters are kept the same as those in Fig. 2(a) except for the varied parameters. 

 

4. WAVELENGTH DE-INTERLEAVING FUNCTION 

Optical interleavers and de-interleavers are core elements for signal multiplexing/demultiplexing in wavelength division 

multiplexing (WDM) optical communication systems [20, 21]. In this section, we engineer the spectral response of the 

device in Fig. 1 to achieve wavelength de-interleaving function. Flat-top spectral response of de-interleavers minimize 

the filtering distortions and group delay variation and high ER minimize signal crosstalk between adjacent channels [22]. 

Fig. 4(a) shows the power transmission and reflection spectra when the device structural parameters are LSLR = 100 µm, 

LFL = 300 µm, t1 = 0.992, and t2 = t3 = 0.95. The IL, ER, and 3-dB bandwidth for the passband at output port are 0.36 dB, 

12.7 dB, and 83.65 GHz, respectively. The IL, ER, and 3-dB bandwidth for the reflection spectrum at input port are 0.33 

dB, 12 dB, and 91.9 GHz, respectively. As compared with flat-top filters based on cascaded ring resonators [23], ring-

assisted Mach-Zehnder interferometers [24], and cascaded SLRs [7], our device can achieve the same level of filtering 

flatness with fewer subunits. 

We further investigate the impact of varied ti (i = 1–3) in Figs. 4(b)–(d), respectively. For simplification, we only show 

the spectral response at output port. In Fig. 4(b), as t1 increases, the ER of the passband decreases while the top flatness 

improves, reflecting the trade-off between them. In Figs. 4(c)–(d), the bandwidth of the passband increases with t2, t3, 

respectively, while the ER shows an opposite trend. 

 

 

 

 



 

 
 

 

 

 

 
Figure 4. (a) Power transmission and reflection spectra of the device when LSLR = 100 µm, LFL = 300 µm, t1 = 0.992, and t2 = t3 = 0.95. 

T: Transmission spectrum at output port. R: reflection spectrum at input port. (b)–(d) Power transmission spectra for different ti (i = 1–

3), respectively. In (b)‒(d), the structural parameters are kept the same as those in (a) except for the varied parameters. 

 
We also investigate the impact of varied ∆LSLRi (i = 1, 2) and ΔLFL in Figs. 5(a)–(c), respectively. In Figs. 5(a)–(c), as 

∆LSLRi (i = 1, 2) or ΔLFL increases, the filter shape remains unchanged while the resonance redshifts. Since the resonant 

cavity of the device is formed by a single self-coupled wire waveguide, random length fabrication errors in different 

parts (i.e., SLR1 in Fig. 5(a), SLR2 in Fig. 5(b), and feedback loop in Fig. 5(c),) will not induce any asymmetry in the 

filter shape. This yields a higher fabrication tolerance as compared with the coupled SLRs in Refs. [9, 10], which is 

particularly attractive for optical interleavers that require a flat-top symmetric filter shape.From Figs. 4(b)–(c) and Fig. 5, 

it can be seen that the slight changes in the structural parameters induced by fabrication disorders have no major impact 

on device performance. 

 

 

 
Figure 5. (a)–(c) Power transmission spectra for different ∆LSLRi (i = 1, 2) and ∆LFL, respectively. In (a)‒(c), the structural parameters are 

kept the same as those in Fig. 4(a) except for the varied parameters. 



 

 
 

 

 

 

5. CONCLUSIONS 

 

We have theoretically investigated integrated photonic filters based on two coupled SLRs with a feedback loop formed 

by a self-coupled optical waveguide. High performance filter functions including Fano-like resonances and wavelength 

de-interleaving are achieved by tailoring coherent mode interference in the device. Our design takes into account the 

device fabrication experience as well as the requirements for practical applications. The impact of device structural 

parameters on each filter function is analyzed to facilitate optimized performance. Versatile spectral responses, compact 

device footprint, and high fabrication tolerance make this approach highly promising for flexible response shaping in a 

wide variety of applications including potentially optical microcombs for advanced dispersion design for many 

applications. [25-145] 
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