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1. Introduction 

In this pandemic decade, the need for fractional modeling as the generalization of the classical differential 

equation of integer order has achieved great attention in the research field, which is feasible with the help of fractional 

calculus. The fractional derivatives play a vital role in the historic study of differential modeling. It is well known that 

fractional differential equations (FDEs) have applied to describe a large number of physical nonlinear phenomena in 

diffusion, solid mechanics, wave propagation, signal processing, optics, statistics, neural network, bioengineering, 

polymer science and other scientific research areas [1, 3, 4, 10, 18, 19, 39]. The main framework of evaluating FPDEs 

is to search for exact and approximate solutions of problem, which has been a great task for mathematicians. In order 

to find exact and approximate solutions of PDEs, researchers projected distinct methods such as the sine-cosine 

method, tanh method [6], reduced differential transform method [7, 8], homotopy analysis [18, 40], Lie symmetry 

analysis [9, 31,32, 33, 47] and variation Iteration method [20] etc. 

Lie Symmetry Analysis [2] is powerful tool to generate explicit solution by reducing the given system of FPDEs 

into a nonlinear system of FODEs with EK fractional differential and integral operators. The Lie symmetry analysis 

method is to find continuous transformations of one or more parameters leaving the differential equation invariant in 

the new coordinate system wherein the resulting differential equation is easier to solve. Authors [5, 11-17, 21-26] 

explained the applications of Lie symmetries to the time fractional KdV equation and concluded that the fractional 

order differential equations can be transformed into FODEs by introducing new independent variable. Sneddon [27] 

introduced the applicability of EK fractional order operators which helps us to reduce the considered system into 

fractional ODEs and Huang et. al [28] emphasized the efficiency of Lie symmetry approach analysis of Harry-dym 

equation with Riemann Liouville derivatives. Authors [29, 45] also made a complete group classification of fourth 

and the fifth order KdV equations. Chauhan el al. [34] presented the Lie symmetry analysis and explicit series solution 

to the Date–Jimbo–Kashiwara–Miwa equation. Singla and Gupta [35] extended the symmetry approach from single 

time FPDEs to nonlinear system of time FODEs. Noether’s theorem [30, 36, 37, 38] established a relation between 

conservation laws and symmetry of differential equations and applied on FPDEs without Lagrangian operators. 

The coupled Hirota-Satsoma fractional order system is explained to study the flow of fluids in power system and 

extended the study of the propagation of shallow water waves. The Lie symmetry invariant analysis and conservation 

laws have made progress in FPDEs still the research field for coupled KdV fractional order system is not well exposed. 
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This system was proposed by Hirota and Satsoma to describe the relation between long waves with distinct dispersion 

interactions and its generalized behavior has led to relevance in various branches of applied mathematics and time 

fractional HSC-KdV system has been studied by using various methods [41-44]. The focus of this article is to 

investigate fractional order Lie symmetry analysis and new conservation laws via Noether’s theorem for coupled time 

fractional HSC-KdV system [24] of fractional parameter ' ' . 
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The article is summarised as follows: in section 2, we recall some concepts and fractional order derivatives and 

integral operators. In section 3, we discussed the Lie symmetry scheme and obtained infinitesimals and infinitesimal 

generators of set of equations (1). By the application of EK fractional operators, conversion of FPDEs into FODEs 

have been suggested in section 4 and in section 5, the power series expansion method is used to find the explicit 

solution of system (1). Section 6 and 7, dealt with convergence analysis of the solution and conservation laws of the 

system; respectively. Finally, section 8 concludes the article. 

2. Preliminaries: 

In this part, we would like to explain certain needful definitions for the sake of understanding the methodologies 

and concepts, concerned with fractional order derivatives and integrals and their applications in fractional calculus. 

 

Definition 1 The Caputo explained the fractional order derivative of function F(t)as 
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Definition 2 The RL derived the definition of fractional order derivative of F(t) as 
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Definition 3 Let the function ),( txu with variables ‘x’ andt> 0then RL fractional partial order derivative is proposed 

as 
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Definition 4 The Leibnitz described the product rule under application of RL fractional order derivatives in the form 
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Definition 5 The E-Kober generalized fractional differential operator ( ) )(
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Definition 6 The E-Kober generalized fractional order integral operator ))((
,




K is 
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3. Methodology: 

 

In this section, we would like to pursue the steps and process of fractional Lie symmetry reduction to coupled 

time fractional system of FPDEs. Initially, Sophus Lie established the applications of Lie groups and symmetries in 

solution of ODEs. He remarked that Lie transformation maps every solution of system to other solution of same system 

and nowadays mathematicians worked on application of methodology on PDEs, FPDEs and system of linear and 

nonlinear FPDEs. 

 

Let us assume the system of FPDEs with fractional order ' '  
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The infinitesimal transformations with single parametric notation in fractional Lie symmetry analysis is expressed as 

2

2

2

2

2

( , , , , ; ) ( , , , , ) ( ),

( , , , , ; ) ( , , , , ) ( ),

( , , , , ; ) ( , , , , ) ( ),

( , , , , ; ) ( , , , , ) ( ),

( , , , , ; ) ( , , , , ) ( ).

t t x t u v w t x t u v w o

x x x t u v w x x t u v w o

u u x t u v w u x t u v w o

v v x t u v w v x t u v w o

w w x t u v w w x t u v w o

  

  

  

  

  

 = = + +


= = + +


= = + +

= = + +

= = + +






   (10) 

The vector field generated by infinitesimals is taken as 
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Here ξ, τ, η, φ and μ are obtained infinitesimals operators from (11), ηɵ,t, φɵ,t and μɵ,t are the fractional extended 

infinitesimals of order ‘α’ and ηx, ηxx, ηxxx, φx, φxx, φxxx, μx, μxx, μxxx are extended infinitesimals of integer-order described 
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where ‘Dx’is total derivative operator defined as 
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The extended infinitesimal function of  -th order (
,t ) concerned to RL fractional derivative is describedby 
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Applying the generalized Liebnitz rule on (15), we obtain 
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Finally, the expression for ɵ-th order extended infinitesimal 
,t of the form 
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Similarly, expressions for
,t and 

,t also obtained. 
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

xtt

t
v

n
t

u
tt

w

v
v

u
u

w
tv

t

wDD

vD
t

uD
t

wDD
t

t
v

t

v

t
u

t

u

t
w

t

w
D

t

 (21) 

where 
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
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
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
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
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)()(
)1(!

)()(
)1(!

)()(
)1(!

)()(
)1(!

)()(
)1(!
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0
9

2 2 2
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0
8

2 2 2

1

0
7

2 2 2

1

0
6

2 2 2

1

0
5

2 2 2

1

0
4

  (22) 

Whenever η, φ and μ are the linear functions of u, v and w respectively expressions
i

 ; i=1, 2, 3…9 given by (18) 

and (22) vanishes. 

 

4. Invariance Analysis of Time Fractional generalized Hirota-Satsuma coupled KdVsystem: 

Applying prolongation on system of equations (1) the invariance criterion obtained  

,

,

,

1
3 3 3 6 6 0,

4

1
3 3 0,

2

1
3 3 0.

2

t xxx x x x

x x

t xxx x

x

t xxx x

x

u u v v

u v

u w







      

   

   

− − − − + + =

+ + + =

+ + + =

  (23) 

Using (16-22) in (23) and takingall the coefficients of ‘u’ and its derivatives to zero, the set of determining equations 

for 0 1  can be obtained. On solving PDEs and FDEs, the infinitesimal symmetry generators [24] are given 

below. 

13
; ; 2 ; 2 ; 4 ,

pt
px q pu pv pw r t    



−= + = = − = − = − +  (24) 

where p, q and r are arbitrary constants.  

The symmetry generators to form a lie algebra of Eq. (24) are found as: 

1

1

2 3

3
2 2 4 ,

; .

x t u v w

x w

t
X x u v w

X X t


−

=  +  −  −  − 

=  = 

   (25) 

Now characteristic equations formed with respect to the vector field X1 are as follows: 
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.
3 2 2 4

dx dt du dv dw

x t u v w


= = = =

− − −
   (26) 

The similarity transformations with similarity variable ‘ ’ formed from (26) is 

2 2 4

3 3 3 3( ); ( ); ( ); .u t F v t G w t H xt
   

   
− − − −

= = = =   (27) 

In this part, we carried (27) along with HSc-KdV system (1) and EK differ-integral operators (6-7) with formal 

calculations to convert the system (1) into FODEs. 

The similarity transformations are 

/3 2 /3 ( ).xt and u t F  − −= =    

 (28) 

RL definition of time fractional order treatment for similarity transformation is 

1 2 /3 /3

0

1
( ) ( ) .

( )

t

t tD u D t s s F xs ds     

 

− − − −
 

= − 
 − 

    (29) 

Substituting 1−= ts in (29), we get  
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
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


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
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−
= 


−

−

−−

1

2

3/

3/2
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  (30) 

  
















−
−

= 

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3/)3/51(1
3

5

)()1(
)(


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


 dF
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(31) 

The definition of EK integral operator reduced (31) into 





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

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
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),0(',3/ = − CFxtas  then )(
3

)(
3

)(
1

3 
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


 


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   (33) 
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  (34) 
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1 )
33

5
(     (35) 

Repeating above arguments (λ-1) times, to generate 



8 

 

)()(
33

5
1

,
3

5
1

/3
3

5
,

3

2
1

/3

1

0

3/4
,

3

2
1

3
3

5












































=






















−−+=



























 −−−−−

=

−
−−−
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)(
,

3

5
1

/3
3

5


















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


=

−−

FEtuDt
     (37) 

Similarly, proceeding above steps (29-37) on distinct transformations. 

From similarity transformations )(. 3/23/   Gtuandtx −− == , we obtain 

)(
,

3

5
1

/3
3

5





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











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      (38) 

From similarity transformations )(. 3/43/   Htuandtx −− == , we obtain 

)(
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7
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3

7



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











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


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GEtwDt
     (39) 

Using above obtained similarity transformations and (37-39), we formed a set of nonlinear system of HSc-

KdVFODEs. 


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
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



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
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




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
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
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)(
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)(

)('3)(')(6)(').(3)('''
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)(
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3

7
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5
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/3

,
3

5
1
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
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





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




HFHGE

GFGGE

HGGFFFFE

  (40) 

5. Construction of explicit solution 

Now, we shall obtain explicit solutions for coupled time fractional HSC-KdV system (1), by applying the power 

series expansion technique on set of equations (40), we set 




=



=



=

===
000

)()(;)(
n

n

n
n

n

n
n

n

n cHandbGaF     (41) 

where 
nnn

candba , are constants to be find later after necessary calculations. Now substitute (41) in the set of 

equations (40), we get 
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Putting n=0 in (42), we obtain 
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And comparing the coefficients of 
n in (42), to get 
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The exact explicit solution by using above set of equations (59-62) simultaneously 
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6. Convergence Analysis 

In this part, we will discuss the convergence of obtained power series solution. Consider equations (44-47) 
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where M1¸M2 and M3 are maximums of the arbitrary coefficients involved in set of equations (49). Now we introduce 

some another power series 
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It is easily seen that , , , 1,2,3...i i i i i ia p b q c r i   = then 
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Assuming the implicit function system with independent variable χ 
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Here P1, Q1 and R1 are analytic in a neighborhood of (0, p0), (0, q0) and (0, r0) respectively, where P1(0, p0) = 0; 

Q1(0,q0)= 0 and R1(0, r0) = 0 and 0)),0((0)),0((;0)),0(( 010101 













rR

R
andqQ

Q
pP

P
then by Implicit function 

theorem[40], we reached at convergence of power series solution. 

7. Conservation laws 

In mathematical and physical point of view, conservation laws play most important role in analysis of existence, 

stability and uniqueness of solutions of fractional and classical PDEs. To obtain the conservation laws of system of 

FPDEs, generalization of Noether’s theorem suggested by Ibragimov [38]. The conservation laws in fractional system 

is almost similar to classical order system. These conservation laws can extend to fractional system as explained in 

[35-37] for convenience of readers. 

Let us define the conserved vector for coupled HSC-KdV system of fractional PDEs 

( , ),t x  =      (54) 

 with 
x and 

t  are components of vector, known as conserved flux and density functions of variables x, t, u, v, w 

and partial derivatives of u, v, w, which satisfy continuity equation 

( ) ( ) 0,t x

t xD D + =      (55) 

where Dtand Dx are total derivatives with variablest and x. 

Let us define the formal Lagrangian of system (1) with A, B, C as new dependent variables of x and t. 

)3
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()363

4

1
( xxxxtxxxxtxxxxxxt uwwwCuvvvBwvvuuuuA +++−++−+−−=   (56) 

The adjoint system of (1) given as 

0, 0, 0,
u v w

  

  
= = =     (57) 

with Euler-Lagrange operators for u, v, w is given by 

*( ) ,
( )

t x xx xxxi i i i i i

t x xx xxx

D D D D
u u D u u u u









    
= + − + −
    

 (58) 

where *)( 
tD represents the adjoint operator to 

tD , which is defined in right-sided Caputotime-fractional derivative of 

order ' ' as 

 +=−
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n

uDD 1][;),()(
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   (59) 

Using equations (54-59), we obtained the adjoint system of equations of system (1) 
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Now, the components of conserved vector are given by the following expressions 
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here tjxjjj uuW  −−= ,  is defined above in (61) and I is integral defined as 
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For symmetry generator X2 we have W1= -ux, W2= -vx and W3 = -wx and calculated components of the conserved vector 

‘λ’ with the help of (61)  
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characteristic functions and components of the conserved vector ‘λ’ with the help of (61-62)  
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8. Conclusions 

In this work, we performed the application of the fractional Lie symmetry reduction analysis to the time fractional 

HSC-KdV system. By symmetry, we determined the vector field corresponding to the system of equations and reduced 

it into FODEs. Further, we have treated the system of reduced FODEs with EK differential and integral operators and 

found the explicit solution by using the power expansion technique. Sequentially, the convergence of the power series 

solution is analyzed and concluded that the combination of the two techniques has achieved better results and could 

be applied to fractional fluid dynamical problems. Finally, pointed out the importance of conservation laws of time 

fractional HSC-KdV system with the use of Noether’s theorem. 
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