
Received xx April 2021; Revised xx XXXX 20xx; Accepted xx XXXX 20xx

DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Advanced controller design for uncertain linear systems with
time-varying delays via augmented zero equality approach

Yonggwon Lee1 | Youngjae Kim1 | Seungho Kim1 | Seunghoon Lee*1 | Myeongjin Park2 | Ohmin
Kwon*1

1School of Electrical Engineering,
Chungbuk National University, Cheongju
28644, Republic of Korea

2Center for Global Converging Humanities,
Kyung Hee University, Yongin 17104,
Republic of Korea

Correspondence
Seunghoon Lee and Ohmin Kwon, School of
Electrical Engineering, Chungbuk National
University, Cheongju 28644, South Korea.
Email: acafela, madwind@cbnu.ac.kr

Funding information
This thesis was written with support from
Chungbuk National University BK(Brain
Korea) 21 FOUR(2021).

Summary

This paper deals with the stability analysis and controller design for linear sys-
tems with time-varying delays and parameter uncertainties. By choosing appropriate
augmented Lyapunov-Krasovskii functionals, a set of Linear Matrix inequalities is
derived to get advanced feasible region of stability, and controller gain matrices
which guarantee the asymptotic stability of the concerned systems within maximum
bound of time-delays and its time-derivative. To further reduce the conservatism
of stabilization criterion a recently developed mathematical technique which con-
structed a new augmented zero equality is applied. Finally, two numerical examples
are utilized to show the validity and superiority of the proposed methods.
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1 INTRODUCTION

In practical engineering fields, like networking, robotics, chemical, and mechanic, time-delays are unavoidable phenomena
which occur in various systems.1,2 Sometimes these delays lead to the system instability, poor performances, and aging.3,4
Time-delays can be found in system states or inputs. The former one is found in dynamic operation systems and chemical
mechanic chamber due to external disturbances like friction and temperature. And the latter is found in network communication
systems, heavy equipment, and sensing feedback environments due to internal causes by hardware limitation and synchroniza-
tion problem.5,6 Therefore, stability analysis for dynamic systems with time-delays has been one of the hot issues in a control
engineering field. Furthermore, unlike systems without time-delays, a controller design for systems with time-delays has an
important meaning.7,8,9,10
Time-delays have infinite dimensional states. So, the analytic methods can’t be found in frequency domains. Also, charac-

teristic function of time-delay systems, which has infinite poles, has difficulty in finding poles by analytic methods.11 Unlike
limitation in frequency analysis, Lyapunov-Krasovskii functionals (LKFs) based stability analysis has the advantages of that can
analyze the stability of time-delay systems.12 Therefore, selecting appropriate LKFs is an important work for getting improved
results. After integral terms are introduced for expressing LKFs, deriving the Linear Matrix inequalities (LMIs) condition for
asymptotical stability of systems becomes complicated. By that reasons, some mathematical techniques are developed for reliev-
ing conservative conditions of stability.13 Jensen’s inequality14, Wirtinger-based integral inequality (WBII)15 techniques are
used for handling integral terms in LKFs with less conservatism. And some other techniques like free-weighting matrix meth-
ods16, delay-partitioning approach11, and convex combination approach17 helped to find tight upper bound for time-derivative
of LKFs.
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The above mentioned techniques proved its effectiveness not only in time-delay linear systems, but also in uncertain systems
and nonlinear systems.18,19,20 It should be noted that disturbance or parameter uncertainties are essential elements in many
systems.21 So, finding advanced stability and stabilization criteria of the linear system with time-varying delays and parameter
uncertainties are worthy of investigation by many researchers for a long time. In this paper, to get superior results comparing
with the previous ones, the following three techniques are utilized.

∙ Auxiliary function-based integral inequalities
∙ Extended Reciprocally convex approacℎ
∙ Augmented zero equality approacℎ

First one is the Auxiliary function-based integral inequalities (AFII)22, which is developed from the Jensen’s inequality and
Wirtinger-based integral inequality14,15. This method is utilized for getting more tight lower bounds and handling single inte-
gral terms from time-derivative of LKFs. And then, the extended reciprocally convex inequality approach23 (ERCA) is used
for treating inverses convex parameters, and getting less conservatism. ERCA was developed from the reciprocally convex
approach24 by calculating more decision variables. The last one is the Augmented zero equality approach25 (AZEA). AZEA,
the applicated form of zero equality26 and finsler’s lemma27, gives effective calculating costs by removing decision variables.
It is confirmed that AZEA is a notable tool to get a high guaranteed delay bound in the systems with time-varying delays. So, it
becomes an inevitable choice to use above whole three techniques to get the better results.
By combining above three main techniques, in this paper, the problems of stability criteria and designing controller for

uncertain systems with time-varying delays are investigated. Theorem 1 is introduced for getting advanced feasible region of
stability by using some Lemmas and constructing an appropriate LKFs. As results of solving the stability problem, improved
maximum delay bounds ℎ which guarantee the asymptotic stability of concerned systems are obtained. Corollary 1 focuses
on controller design with constructing the same LKFs in Theorem 1. Based on Theorem 1, the AZEA method for reducing
computational burden and getting more improved maximum delay bounds is utilized in Theorem 2. In Corollary 2, utilizing
AZEAmethod for stabilization problem of uncertain systems is introduced. By applying AZEA for controller design of uncertain
linear systems, which have not been discussed in any other literatures, Finsler’s lemma for deriving enhanced stabilization
conditions can be applied. As a result, an advanced asymptotic stabilization region and controller gain matrices can be obtained.
Through two numerical examples, the superiority and effectiveness of above idea will be shown. Notation : Rn and Rm×n are
the n-dimensional Euclidean space and the set of all m× n real matrix, respectively. Sn and Sn+ denote the sets of symmetric and
positive definite n × n matrices. X > 0 means that X is the positive definite matrix. diag{⋯} is the block diagonal matrix. In
and 0n are n × n sizes identity and zero matrices, respectively. 0m×n is m × n zeros matrices. col{⋯} is the column matrices.
Sym{X} denotes X +XT .M⟂ ∈ Rn×(n−r) is the null matrix of theM ∈ Rm×n with rank r; e.g.,MM⟂ = 0. X[�(t)] means the
value of function X is dependent on the scalar function �(t). The symmetric terms will be denoted by ∗ when necessary.

2 PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear system with parameter uncertainties and time-varying delays:

ẋ(t) = (A + ΔA(t))x(t) + (Ad + ΔAd(t))x(t − ℎ(t)) + (B + ΔB(t))u(t),
x(s) = �(s), s ∈ [−ℎ, 0], (1)

where �(t) is an initial function, x(t) ∈ Rn is the state vector, A ∈ Rn×n, Ad ∈ Rn×n, B ∈ Rn×m are known system matrices,
and u(t) ∈ Rm is control input. Uncertainties ΔA(t), ΔAd(t) and ΔB(t) are of the form

[

ΔA(t) ΔAd(t) ΔB(t)
]

= DF (t)
[

Es Ed Eu
]

,

where D ∈ Rn×l, Es, Ed ∈ Rk×n, Eu ∈ Rk×m are known constant matrices and F (t) ∈ Rl×k, which satisfies F T (t)F (t) ≤ Ik,
is nonlinear time-varying function. The delay ℎ(t) is a time-varying continuous function satisfying 0 ≤ ℎ(t) ≤ ℎ and ℎ̇(t) ≤ �,
where ℎ and � are known constant values.
The purpose of this paper is to find delay-dependent criteria which guarantee the asymptotic stability of system (1) under

u(t) = 0m×1 and stabilization criteria of system (1) under u(t) = Kx(t). The controller gainK will be obtained and system under
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u(t) = Kx(t) can be described as

ẋ(t) = (A + ΔA(t) + BK + ΔB(t)K) x(t) + (Ad + ΔAd(t))x(t − ℎ(t)),
x(s) = �(s), s ∈ [−ℎ, 0]. (2)

The following lemmas are introduced for deriving our main results.

Lemma 1: For a given positive-definite matrix R > 0 and an integral function w(u) ∈ [a, b], the following inequality holds:22

b

∫
a

wT (s)Rw(s)ds ≥ 1
b − a

⎛

⎜

⎜

⎝

b

∫
a

w(s)ds
⎞

⎟

⎟

⎠

T

R
⎛

⎜

⎜

⎝

b

∫
a

w(s)ds
⎞

⎟

⎟

⎠

+ 3
b − a


1R
1 +
5

b − a

2R
2,

where 
1 = ∫ b
a w(s)ds −

2
b−a

∫ b
a ∫ b

s w(u)duds, and 
2 = ∫ b
a w(s)ds −

6
b−a

∫ b
a ∫ b

s w(u)duds +
12

(b−a)2
∫ b
a ∫ b

s ∫ b
u w(v)dvduds.

Lemma 2: For a scalar � (0 < � < 1), symmetric matricesM1, M2 ∈ Sn+, if there exists symmetric matrices S1, S2 ∈ Sn and

any matrices F1, F2 ∈ Rn×n such that
[

M1 − �S1 −�F1 − (1 − �)F2
∗ M2 − (1 − �)S2

]

≥ 0 for � = 0, 1, then for all � ∈ (0, 1) the following

inequality holds:23

[

1
�
M1 0
0 1

1−�
M2

]

≥
[

M1 + (1 − �)S1 �F1 + (1 − �)F2
∗ M2 + �S2

]

.

Lemma 3: Let D ∈ Rn×k, E ∈ Rk×n and F (t) ∈ Rk×k be real matrices, and assume that F (t) satisfies F (t)TF (t) ≤ Ik. Then,
for any diagonal matrix Θ ∈ Rk×k > 0, the following matrix inequality holds:28

DF (t)E + ETF T (t)DT ≤ ETΘE +DΘ−1DT .

Lemma 4: Let � ∈ Rn, Φ = ΦT ∈ Rn×n, and B ∈ Rm×n such that rank(B) < n. The following statements are equivalent:27

(i) �T Φ � < 0, ∀B� = 0, � ≠ 0,
(ii) ∃L ∈ Rn×m ∶ Φ + LB + BTLT < 0,
(iii) B⟂T Φ B⟂ < 0.

3 MAIN RESULTS

In this section, improved stability and stabilization criteria for the system (1) are derived based on the Lyapunov-Krasovskii
method. The following Lyapunov-Krasovskii functional is used in Theorems 1, 2, and Corollaries 1, 2:

V =
4
∑

i=1
Vi, (3)

where

V1 =
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ)
�1(t)

⎤

⎥

⎥

⎦

T

R
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ)
�1(t)

⎤

⎥

⎥

⎦

,
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V2 =

t

∫
t−ℎ

⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

T

N
⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

ds,

V3 =

t

∫
t−ℎ(t)

[

x(s)
�2(t, s)

]T

G
[

x(s)
�2(t, s)

]

ds,

V4 = ℎ

t

∫
t−ℎ

t

∫
s

[

ẋ(u)
x(u)

]T

Q
[

ẋ(u)
x(u)

]

duds,

where R,N , G, and Q are positive definite matrices, �1(t), �2(t, s) are defined as

�1(t) = col

⎧

⎪

⎨

⎪

⎩

t

∫
t−ℎ

x(s)ds,

t

∫
t−ℎ

t

∫
s

x(u)duds,

t

∫
t−ℎ

s

∫
t−ℎ

x(u)duds

⎫

⎪

⎬

⎪

⎭

,

�2(t, s) = col

⎧

⎪

⎨

⎪

⎩

t

∫
s

ẋ(u)du,

t

∫
s

x(u)du,

s

∫
t−ℎ

ẋ(u)du,

s

∫
t−ℎ

x(u)du

⎫

⎪

⎬

⎪

⎭

.

For simplicity of expression, the following notations of several matrices are defined as:

� (t) = col

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t)
x(t − ℎ(t))
x(t − ℎ)
ẋ(t)

ẋ(t − ℎ)
∫ t
t−ℎ(t) x(s)ds

∫ t−ℎ(t)
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
ℎ(t)

∫ t
t−ℎ(t) ∫

t
s x(u)duds

1
ℎ−ℎ(t)

∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds
1

ℎ(t)2
∫ t
t−ℎ(t) ∫

t
s ∫

t
u x(v)dvduds

1
(ℎ−ℎ(t))2

∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s ∫ t−ℎ(t)
u x(v)dvduds

1
ℎ(t)

∫ t
t−ℎ(t) x(s)ds

1
ℎ−ℎ(t)

∫ t−ℎ(t)
t−ℎ x(s)ds

1
ℎ(t)2

∫ t
t−ℎ(t) ∫

t
s x(u)duds

1
(ℎ−ℎ(t))2

∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

[

∫ t
t−ℎ(t) ∫

t
s x(u)duds

∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

Qaug1 = Q +
[

0n P1
∗ 0n

]

, Qaug2 = Q +
[

0n P2
∗ 0n

]

, P = diag
{

P1, P2 − P1, −P2
}

,

Ω1 = diag
{

Qaug1, 3Qaug1, 5Qaug1
}

, Ω2 = diag
{

Qaug2, 3Qaug2, 5Qaug2
}

,

Ω[ℎ(t)] =

[

Ω1 + (1 −
ℎ(t)
ℎ
)S1

ℎ(t)
ℎ
F1 + (1 −

ℎ(t)
ℎ
)F2

∗ Ω2 +
ℎ(t)
ℎ
S2

]

,

ei = [0(i−1)n×n, In, 0(17−i)n×n] (i = 1, 2,… , 17), e0 = 017n×n, E = [e1, e2, … , e17],
Λ1 =

[

e1 − e2, e6, −e1 − e2 + 2e12, e6 − 2e8, e1 − e2 + 6e12 − 12e14, e6 − 6e8 + 12e10
]

,
Λ2 =

[

e2 − e3, e7, −e2 − e3 + 2e13, e7 − 2e9, e2 − e3 + 6e13 − 12e15, e7 − 6e9 + 12e11
]

,
Π11[ℎ(t)] =

[

e1, e3, e6 + e7, e16 + e17 + (ℎ − ℎ(t))e6, ℎ(t)e6 + ℎe7 − e16 − e17
]

,
Π12 =

[

e4, e5, e1 − e3, ℎe1 − (e6 + e7), (e6 + e7) − ℎe3
]

,
Π21 =

[

e4, e1, e0, e0, e1 − e3, e6 + e7
]

, Π22 =
[

e5, e3, e1 − e3, e6 + e7, e0, e0
]

,
Π23[ℎ(t)] =

[

e1 − e3, e6 + e7, ℎe1 − (e6 + e7), e16 + e17 + (ℎ − ℎ(t))e6, (e6 + e7) − ℎe3, ℎ(t)e6 + ℎe7 − e16 − e17
]

,
Π24 =

[

e0, e0, e4, e1, −e5, −e3
]

,
Π31 =

[

e1, e0, e0, e1 − e3, e6 + e7
]

, Π32 =
[

e2, e1 − e2, e6, e2 − e3, e7
]

,
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Π33[ℎ(t)] =
[

e6, ℎ(t)e1 − e6, e16, e6 − ℎ(t)e3, −e16 + ℎ(t)(e6 + e7)
]

,Π34 =
[

e0, e4, e1, −e5, −e3
]

,
Π41 =

[

e4, e1
]

, Π42 =
[

e1, e2, e3
]

, Π43 =
[

Λ1, Λ2
]

,
Ξ1[ℎ(t)] = Sym

{

Π11[ℎ(t)]RΠT12
}

,
Ξ2[ℎ(t)] = Π21NΠT21 − Π22NΠ

T
22 + Sym

{

Π23[ℎ(t)]NΠT24
}

,
Ξ3[ℎ(t)] = Π31GΠT31 − (1 − �)Π32GΠ

T
32 + Sym

{

Π33[ℎ(t)]GΠT34
}

,
Ξ41 = ℎΠ42PΠT42, Ξ42[ℎ(t)] = −Π43Ω[ℎ(t)]ΠT43,

Ξ4[ℎ(t)] = ℎ2Π41QΠT41 + Ξ41 + Ξ42[ℎ(t)],
Ξ5[ℎ(t)] = Sym

{

[ℎ(t)e12 − e6]Ψ1ET + [(ℎ − ℎ(t))e13 − e7]Ψ2ET

+ [ℎ(t)e14 − e8]Ψ3ET + [(ℎ − ℎ(t))e15 − e9]Ψ4ET

+ [ℎ(t)e8 − e16]Ψ5ET + [(ℎ − ℎ(t))e9 − e17]Ψ6ET} ,
Ξ6 = Sym

{[

e1X1 + e2X2 + e4X3
] [

−eT4 + Ae
T
1 + Ade

T
2
]}

,

Ξ7 =
[

e1, e2, e4
] [

Es, Ed , 0n
]T Θ

[

Es, Ed , 0n
] [

e1, e2, e4
]T ,

Ξ[ℎ(t)] =
5
∑

i=1
Ξi[ℎ(t)] + Ξ6 + Ξ7,

Ξ8 =
[

e1, e2, e4
]

⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T

[

e1, e2, e4
]T . (4)

Then, the following theorem for finding asymptotically stable region when the system (1) under u(t) = 0m×1 is given as a main
result.

Theorem 1. For given positive scalars ℎ and �, system (1) under u(t) = 0m×1 is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ and
ℎ̇(t) ≤ �, if there exist positive-definite matrices R ∈ S5n+ , N ∈ S6n+ , G ∈ S5n+ , Q ∈ S2n+ , positive-definite diagonal matrix
Θ ∈ Sn+, symmetric matrices Pi ∈ Sn(i = 1, 2), Si ∈ S6n(i=1, 2), any matrices Xi ∈ Rn×n(i=1, 2, 3), Ψi ∈ Rn ×17n(i=1, 2, 3, 4,
5, 6), Fi ∈ R6n ×6n(i=1, 2) satisfying the following LMIs:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ[ℎ(t)=0] [e1, e2, e4]
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

[DTXT
1 , D

TXT
2 , D

TXT
3 ]

⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (5)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ[ℎ(t)=ℎ] [e1, e2, e4]
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

[DTXT
1 , D

TXT
2 , D

TXT
3 ]

⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (6)

[

Ω1 −F2
∗ Ω2 − S2

]

≥ 0, (7)
[

Ω1 − S1 −F1
∗ Ω2

]

≥ 0. (8)
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Proof. Let us consider Lyapunov-Krasovskii functional (3). The V̇i (i=1,2,3,4) can be expressed as

V̇1 = 2
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ)
�1(t)

⎤

⎥

⎥

⎦

T

R

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t)
ẋ(t − ℎ)

x(t) − x(t − ℎ)
ℎx(t) − ∫ t

t−ℎ x(s)ds
∫ t
t−ℎ x(s)ds − ℎx(t − ℎ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= �T (t)Ξ1[ℎ(t)]� (t), (9)

V̇2 = d
dt

⎛

⎜

⎜

⎜

⎝

t

∫
t−ℎ

⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

T

N
⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

ds

⎞

⎟

⎟

⎟

⎠

=
⎡

⎢

⎢

⎣

ẋ(t)
x(t)
�2(t, t)

⎤

⎥

⎥

⎦

T

N
⎡

⎢

⎢

⎣

ẋ(t)
x(t)
�2(t, t)

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

ẋ(t − ℎ)
x(t − ℎ)
�2(t, t − ℎ)

⎤

⎥

⎥

⎦

T

N
⎡

⎢

⎢

⎣

ẋ(t − ℎ)
x(t − ℎ)
�2(t, t − ℎ)

⎤

⎥

⎥

⎦

+

t

∫
t−ℎ

d
dt

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

T

N
⎡

⎢

⎢

⎣

ẋ(s)
x(s)
�2(t, s)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

ds

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t)
x(t)
0n×1
0n×1

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

N

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t)
x(t)
0n×1
0n×1

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t − ℎ)
x(t − ℎ)

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds
0n×1
0n×1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

N

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t − ℎ)
x(t − ℎ)

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds
0n×1
0n×1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t) − x(t − ℎ)
∫ t
t−ℎ x(s)ds

ℎx(t) − ∫ t
t−ℎ x(s)ds

∫ t
t−ℎ ∫

t
s x(u)duds

∫ t
t−ℎ x(s)ds − ℎx(t − ℎ)
∫ t
t−ℎ ∫

s
t−ℎ x(u)duds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

N

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0n×1
0n×1
ẋ(t)
x(t)

−ẋ(t − ℎ)
−x(t − ℎ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= �T (t)Ξ2[ℎ(t)]� (t), (10)

V̇3 =
d
dt

⎛

⎜

⎜

⎝

t

∫
t−ℎ(t)

[

x(s)
�2(t, s)

]T

G
[

x(s)
�2(t, s)

]

ds
⎞

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x(t)
0n×1
0n×1

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎦

T

G

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x(t)
0n×1
0n×1

∫ t
t−ℎ ẋ(s)ds
∫ t
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−
(

1 − ℎ̇(t)
)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t − ℎ(t))
∫ t
t−ℎ(t) ẋ(s)ds
∫ t
t−ℎ(t) x(s)ds

∫ t−ℎ(t)
t−ℎ ẋ(s)ds
∫ t−ℎ(t)
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

G

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t − ℎ(t))
∫ t
t−ℎ(t) ẋ(s)ds
∫ t
t−ℎ(t) x(s)ds

∫ t−ℎ(t)
t−ℎ ẋ(s)ds
∫ t−ℎ(t)
t−ℎ x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 2

t

∫
t−ℎ(t)

[

x(s)
�2(t, s)

]T

G

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0n×1
ẋ(t)
x(t)

−ẋ(t − ℎ)
−x(t − ℎ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ds ≤ �T (t)Ξ3[ℎ(t)]� (t), (11)

V̇4 =
d
dt

⎛

⎜

⎜

⎝

ℎ

t

∫
t−ℎ

t

∫
s

[

ẋ(u)
x(u)

]T

Q
[

ẋ(u)
x(u)

]

duds
⎞

⎟

⎟

⎠

= ℎ

t

∫
t−ℎ

[

ẋ(t)
x(t)

]T

Q
[

ẋ(t)
x(t)

]

ds − ℎ

t

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds + ℎ

t

∫
t−ℎ

t

∫
s

d
dt

(

[

ẋ(u)
x(u)

]T

Q
[

ẋ(u)
x(u)

]

)

duds
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= ℎ2
[

ẋ(t)
x(t)

]T

Q
[

ẋ(t)
x(t)

]

− ℎ

t

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds. (12)

By the way, the integral term which is composed in (12) can be divided into integral interval from t to t− ℎ(t) and from t− ℎ(t)
to t − ℎ as

− ℎ

t

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds = −ℎ

t

∫
t−ℎ(t)

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds − ℎ

t−ℎ(t)

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds. (13)

In this progress, zero equations are introduced with symmetric matrices P1, P2 as

0 = ℎ
⎡

⎢

⎢

⎣

xT (t)P1x(t) − xT (t − ℎ(t))P1x(t − ℎ(t)) − 2

t

∫
t−ℎ(t)

ẋT (s)P1x(s)ds
⎤

⎥

⎥

⎦

, (14)

0 = ℎ
⎡

⎢

⎢

⎣

xT (t − ℎ(t))P2x(t − ℎ(t)) − xT (t − ℎ)P2x(t − ℎ) − 2

t−ℎ(t)

∫
t−ℎ

ẋT (s)P2x(s)ds
⎤

⎥

⎥

⎦

. (15)

By adding zero equations (14) and (15) into the integral terms (13), respectively, the following equations can be obtained as

−ℎ

t

∫
t−ℎ(t)

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds = −ℎ

t

∫
t−ℎ(t)

[

ẋ(s)
x(s)

]T (

Q +
[

0n P1
∗ 0n

])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Qaug1

[

ẋ(s)
x(s)

]

ds + ℎ
[

x(t)
x(t − ℎ(t))

]T [P1 0n
∗ −P1

] [

x(t)
x(t − ℎ(t))

]

,

(16)

−ℎ

t−ℎ(t)

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds = −ℎ

t−ℎ(t)

∫
t−ℎ

[

ẋ(s)
x(s)

]T (

Q +
[

0n P2
∗ 0n

])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Qaug2

[

ẋ(s)
x(s)

]

ds + ℎ
[

x(t − ℎ(t))
x(t − ℎ)

]T [P2 0n
∗ −P2

] [

x(t − ℎ(t))
x(t − ℎ)

]

.

(17)

The integral terms of Equation (16), (17) are bounded by Lemma 1 as follow:

− ℎ

t

∫
t−ℎ(t)

[

ẋ(s)
x(s)

]T

Qaug1

[

ẋ(s)
x(s)

]

ds ≤ − ℎ
ℎ(t)

Λ1(t)TΩ1Λ1(t), (18)

− ℎ

t−ℎ(t)

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Qaug2

[

ẋ(s)
x(s)

]

ds ≤ − ℎ
ℎ − ℎ(t)

Λ2(t)TΩ2Λ2(t), (19)

where

Λ1(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t) − x(t − ℎ(t))
∫ t
t−ℎ(t) x(s)ds

−x(t) − x(t − ℎ(t)) + 2
ℎ(t)

∫ t
t−ℎ(t) x(s)ds

∫ t
t−ℎ(t) x(s)ds −

2
ℎ(t)

∫ t
t−ℎ(t) ∫

t
s x(u)duds

x(t) − x(t − ℎ(t)) + 6
ℎ(t)

∫ t
t−ℎ(t) x(s)ds −

12
(ℎ(t))2

∫ t
t−ℎ(t) ∫

t
s x(u)duds

∫ t
t−ℎ(t) x(s)ds +

6
ℎ(t)

∫ t
t−ℎ(t) ∫

t
s x(u)duds −

12
(ℎ(t))2

∫ t
t−ℎ(t) ∫

t
s ∫

t
u x(v)dvduds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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Λ2(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(t − ℎ(t)) − x(t − ℎ)
∫ t−ℎ(t)
t−ℎ x(s)ds

−x(t − ℎ(t)) − x(t − ℎ) + 2
ℎ−ℎ(t)

∫ t−ℎ(t)
t−ℎ x(s)ds

∫ t−ℎ(t)
t−ℎ x(s)ds − 2

ℎ−ℎ(t)
∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds

x(t − ℎ(t)) − x(t − ℎ) + 6
ℎ−ℎ(t)

∫ t−ℎ(t)
t−ℎ x(s)ds − 12

(ℎ−ℎ(t))2
∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds

∫ t−ℎ(t)
t−ℎ x(s)ds + 6

ℎ−ℎ(t)
∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s x(u)duds − 12
(ℎ−ℎ(t))2

∫ t−ℎ(t)
t−ℎ ∫ t−ℎ(t)

s ∫ t−ℎ(t)
u x(v)dvduds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As a result, by Lemma 2 if (7) and (8) holds, then the following inequality holds:

−ℎ

t

∫
t−ℎ

[

ẋ(s)
x(s)

]T

Q
[

ẋ(s)
x(s)

]

ds ≤
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))
x(t − ℎ)

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

P1 0n 0n
∗ P2 − P1 0n
∗ ∗ −P2

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P

⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))
x(t − ℎ)

⎤

⎥

⎥

⎦

−
[

Λ1(t)
Λ2(t)

]T [Ω1 + (1 −
ℎ(t)
ℎ
)S1

ℎ(t)
ℎ
F1 + (1 −

ℎ(t)
ℎ
F2)

∗ Ω2 +
ℎ(t)
ℎ
S2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ω[ℎ(t)]

[

Λ1(t)
Λ2(t)

]

= �T (t)
(

Ξ41 + Ξ42[ℎ(t)]
)

� (t). (20)

Therefore, V̇4 can be bounded as

V̇4 ≤ �T (t)
(

ℎ2Π41QΠT41 + Ξ41 + Ξ42[ℎ(t)]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ξ4[ℎ(t)]

� (t). (21)

By combining the augmented vector and free-weighting matrices Ψi(i = 1,… , 6), zero equalities can be considered as

0 = �T (t)
(

Sym
{

[ℎ(t)e12 − e6]Ψ1ET}) � (t), (22)
0 = �T (t)

(

Sym
{

[(ℎ − ℎ(t))e13 − e7]Ψ2ET}) � (t), (23)
0 = �T (t)

(

Sym
{

[ℎ(t)e14 − e8]Ψ3ET}) � (t), (24)
0 = �T (t)

(

Sym
{

[(ℎ − ℎ(t))e15 − e9]Ψ4ET}) � (t), (25)
0 = �T (t)

(

Sym
{

[ℎ(t)e8 − e16]Ψ5ET}) � (t), (26)
0 = �T (t)

(

Sym
{

[(ℎ − ℎ(t))e9 − e17]Ψ6ET}) � (t). (27)

Summing the above equalities leads to

0 = �T (t)Ξ5[ℎ(t)]� (t). (28)

From system (1) under u(t) = 0m×1 for any free-weighting matrices Xi(i = 1, 2, 3), the following zero equality holds:

0 = 2
[

xT (t)X1 + xT (t − ℎ(t))X2 + ẋT (t)X3
] [

−ẋ(t) + (A + ΔA) x(t) +
(

Ad + ΔAd(t)
)

x(t − ℎ(t))
]

.

The zero equality with parameter uncertainties ΔA(t), ΔAd(t) is bounded as follows by Lemma 3

0 = 2
[

xT (t)X1 + xT (t − ℎ(t))X2 + ẋT (t)X3
] [

−ẋ(t) + (A + ΔA) x(t) +
(

Ad + ΔAd(t)
)

x(t − ℎ(t))
]

≤ 2
[

xT (t)X1 + xT (t − ℎ(t))X2 + ẋT (t)X3
] [

−ẋ(t) + Ax(t) + Adx(t − ℎ(t))
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ6� (t)
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+
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

ET
s

ET
d
0n

⎤

⎥

⎥

⎦

Θ
⎡

⎢

⎢

⎣

ET
s

ET
d
0n

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ7� (t)

+
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ8� (t)

= �T (t)
(

Ξ6 + Ξ7 + Ξ8
)

� (t). (29)

From (9) - (29), an upper bound of V̇ is obtained as

V̇ ≤ �T (t)
(

Ξ[ℎ(t)] + Ξ8
)

� (t). (30)

Therefore, condition for asymptotic stability of system (1) is

Ξ[ℎ(t)] +
[

e1, e2, e4
]

⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T

[

e1, e2, e4
]T < 0. (31)

By Schur’s complement29, inequality (31) is equivalent to

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ[ℎ(t)] [e1, e2, e4]
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

[DTXT
1 , D

TXT
2 , D

TXT
3 ]

⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (32)

The left side of inequality (32) is affinely dependent on ℎ(t). Therefore, if (5), (6) are satisfied with (7), (8), the system (1) under
u(t) = 0m×1 is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ and ℎ̇(t) ≤ �. This completes the proof of Theorem 1.

Remark 1: Note that the equations ∫ t
t−ℎ(t) x(s)ds = eT6 � (t),

1
ℎ(t)

∫ t
t−ℎ(t) x(s)ds = eT12� (t) and these can have equality 0 =

ℎ(t) 1
ℎ(t)

∫ t
t−ℎ(t) x(s)ds − ∫ t

t−ℎ(t) x(s)ds. Above methods with (22) - (27) can effect in getting more tighter bound by utilizing
free-weighting matrices Ψi. Similary processes of 0 = (ℎ(t)eT12 − e

T
6 )� (t) are used in (23) - (27). Second, when we applied

AFII22, non-convex forms of ℎ(t)2 and (ℎ − ℎ(t))2 are expressed. Constructing augmented vector � (t) which includes vector
like 1

ℎ(t)2
∫ t
t−ℎ(t) ∫

t
s x(u)duds and considering (28) help to eleminate the non-convex expression. Therefore, by utilizing above

methods, the stability conditions can be obtained.
Based on the proposed method in Theorem 1, this can be applied in finding advanced stabilization criterion for closed-loop
system (2) under u(t) = Kx(t) . For proving that case, the following notations and Corollary are introduced.

�i = diag{X,… , X
⏟⏞⏟⏞⏟
= i elements

},

R̃ = �T5 R�5, Ñ = �T6 N�6, G̃ = �
T
5 G�5, P̃ = �

T
3 P�3, F̃i = �

T
6 Fi�6,

S̃i = �T6 Si�6, Ω̃i = �
T
6 Ωi�6, Ω̃[ℎ(t)] = �

T
12Ω[ℎ(t)]�12, Ψ̃i = �

T
1 Ψ�17,

Ξ̃1[ℎ(t)] = Sym
{

Π11[ℎ(t)]R̃ΠT12
}

,
Ξ̃2[ℎ(t)] = Π21ÑΠT21 − Π22ÑΠ

T
22 + Sym

{

Π23[ℎ(t)]ÑΠT24
}

,
Ξ̃3[ℎ(t)] = Π31G̃ΠT31 − (1 − �)Π32G̃Π

T
32 + Sym

{

Π33[ℎ(t)]G̃ΠT34
}

,
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Ξ̃41 = ℎΠ42P̃ΠT42,
Ξ̃42[ℎ(t)] = −Π43Ω̃[ℎ(t)]ΠT43,
Ξ̃4[ℎ(t)] = ℎ2Π41Q̃ΠT41 + Ξ̃41 + Ξ̃42[ℎ(t)],
Ξ̃5[ℎ(t)] = Sym

{

[ℎ(t)e12 − e6]Ψ̃1ET + [(ℎ − ℎ(t))e13 − e7]Ψ̃2ET

+ [ℎ(t)e14 − e8]Ψ̃3ET + [(ℎ − ℎ(t))e15 − e9]Ψ̃4ET

+ [ℎ(t)e8 − e16]Ψ̃5ET + [(ℎ − ℎ(t))e9 − e17]Ψ̃6ET} ,
Ξ̃6 = Sym

{[

e1 + �1e2 + �2e4
] [

−XeT4 + (AX + BY )eT1 + AdXe
T
2
]}

,

Ξ̃7 =
[

e1, e2, e4
] [

D, �1D, �2D
]T Θ

[

D, �1D, �2D
] [

e1, e2, e4
]T ,

Ξ̃[ℎ(t)] =
5
∑

i=1
Ξ̃i[ℎ(t)] + Ξ̃6 + Ξ̃7. (33)

Corollary 1: For given any scalars �1, �2, positive scalars ℎ and �, system (2) is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ
and ℎ̇(t) ≤ �, if there exist positive-definite matrices R̃ ∈ S5n+ , Ñ ∈ S6n+ , G̃ ∈ S5n+ , Q̃ ∈ S2n+ and positive-definite diag-
onal matrix Θ ∈ Sn+, symmetric matrices P̃i ∈ Sn(i = 1, 2), S̃i ∈ S6n+ (i = 1, 2), any matrices X ∈ Rn ×n, Y ∈ Rm ×n,
Ψ̃i ∈ Rn ×17n(i = 1,… , 6), F̃i ∈ R6n ×6n(i = 1, 2) satisfying the following LMIs:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ̃[ℎ(t)=0] [e1, e2, e4]
⎡

⎢

⎢

⎣

XTET
s + Y

TET
u

XTET
d

0n

⎤

⎥

⎥

⎦

[EsX + EuY , EdX, 0n]
⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (34)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ̃[ℎ(t)=ℎ] [e1, e2, e4]
⎡

⎢

⎢

⎣

XTET
s + Y

TET
u

XTET
d

0n

⎤

⎥

⎥

⎦

[EsX + EuY , EdX, 0n]
⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (35)

[

Ω̃1 −F̃2
∗ Ω̃2 − S̃2

]

≥ 0, (36)
[

Ω̃1 − S̃1 −F̃1
∗ Ω̃2

]

≥ 0. (37)

Then, the controller gain K can be obtained as K = Y X−1.

Proof. From Equation (28) in Theorem 1, the following zero equality can be added to (28)

0 = 2
[

xT (t)X1 + xT (t − ℎ(t))X2 + ẋT (t)X3
] [

−ẋ(t) + (A + ΔA(t) + BK + ΔB(t)K) x(t) +
(

Ad + ΔAd(t)
)

x(t − ℎ(t))
]

≤ 2
[

xT (t)X1 + xT (t − ℎ(t))X2 + ẋT (t)X3
] [

ẋ(t) + (A + BK)x(t) + Adx(t − ℎ(t))
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ9� (t)

+
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ10� (t)

+
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

ET
s +K

TET
u

ET
d
0n

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

ET
s +K

TET
u

ET
d
0n

⎤

⎥

⎥

⎦

T
⎡

⎢

⎢

⎣

x(t)
x(t − ℎ(t))

ẋ(t)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�T (t)Ξ11� (t)

= �T (t)
(

Ξ9 + Ξ10 + Ξ11
)

� (t), (38)
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where

Ξ9 = Sym
{[

e1X1 + e2X2 + e4X3
] [

−eT4 + (A + BK)e
T
1 + Ade

T
2
]}

,

Ξ10 =
[

e1, e2, e4
] [

DTXT
1 , D

TXT
2 , D

TXT
3
]T Θ

[

DTXT
1 , D

TXT
2 , D

TXT
3
] [

e1, e2, e4
]T ,

Ξ11 =
[

e1, e2, e4
] [

Es + EuK, Ed , 0n
]T Θ−1

[

Es + EuK, Ed , 0n
] [

e1, e2, e4
]T . (39)

Then, an upper bound of V̇ can be obtained as

V̇ ≤ �T (t)
(

Ξ[ℎ(t)] − Ξ6 − Ξ7 + Ξ9 + Ξ10 + Ξ11
)

� (t). (40)

If the above Equation (40) is negative definite, the system (2) is asymptotically stable. Thus the stability condition of system
(2) is summarized as

Ξ[ℎ(t)] − Ξ6 − Ξ7 + Ξ9 + Ξ10 + Ξ11 < 0. (41)

Next, pre- and post- multiplying by �T17 and �17 can be used in both sides of (41) with relations of X = (X−1
1 )

T , X2 = �1X1,
X3 = �2X1. Result of this process is expressed by the following inequality holds

Ξ̃[ℎ(t)] +
[

e1, e2, e4
] [

EsX + EuY , EdX, 0n
]T Θ−1

[

EsX + EuY , EdX, 0n
] [

e1, e2, e4
]T < 0. (42)

And the conditions (36) and (37) can be obtained by pre- and post- multiplying �T12 and �
T
12 to both sides (7) and (8), respectively.

By Schur’s complement29, inequality (42) is equivalent to

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ̃[ℎ(t)] [e1, e2, e4]
⎡

⎢

⎢

⎣

XTET
s + Y

TET
u

XTET
d

0n

⎤

⎥

⎥

⎦

[EsX + EuY , EdX, 0n]
⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

−Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (43)

Since the left side of inequality (43) is affinely dependent on ℎ(t), inequalities (34) and (35) are satisfied. Therefore, if inequal-
ities (34) and (35) are satisfied with (36), (37), the system (2) under u(t) = Y X−1x(t) is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ
and ℎ̇(t) ≤ �. This completes our proof.

In next theorem an important idea, which is based on Theorem 1 and Lemma 4, is utilized.

Theorem 2. For given positive scalars ℎ and �, system (1) under u(t) = 0m×1 is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ and
ℎ̇(t) ≤ �, if there exist positive-definite matrices R ∈ S5n+ , N ∈ S6n+ , G ∈ S5n+ , Q ∈ S2n+ , positive-definite diagonal matrix
Θ ∈ Sn+, symmetric matrices Pi ∈ Sn(i = 1, 2), Si ∈ S6n(i = 1, 2), any matrices Xi ∈ Rn×n(i = 1, 2, 3), Fi ∈ R6n ×6n(i = 1, 2)
satisfying the following LMIs with (7) and (8):
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Γ⟂[ℎ(t)=0])
TΦ[ℎ(t)=0]Γ⟂[ℎ(t)=0] (Γ⟂[ℎ(t)=0])

T

⎧

⎪

⎨

⎪

⎩

[e1, e2, e4]
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

[DTXT
1 , D

TXT
2 , D

TXT
3 ]

⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

Γ⟂[ℎ(t)=0] −Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (44)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Γ⟂[ℎ(t)=ℎ])
TΦ[ℎ(t)=ℎ]Γ⟂[ℎ(t)=ℎ] (Γ⟂[ℎ(t)=ℎ])

T

⎧

⎪

⎨

⎪

⎩

[e1, e2, e4]
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

[DTXT
1 , D

TXT
2 , D

TXT
3 ]

⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

Γ⟂[ℎ(t)=ℎ] −Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (45)

where

Φ[ℎ(t)] = Ξ[ℎ(t)] − Ξ5[ℎ(t)],

and

Γ[ℎ(t)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ(t)eT12 − e
T
6

(ℎ − ℎ(t))eT13 − e
T
7

ℎ(t)eT14 − e
T
8

(ℎ − ℎ(t))eT15 − e
T
9

ℎ(t)eT8 − e
T
16

(ℎ − ℎ(t))eT9 − e
T
17

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. Let us choose the same LKFs in Theorem 1. Ξ5[ℎ(t)] can be alternated by utilizing Γ[ℎ(t)] and Ψ. Then, the inequality (31)
is equivalent to

Φ[ℎ(t)] + ΓT[ℎ(t)]Ψ
T + ΨΓ[ℎ(t)] + Ξ8 < 0, (46)

where

Ψ = E
[

ΨT1 , Ψ
T
2 , Ψ

T
3 , Ψ

T
4 , Ψ

T
5 , Ψ

T
6

]

.

Because the left side of inequality (46) is affinely dependent on ℎ(t), the following inequalities hold

Φ[ℎ(t)=0] + ΓT[ℎ(t)=0]Ψ
T + ΨΓ[ℎ(t)=0] + Ξ8 < 0, (47)

Φ[ℎ(t)=ℎ] + ΓT[ℎ(t)=ℎ]Ψ
T + ΨΓ[ℎ(t)=ℎ] + Ξ8 < 0. (48)

By relations of (ii) and (iii) in Lemma 4 with 0 = Γ[ℎ(t)]� (t), below inequalities can be derived as

(Γ⟂[ℎ(t)=0])
T

⎛

⎜

⎜

⎜

⎝

Φ[ℎ(t)=0] +
[

e1, e2, e4
]

⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T

[

e1, e2, e4
]T
⎞

⎟

⎟

⎟

⎠

(Γ⟂[ℎ(t)=0]) < 0,
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(Γ⟂[ℎ(t)=ℎ])
T

⎛

⎜

⎜

⎜

⎝

Φ[ℎ(t)=ℎ] +
[

e1, e2, e4
]

⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

Θ−1
⎡

⎢

⎢

⎣

X1D
X2D
X3D

⎤

⎥

⎥

⎦

T

[

e1, e2, e4
]T
⎞

⎟

⎟

⎟

⎠

(Γ⟂[ℎ(t)=ℎ]) < 0. (49)

The last, LMI conditons (44), (45) for system (1) under u(t) = 0m×1 can be described by Schur’s complement similar in Theorem
1, so rest proof is omitted.

Remark 2: The zero equalities 0=�T (t)ΨΓ[ℎ(t)]� (t) can be utilized by expanding the sizes of augmented vectors and free-
weighting matrices. However there exists limitations, which give more burdens in calculating costs. To overcome that
disadvantages, Kwon et al proposed Augmented zero equalities approach.25 The AZEA not only reduces mentioned calcu-
lating costs by eliminating decision variables from Ψ, but also provides less conservatism in stability criteria with improved
maximum upper bounds of time-delays.

In Theorem 2, advanced method for finding stability criteria by AZEA was introduced. So, in Corollary 2, method for finding
stabilization criteria of closed-loop system (2) with AZEA will be introduced.

Corollary 2: For given any scalars �1, �2, positive scalars ℎ and �, system (2) is asymptotically stable for 0 ≤ ℎ(t) ≤ ℎ and
ℎ̇(t) ≤ �, if there exist positive-definite matrices R̃ ∈ S5n+ , Ñ ∈ S6n+ , G̃ ∈ S5n+ , Q̃ ∈ S2n+ and positive-definite diagonal matrix
Θ ∈ Sn+, symmetric matrices P̃i ∈ Sn(i = 1, 2), S̃i ∈ S6n(i = 1, 2) any matrices X ∈ Rn ×n, Y ∈ Rm ×n, F̃i ∈ R6n ×6n(i = 1, 2)
satisfying the following LMIs with (36) and (37):

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Γ⟂[ℎ(t)=0])
T Φ̃[ℎ(t)=0]Γ⟂[ℎ(t)=0] (Γ⟂[ℎ(t)=0])

T

⎧

⎪

⎨

⎪

⎩

[e1, e2, e4]
⎡

⎢

⎢

⎣

XTET
s + Y

TET
u

XTET
d

0n

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

[EsX + EuY , EdX, 0n]
⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

Γ⟂[ℎ(t)=0] −Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (50)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Γ⟂[ℎ(t)=ℎ])
T Φ̃[ℎ(t)=ℎ]Γ⟂[ℎ(t)=ℎ] (Γ⟂[ℎ(t)=ℎ])

T

⎧

⎪

⎨

⎪

⎩

[e1, e2, e4]
⎡

⎢

⎢

⎣

XTET
s + Y

TET
u

XTET
d

0n

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

[EsX + EuY , EdX, 0n]
⎡

⎢

⎢

⎣

eT1
eT2
eT4

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

Γ⟂[ℎ(t)=ℎ] −Θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (51)

where

Φ̃[ℎ(t)] = Ξ̃[ℎ(t)] − Ξ̃5.

Proof. Similar with (46) in Theorem 2, inequality (41) from Corollary 1 is equivalent to

Φ̄[ℎ(t)] + ΓT[ℎ(t)]Ψ
T + ΨΓ[ℎ(t)] + Ξ11 < 0, (52)

where

Φ̄[ℎ(t)] = Φ[ℎ(t)] − Ξ6 − Ξ7 + Ξ9 + Ξ10.
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Like the processes of (42), (47) and (48), following inequalities are derived as

Φ̃[ℎ(t)=0] + ΓT[ℎ(t)=0]Ψ̃
T + Ψ̃Γ[ℎ(t)=0] +

[

e1, e2, e4
] [

EsX + EuY , EdX, 0n
]T Θ−1

[

EsX + EuY , EdX, 0n
] [

e1, e2, e4
]T < 0,

(53)
Φ̃[ℎ(t)=ℎ] + ΓT[ℎ(t)=ℎ]Ψ̃

T + Ψ̃Γ[ℎ(t)=ℎ] +
[

e1, e2, e4
] [

EsX + EuY , EdX, 0n
]T Θ−1

[

EsX + EuY , EdX, 0n
] [

e1, e2, e4
]T < 0.

(54)

And then, by using the Lemma 4 with 0 = Γ[ℎ(t)]� (t) following inequalities can be obtained as

(Γ⟂[ℎ(t)=0])
T
(

Φ̃[ℎ(t)=0] +
[

e1, e2, e4
] [

EsX + EuY , EdX, 0n
]

Θ−1
[

EsX + EuY , EdX, 0n
]T [e1, e2, e4

]T
)

(Γ⟂[ℎ(t)=0]) < 0,

(55)
(Γ⟂[ℎ(t)=ℎ])

T
(

Φ̃[ℎ(t)=ℎ] +
[

e1, e2, e4
] [

EsX + EuY , EdX, 0n
]

Θ−1
[

EsX + EuY , EdX, 0n
]T [e1, e2, e4

]T
)

(Γ⟂[ℎ(t)=ℎ]) < 0.

(56)

The other processes are same to the proof of Corollary 1 and Theorem 2, so it is omitted.

Remark 3: Different from Theorems 1 and 2, Corollaries 1 and 2 are related to design a controller gain for system (2). Unlike
the previous results, it is a first trial to design a controller for uncertain linear systems with time-varying delays via augmented
approach introduced in (54) and (54) where Γ[ℎ(t)] contains zero equalities generated from (22) and (27). By utilizing form like
Γ⟂[ℎ(t)], this Corollary showed that Finsler’s lemma can be applied in the closed-loop system which has feedback control gain K
and uncertainties. So applying AZEA for system stabilization gives advantages not only reducing calculating costs, also getting
improved stabilization criteria region in controller design.

To confirm the superiority and validity of the proposed methods, maximum delay bounds obtained in other literatures are
compared in next section.

4 NUMERICAL EXAMPLES

Example 1. Consider the system (1) under u(t) = 0 with following information

A =
[

−0.4 0
0 −1

]

, Ad =
[

−0.9 0
−1 −0.7

]

,

D =
[

1 0
0 1

]

, Es = Ed =
[

0.2 0
0 0.2

]

.

In Table 1, our results from Theorem 1 and Theorem 2 are compared with other literatures.30,31,32,33,34,35 Theroem 1, which
utilzed mentioned Lemmas and new zero equlity approaches with expanding augmented vectors, gives advanced results about
system (1). By applying Theorem 2, which is utilized AZEA, notable improvement in maximum delay bounds are given with
lower decision variables.
Example 2. Consider the system (2) with the following information,

A =
[

0 0
0 1

]

, Ad =
[

−2 −0.5
0 −1

]

, B =
[

0
1

]

,

D =
[

0.2 0
0 0.2

]

, Es = Ed =
[

1 0
0 1

]

, Eu =
[

0
0

]

.
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TABLE 1 Comparison of ℎ with the condition about � = unknown(Example 1).

Method ℎ

Jiang30 0.9442
Ramakrishnan31 1.0571
Ramakrishnan32 (N=2) 1.1030
Zhang33 (N=2) 1.3213
He34 1.4127
Kwon35 1.4209
Theorem 1 1.4270
Theorem 2 1.6720

*IN=Iteration num.

0

0.5

0.5

h

1.5

1

2

1
0

1

1.5

0.5

0
-0.5

-0.5
0

0.5

1

1.5

0

0.5

0.5

h

1.5

1

2

1
0

1

1.5

0.5

0
-0.5

-0.5
0

0.5

1

1.5

FIGURE 1 Contour figures of Table 1(left), Table 2(right).

TABLE 2 Comparison of ℎ with the condition about Corollary 1 (Example 2).

�1∖�2 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.6 0.657 1.114 1.457 1.393 1.317 1.240 1.166 1.097 1.032 0.972
-0.3 1.021 1.416 1.528 1.552 1.543 1.517 1.480 1.437 1.390 1.341
0.1 0.621 0.888 1.187 1.353 1.452 1.509 1.540 1.551 1.549 1.538
0.2 0.490 0.759 1.082 1.272 1.392 1.468 1.515 1.541 1.551 1.550

The value of ℎ is highest when �1 = −0.3, �2 = 0.6

In the past studies18 35, finding proper � scale was limited in positive region. But we don’t have to be limited positive region by
giving more free-weighting with matrices X1, X2, X3. Table 2 and Table 3 show the results of comparing maximum delays
bound ℎ by scaling �1, �2 with choosing � = 0 in Example 2. And the best result ℎ is 1.553 with �1 = −0.3, �2 = 0.6 with
choosing � = 0 when utilize Corollary 2 in Example 2. Table 4 shows the comparison of the controller gains K with their
maximum delays bound ℎ by choosing � = 0, 0.5 and unknown. From the results, Corollary 2 which utilized AZEA provides
more improved results than those of the works lists in Table 4. Furthermore, effectiveness of the controller gains by Corollary
2 is proved by simulation result in Figure 2 with the maximum delays bound ℎ = 1.552 under � = 0.5 and time-varying delays
are assumed to be ℎ(t) = 0.5cos(t) + ℎ − 0.5 in Figure 2.
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TABLE 3 Comparison of ℎ with the condition about Corollary 2(Example 2)

�1∖�2 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.6 0.657 1.114 1.460 1.393 1.317 1.241 1.164 1.099 1.035 0.975
-0.3 1.021 1.418 1.529 1.553 1.541 1.518 1.481 1.438 1.391 1.343
-0.1 0.982 1.184 1.390 1.490 1.533 1.552 1.548 1.531 1.505 1.475
0.1 1.113 1.324 1.472 1.533 1.552 1.547 1.526 1.495 1.459 1.418

The value of ℎ is highest when �1 = −0.3, �2 = 0.6

TABLE 4 Upper bounds of time-varying delays and controller gains
when � = 0, 0.5 and unknown (Example 2).

Method(� = 0) ℎ Controller gains

Wu36 0.6548 [-24.5739 -17.6699]
Li37 0.84 [-34.72 -18.41]
Dey38 (IN=150) 0.9 [-27.367 -26.249]
Lee18 0.9949 104×[-2.32 -0.85]
Kwon35 (� = 1.3) 1.5500 105× [-2.1061 -0.6915]
Corollary 1 (�1 = −0.3, �2 = 0.6) 1.5500 105× [-1.1892 -0.3902]

1.5524 105× [-4.7968 -1.5730]
Corollary 2 (�1 = −0.3, �2 = 0.6) 0.9 [-155.1987 -9.0114]

1.5500 105× [-1.1935 -0.3916]
1.5531 105× [-9.8494 -3.2294]

Method(� = 0.5) ℎ Controller gains

Fridman7 0.4960 [-0.34 -5.168]
Alpaslan39 (IN=54) 0.6000 [-9.5735 -2.9742]
Dey38 (IN=54) 0.7 [-4.8123 -7.2495]
Lee18 0.9847 104×[-6.83 -2.48]
Kwon35 1.5290 105×[-2.1146 -0.6881]
Corollary 1(�1 = −0.3, �2 = 0.6) 1.5290 104×[-4.0522 -1.3214]

1.5401 106×[-1.1388 -0.3704]
Corollary 2(�1 = −0.3, �2 = 0.6) 1.5290 103×[-4.4800 -1.4774]

1.5524 105×[-4.9029 -1.6078]

Method(� = unknown) ℎ Controller gains

Kwon35 1.4623 106×[-1.5494 -0.5123]
Corollary 2(�1 = 0, �2 = 1.2) 1.4623 104×[-1.7081 -0.5798]

1.5421 105×[-9.1869 -3.0322]

*IN=Iteration num.
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FIGURE2 The trajectories under valueℎ, �, ℎ(t), K :ℎ=1.552,�=0.5,ℎ(t)=0.5cos(t)+ℎ−0.5, Control gainK=105×[-4.9029
-1.6078]. (Example 2, Corollary 2)

5 CONCLUSIONS

In this paper, the LKFs methods and LMI frameworks for stability and stabilization problem about uncertain linear systems with
time-varying delays were proposed. In Theorem 1 and Corollary 1, AFII and ERCA are utilized. And the sufficient stability
and stabilization conditions were derived by applying the proposed methods and constructing the appropriate augmented LKFs.
By AZEA with Lemma 4, Theorem 2 and Corollary 2 derived advanced conditions for guaranteeing the asymptotic stability of
system (1) under u(t) = 0m×1 and stabilization of system (2). The effectiveness and superiority of proposed results were proved
though numerical examples by comparing with previous works. Based on the proposed methods, expanding and applying the
proposed methods will be focused on other systems like nonlinear40 41, sampled data systems42, switched system43, and Neural
network44 and so on.
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