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Summary

In this paper, an output-based event-triggered control problem of discrete-time
networked control systems (NCSs) subject to bilateral data packet dropouts is inves-
tigated. In view of the stochastic sequences of packet dropouts in measurement
channels (from sensors to controller) and control channels (from controller to actua-
tors), the NCS is converted into a closed-loop stochastic parameter system. In the aid
of a Lyapunov functional based on stochastic variables, sufficient conditions on co-
design of event-triggering strategy and exponentially mean-square stability of NCSs
are derived. Furthermore, an improved iterative algorithm is given to obtain the
dynamic output feedback control law and event-triggering parameters from the non-
convex inequalities. Finally, a numerical example and the corresponding simulation

results are given to show the validity and applicability of the developed techniques.
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1 | INTRODUCTION

Networked control system (NCS) itself is a dynamic control system for data transmission through wired or wireless communica-
tion channels2, Due to its advantages of low cost, easy installation and maintenance, NCSs have been widely applied in many
fields in the past decade, such as electronic information, industrial manufacturing, etc. Nevertheless, control tasks of NCSs often
need to rely on unreliable networks for information transmission”. Therefore, solving the problem of limited communication
resources and packet dropouts is one of the major contents in this field of NCSs.

To deal with the problems of communication channel congestion and limited network resources in NCSs, the event-triggered
control mechanism (ETM) is investigated instead of the time-based sampling strategy. Recently, the ETM has attracted a great
deal attention in the field of control theory. The idea of ETM is that the data transmission and updates are allowed only when
satisfying the triggering conditions based on states and measured outputs“*>. This control approach essentially solves the problem
of excessive resource consumption and strikes a balance between resource conservation and control performance. Notice that
the ETM actively loses some unnecessary information at the expense of system performance®, in which case the packet dropout
behaviors in unreliable networks further deteriorate the performance and can even lead to instability”®. The methods of handling
stochastic data losses are generally classified into four categories. The first one is to model a system with data packet losses by
using the Markovian jump system®. In the second method, the packet loss behaviors are describes by the independent Bernoulli’s
distribution random variables'. Furthermore, the dropouts are considered as a special case of time-delay. The final approach is

that packet losses can be researched by methods of switched systems'-..
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On the other hand, since data packet losses are caused by bandwidth limitation and network congestion, the ETM can effec-
tively alleviate network congestion and thus reduce the probability of packet losses in realistic networked systems' 23, Therefore,
there are existing some research results in the synthesis and analysis of ETM and packet loss. To investigate the influence of
these challenges on system performance'#, the packet dropout behavior is described by a random variable with Bernoulli binary
distribution. For a discrete-time linear system, an event trigger located at the sensor and the controller with one-side data packet
losses is designed”. For multiple systems sharing a common wireless communication network, The design of event-triggered
control law and one-side data packet loss behaviors are considered''®. Building upon the aforementioned works of unilateral
packet dropouts, this paper investigates stability of NCSs with ETM subject to packet dropouts in both measurement channels
and control channels.

In most of the researches mentioned above, the state-based controller has a strong assumption that the state information must
be available because the control strategies rely on the availability of full state information. This is in general a strong assumption
as full state measurements are rarely available. However, it is difficult to accurately obtain the state information in practice/18,
Therefore, this paper designs a dynamic output feedback controller since the output is observable. Furthermore, the fact that the
controllers and actuators can operate synchronously is often assumed in many existing results, in which the effect of network
induced error is ignored. Inspired by the finite-time asynchronous output feedback control scheme'’?, the ETM in this paper can
admit asynchronous transmission, and transmission error is induced to detect the triggering conditions.

In this paper, the problems of stabilization and controller design for discrete-time NCSs subject to bilateral packet dropouts
with ETM are investigated. The main work and contributions of this paper are summarized as follows:

(i) This paper mainly focuses on bilateral unreliable networks in which packet dropouts occur in both measurement channels
and control channels. We model a closed-loop stochastic parameter system in terms of random packet dropout behaviors
with Bernoulli’s distribution.

(i1) Since full states of a system are generally not available, we design an output-based controller and event-triggering con-
ditions. Some sufficient conditions and results will be obtained via a Lyapunov functional with stochastic parameters to
ensure that the NCSs are exponentially mean-square stable.

(iii) It is one of the challenges to design a desired dynamic output feedback controller in this paper. Therefore, an improved
iterative algorithm is proposed to solve the nonconvex optimization problem with the matrix inequality constrains. The
algorithm effectively reduces the conservatism compared with the griding approach and matrix transformation.

This paper is organized as follows: Section 2 will formulate the problem. In Section 3, some stability results will be given,
and an optimizationwill solved by an iterative algorithm to obtain control law and event-triggering strategy. Numerical examples
and simulation results are presented in Section 4. Finally, the conclusion of this paper will be illustrated in Section 5.

Notation: The notation R" refers to the n-dimensional Euclidean space. The notation N € N, refers to the one-dimensional
positive integer set. Some of the symbols will be reinterpreted where appropriate in this paper. The matrix A > 0 (= 0)
denotes that A is a real positive definite (semi-positive definite) matrix. The notation diag(A) means that matrix A is in block-

diagonal form. The notation ||x|| stands for the Euclidean norm of vector x. The notation ||A|| refer to the matrix norm of

matrix A calculated by || A = mjax % |a,. j’, where a;; is the i" row and j™ column element of matrix A. The vector (x, y, z) €

R™ x R" x R”: represents (x”, yT,lle)T. The notation E{x} is the expectation of the random variable "*". A,,;,(A) (4,,,,(A))

represents the minimum (maximum) of the eigenvalue of matrix A. Furthermore, a matrix [M N ] represents the symmetry
M QT]

QO N |

matrix [

2 | PROBLEM FORMULATION AND PRELIMINARIES

Consider the following plant described by a discrete-time system

x(typ) = Ox(t)) +Tuy(t))
y(t) = Cx(ty) (1)
z(t,) = Dx(t;)
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FIGURE 1 The architecture of the NCS subject to bilateral packet dropouts with ETM

where x(¢,) € R” denotes the state vector, the vector u,(¢,) € R™ represents the control input with packet dropouts, y(t,) € R?
is the measured output vector and z(¢,) € R? is the system output vector. The matrices ® € R™", " € R™, C € R/,
D € R?" are appropriate coefficient matrices. We define the sampling instant ¢, and the transmission instant ¢,.

The output-based controller of the NCS is considered by

{ xc(tk+1) = q)cxc(tk) + ch};(tk)
u(t,) = C.x(t)
where x, represents the controller states, )7; denotes the most recently available measured transmission signal to the controller,

u means the output of controller and @, I',, C, are corresponding matrices. The transmission signals y,(¢,) of the measured
outputs via the unreliable networks is described by

yd(tk) =(1- 5))’(tk) + 5yd(tk_1) 3)

where the output vector y,(t,) € R” also represents the available input signals to trigger. The stochastic variable 6 € {0, 1} is
an element of a random process obeying the Bernoulli’s distribution with

2

E{s} :=4, “
E{(6 — )%} :=6(1 - ). 5
Similarly, the transmission signals u, via the control channel can be described as
ud(tk) =(- ﬂ)u(tk) + ﬁud(tk_l), (6)
with
E(p} =4, @)
E{(f =7} := 1 = ). ®)

Remark 1. In the packet dropouts models (3) and (6) of these communication channels, 6 and f are random variables of
Bernoulli’s distributed white sequences. Take the measurement channels for example, 6 takes a value between "0’ and ’1°, where
6 = 1 means that data losses occur at the k" step, and 6 = 0 represents that data packets are successfully received. If current
dropout of data y(t,) occurs, i.e. § = 1, then the input of controller y,(¢,) takes the value of the data at the last value y,(¢,_,). For
the case of the successive packet dropouts, y,(t,) takes the previous value y,(#,_») without data packet dropouts, where N € N
is the number of consecutive packet losses. It can be illustrated as y,(¢,) = (1 =8)y(t;) +5(1 =8)y(t,_ )+ ...+ N (1 =8)y(t,_n)-
Similarly, § has the same conclusion.
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In view of (1), @). (3) and (6)), the augmented form of the networked system with stochastic parameters can be illustrated by

X(tyy)) = ffﬁ(zk) +Tu(,)
yd(tk) = _Ci(tk) )
z(t,) = DX(t,)

where X(t,) = (x(t,), ug(ti_1)s va(ti_y))s

® pro (I-pr
o= 0 g1 0| T=|a-prI
(1-6)C 0 &I 0

C=[1-8€C051],D=[D00]

Then we consider the following event-triggering condition:

55t = va@o| > o el (10)

where 0 € R™*. The transmission instant ¢, satisfies t,,; = t, + T, n € N,,, where T € [¢, ) (¢ > 0) denotes the fixed
sampling interval, i.e., T = t,,; — t,. Thus, it is obvious that the transmission time sequence {,} is a subsequence of the
sampling sequence {7, },i.e., {#;,} C {t,}. To exclude the Zeno-like behavior, we prescribe 7,,;,, < t,,; —#; < Tps47s> Where 7,
and 7, 4y, mean the minimal inter-event time (MIET) and the maximum allowable transmission interval (MATI), respectively.

Furthermore, one notices that j/;(tk) depends on the following event-triggering generator.

t,e{t:rk|)

P = { (@)  when C(P,(t;), y,(t)) >0 "

)A’;(tkq) when C(§,(1,), y,(,)) <0
where C(§y, v,) = [|94(t) — 4|l = o ||v4()||- In order to maintain the sustain action of the transmission, for the sake of
exposition, we give that y,(t;) = ﬁ;(tk_]) by means of zero-order-hold devices.

For the k" controller input, define the error variable as

et (1) = 95(t) — ya(tp), (12)

In the case of C(§,,y,) > 0, according to and (12), the equality y¥(t;) = y,(t,) holds and thus ||e*(1)|| = |17](1) —

¥4(t)l| = 0. In another case, one can obtain that [|e*(t,)|| = |195(t,) — v, = 1177t 1) = va@tI| < olly, (]| Hence,
the inequality always holds at the k™ step based on (L1)).

le*@oll < o [lya@o (13)

Remark 2. Notice that, for continuous-time NCSs, event-triggering conditions need to be designed to avoid Zeno behavior (i.e.,
there exists infinite transmission in finite time interval) by a strictly positive lower bound of the inter-event times. However, for
the discrete-time systems considered in this paper, Zeno behavior does not occur because transmission time instants can only
occur at periodic sampling points2Y2l, Therefore, the possibility of Zeno behavior is excluded in the event-triggering conditions
for the discrete-time systems.

Based on (9), (IZ) and (2)), the dynamic event-triggered controller is formulated as

X (ty)) = Dx,(t,) + T,CX(t,) + T et(ty) ”
u(ty) = C.x(t,)
Then, the closed-loop system in FIGURE [I_]is given by
tie1) = ®E(t,) + Ee*(t
¢tipr) : cty) () 15)
z(t,) = DE(1))

where £(t;,) = (X(#,), x.(t,)) is the augmented form of the state, and the coefficient matrices are denoted by

o

&::lqﬂmﬂ],ﬁ: 0 ,D=[D0]=[D000]
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Notice that the closed-loop system (I3)) consists stochastic parameters. In order to simplify the analysis, we consider the
parameter separation for the system (I5).
The coefficient matrices with random parameters in (9 can be separated to obtain the following results.

=0, +(f-HP, + (6 - 5D,
=0+ -HI, (16)
C=C +(6-6)C,

Thus, @ in (15) can be described by

=, + (- pd, + (6 - 5D, 17)

where L. Lo .
b= | PG| 5, = [¢2‘3€¥],é3= l s 0].

r.c, o, 0 0 r.G, 0

® Jro 0r 0

o, = 0 pI10|®=|010],

| (1-6)C 0 &1 000

[ 0 00 (1-pr -r
o, =| 0 00|.0,=|=-pr1|.0,=|-1].

| -co1 0 0

C,=[a-8Cc0éI],C,=[-Cc01]
On the basis of the above analysis, the closed-loop system (T3] can be further described as
E(tr) = @& + (B — PP (1)
+(6 — 8)D;£(t,) + Ee* (1)) (18)
z(ty) = Dé(tk)
Before proceeding the design of the dynamic output controller with ETM, the definition of exponentially mean-square stability

and some lemmas are first presented in the following, which will be used throughout this paper.

Definition 1. (Exponential mean-square stability)
Given a scalar p > O and 7 € (0, 1), the NCS is said to be exponential mean-square stable (EMSS) if the augmented state
of the system satisfies the following inequality without other disturbances.

e {llewl | < o€ { o} 19)
for all &(t,) € R¥™"+P k€ Z.

The following lemmas are also given for later use.

3 | MAIN RESULTS

In this section, a theorem addressing stabilization of NCSs with ETM subject to bilateral packet dropouts will be presented.
Lemma 1. %2 For any matrices X and Y with suitable dimensions, there is an inequality as follows.

Xy +YTXxX < XX +YTY (20)
Lemma 2. For symmetric matrix P > 0 and any matrices X and Y with suitable dimensions, there is an inequality as follows.

XTPYy +YT'PX <XTPX+YTPY 2))

Proof. Due to symmetric matrix P > 0, according to Cholesky Factorization in2?, there exists a lower triangular matrix L such
that P = LLT. Thus, by Lemma we have
XTPY +YTPX =(L"TX)TLTY + L"Y)TLTX
<ATXHTLTX+(L"Y)'LTY (22)
=X"PX+YTPY



6 LIET AL

O

Now, the following theorem is presented to provide an exponential stability condition in the mean-square sense for the NCS
(T8) with ETM subject to stochastic data losses.

Theorem 1. Consider the discrete system (T8 with the dynamic event-triggered controller (T4) subject to packet dropouts (3))
and @ The system is EMSS, if there exist scalars €, 0 € R, and f,6€(0,1)and a symmetric matrix P > 0 such that

—(1-¢)P * ok k%
\/EPCiDI —P % % %
VBA-pPd, 0 —-P % =x |<0 (23)
V(1 -5)Pd, 0 0 -P =

V2ePW 0 0 0 -P

where W = [EC, + V/5(1 - 8)EC,,0].
Proof. We now choose the quadratic Lyapunov functional as follows:

V(@) = &) PEt) (24)
where P > 0 is a symmetric matrix. Then, based on (I8) and (24), we have
V('f(tkﬂ)) = égT(tk)&)TP&)é(tk) + égT(tk)qBTPEe-'—(tk)

+etT(t ) ET PEe* (1) + e*T (1) ET POE(t,) 25)
Based on (ZI)), one can get
[DEt)) PEe* (1)) + [Ee*(1,)]" POE(t,) 26)
< ET(t )T POE(t,) + etT (1, )ET PEe* ()
Hence, (23) can be written as
V(&) < ET (1)@ POE(1)) @7
+ET (1, )®T POE(,) + 2e*T (1, )ET PEe* (1))
By resorting to (I3)), the following inequality can be obtained.
let @l <o llyatoll = o |[Cxa)|
- o (28)
=5 “(c1 +6(1 - 5)C2)x(tk)“
Then, we have
2¢"T(t,)ET PEe* (1) < X7 (1,)[26>CT ET PECIX(t,) (29)
Noting (3)) and (8), we can get
E{V (&t DIEE)Y = ET (1) PER) + E(E) (30)

where P := ®T P®,+p(1-p)®! PO, +5(1-5)®L Pd3, 5 1= &7 (1)@ PEe* (1)) +e™ (1) ET PD &(1))+e*T (1) ET PEe* (1)),
W =[EC, + V(1 = $)EC,,0],
E{E} <E(E" (kDT PD &(t,) + 2¢™T (1) ET PEe* (1))}
< E{&7(1)@T P &(ty) + 207X7 (1,)CT ET PECX(1,))
= & ()T Pd &(1,) + 26737 (1)[CT ET PEC,
+5(1 —~5)52T~ ETPEC,)%(t,)

= (1 )(DT PO, + 26°WT PW)E(t))

In view of the scalar € > 0, we have

E{VEt))IE@)} — A -V (E)

AT 31
< E(t[®T PD, + P +20°WT PW — (1 — €)PIE(1)) @D
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Furthermore, the condition (23) is given as follows

E{V @ )IEE)} — (1 =)V (&) <0 (32)
According to (31)) and (32), it yields the following inequality
E{V(E(k+ 1)IEE)} = V(ER)) < —eV(£(1,) <0 (33)

Let A :=28T PO, + f(1 — p)®I PD, + 5(1 — 5)® PD; +26>WT PW — P, and then ithas A < —¢P < 0.
Thus, we know that
E{V (Wt )IEE)) = V(E®) < ET(1)NE®,)

< = Apin(=NET @ )E,) < —pET (1,)E(T,) (34)
<=LV W) 1= -0V (Et)

where p € [0, min{—2,,,(=A),{}], { = A,,,.(P).
After completing the k' iterative operation, it obtains
E(V(Etu))IET)} < (1= 0)V (&) (35)

By Definition [} we can conclude that the closed-loop system (I8) is EMSS.
By Schur-Complement, reorganizing condition yields

20°WTPW —(1 —e)P * ®

V2o, P % *

VB - pd, 0 —-P!' =«
\/md% 0 0 -pP!

Using Schur-Complement again, (36) is equivalent to

[ —(1—-¢)P * * * *
\/ECBI -Pl o« * *
VBA=pd, 0 -P1 % % |[<0 37

Vé(l=6)d; 0 0 —-P! =«
V2ew 0o 0 0 -pP!
Pre-multilying/post-multiplying by d_iag{ I,P,P,P, P} and its transpose gives
[ —(1-¢o)P k k ok k|

<0 (36)

\/EPCIB1 —P % % %
VBA-pHPd, 0 -P % * |<O0 (38)

Vé(1=6)Pd, 0 0 —P =

V2ePW 0 0 0 -P

Therefore, it is not hard to conclude that if there exists a symmetric matrix P > 0 such that holds, then we have (33), i.e.
the closed-loop system (I8) is EMSS. This completes the proof. O

Remark 3. From the above proof process, when the (32) is satisfied, the system is exponentially stable. Since there are coupled
variables in constraint (32), we cannot solve controller parameters directly by the linear matrix inequality (LMI) toolbox. There-
fore, the transformation of the nonconvex inequality into the convex matrix inequality is firstly considered by the methods of
Schur-complement and matrix operation.

Remark 4. Note that in the Theorem m CTD,. (i = 1,2,3) and W contain unknown parameters of the controller from 1| In
this case, the constraint l) is a nonlinear matrix inequality with the character of bilinear terms due to the terms ﬁDITP, CT%P,
5)3TP, and WT P. In general, we can solve the controller parameters of a linear matrix inequality via formulating the subsequent
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optimization problem where ¢ = 2n 4+ m + p.
min
AER,®;, PER1, W €Rax(r+mtp)
st. BE-Y<L1tl,
e>0,P>0

where E(®,.T,.C,., P) = 20T P®, + (1 — p®] PO, + 5(1 — 5)®I Pd; + 26°W' PW, Y(®,.T,.C,.€,P) = P + P,
and the terms (i>3TP and WT P contain coupled variables difficult to decouple variables by matrix transformations. In this case,
the optimization problem (39) can be split into two optimization sub-problems with linear inequality constraints, and then the
optimal solution is solved in terms of an iterative algorithm. Inspired by the Rank Minimization Problems“# and LMI gridding
approach??, the iterative procedure is formulated in Algorithm |1} The optimal solution of the dynamic controller parameters
can be obtained via this iterative algorithm.

(39)

Algorithm 1 The iterative matrix inequalities procedure.

: Initialize: P = Py, i =1,

1
2: the initial scalars o, f, 0, € = g,

3: the initial matrices ®, = @, I', =T, C, = C,,.

4: while ¢,,, >0andi < M do

5 g2, I,.C..¢) = 2d~)1TPd~>, + (1 - E)&)?PQNDZ +6(1— 5)d~)3TPd~>3 +26*WTPW
6: Y(®,,I',C,e)=€eP+ P

7: Establish an auxiliary convex optimization problem

8: mints.t. 2(®,,I',,C,,e) - Y(®,,I',,C,,e) <tI

9: Solve for the global optimal solution (®,,I",,C,,€) and t,,,,

10 Update t,,,,, ®,.,I',, C,, €

11 i=i+1

12: whilez,,, > 0do

13: if € < 0 then

14: E=—€

15: end if

16: E(P) =287 Pd, + f(1 - p)®I PD, + 5(1 — 5)D! PO, + 26°WT PW
17: Y(P)=¢P+ P

18: Establish an auxiliary optimization problem

19: min ¢ s.t. 2(P) — Y(P) <tl
20: Solve for the global optimal solution P, t,,,,
21: Update #,,,,,, P.
22: i=i+1
23: end while

24: end while
25: return @, I",, C..

4 | ILLUSTRATIVE EXAMPLES

In this section, an illustrative numerical example will be presented to demonstrate the effectiveness of the developed method.
Consider the discrete-time system

1.0018 0.01 0.8
M) = [ 0.036 —0.18] Xt + [—0.5] ta(ti) 40)

¥t =[1.6 —=1.2] x(t,)
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In the simulation, we set the average packet dropout rates f# = 0.05, § = 0.05 and the threshold parameter of event-triggering
condition ¢ = 0.1. According to Algorithm 1, the optimization problem is solved and the optimal controller parameters

. -0.2469 0.6091 -0.9374
are obtained as & = 0.5375, @, = | "' _0_2640], .= [_018342 and C, = [-0.2167 0.6387 |. The model of the

closed-loop networked system with the ETM is set up by the Simulink, and the packet loss sequences are generated at randomly
according to the given average packet loss rates. The simulation time-stepped size is set as T = 0.01s.

The obtained state responses for the system are shown in FIGURE[2] It can be seen from the curves that the system (@0) is
stabilized under the designed controller. The corresponding sequences of the data packet dropouts in the measurement channel
and control channel are depicted in FIGURE [3 | FIGURE [ | shows the output responses of the closed-loop system with
event-triggered controller subject to packet dropouts. The current output of ETM y7*(z,) takes the value of the previous one
§*(1,_,) when there are merely subtle changes between them. The packets via the measured channels are updated according to
the event-triggering condition, and the updated transmission signals serve as the inputs of the controller.
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FIGURE 2 The state responses for closed-loop system with ETM and packet dropouts.
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FIGURE 3 The data packet dropouts in the measurement channels and control channels with dropout rate: 6§, = 6, = 0.05.

In order to illustrate the impact of packet dropouts on system stability, we consider the redesign of the controller by adjusting
the packet loss rate. By solving the optimization with § = 0.05,0.1,0.25,0.28, and é = 0.05,0.1,0.25,0.28, respectively,
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FIGURE 4 Trajectories of the output responses of the closed-loop system.

the corresponding solutions are obtained and shown in TABLE When § = 0.28 and 6 = 0.28, the optimization does
not have any feasible solution. Thus, it can be seen from the results that packet dropouts phenomenon has significant impacts
on the stabilization of the NCS. Specifically, the higher the probability of data losses in the network channels, the worse the
stability of the system, and more difficult to find feasible solutions for the optimization of the design controller. Furthermore,
the feasible controller parameters cannot be available when the packet loss rate is above a certain threshold.

TABLE 1 The results of the optimization by giving different parameters.

B s -

0.05 0.05 -0.5375
0.1 0.1 -0.0465
0.25 0.25 -0.0137
0.28 0.28 0.0013

S | CONCLUSION

In this paper, the event-triggered control problem of NCSs subject to packet dropouts in bilateral channels is studied. By syn-
thesizing event-triggering condition and stochastic data losses behavior, we firstly model a closed-loop stochastic parameter
system. Furthermore, the optimal controller parameters are solved by means of an improved iterative algorithm such that the
resulting closed-loop system is exponentially stable in the mean-square sense. In fact, the packet loss rates of the bilateral unre-
liable networks in this paper are required to be bounded while maintaining the desired stability and performance properties. The
presented theory is illustrated by a numerical example, which showed that a dynamic output feedback controller and the ETM
can be systematically designed to guarantee desired performance.
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