References
1. Pople IK. Hydrocephalus and shunts: What the neurologist should know.
Neurol Pract. 2002;73.
2. Corns R, Martin A. Hydrocephalus. Surgery. 2012;30:142–8.
3. Del Bigio MR. Neuropathology and structural changes in hydrocephalus.
Dev Disabil Res Rev. 2010;16:16–22.
4. Rekate HL. The definition and classification of hydrocephalus: A
personal recommendation to stimulate debate. Cerebrospinal Fluid Res.
2008;5:1–7.
5. Leinonen V, Vanninen R, Rauramaa T. Cerebrospinal fluid circulation
and hydrocephalus [Internet]. 1st ed. Handb Clin Neurol. Elsevier
B.V.; 2018. 39–50 p. Available from:
http://dx.doi.org/10.1016/B978-0-12-802395-2.00005-5
6. Harris C, Pearson K, Hadley K, Zhu S, Browd S, Hanak BW, Shain W.
Fabrication of three-dimensional hydrogel scaffolds for modeling shunt
failure by tissue obstruction in hydrocephalus. Fluids Barriers CNS.
2015;12:1–15.
7. Sarkiss CA, Sarkar R, Yong W, Lazareff JA. Time dependent pattern of
cellular characteristics causing ventriculoperitoneal shunt failure in
children. Clin Neurol Neurosurg [Internet]. Elsevier B.V.;
2014;127:30–2. Available from:
http://dx.doi.org/10.1016/j.clineuro.2014.09.029
8. Drake JM, Kestle JRW, Tuli S. CSF shunts 50 years on - Past, present
and future. Child’s Nerv Syst. 2000;16:800–4.
9. Bonfield TL, Colton E, Anderson JM. Protein adsorption of biomedical
polymers influences activated monocytes to produce fibroblast
stimulating factors. J Biomed Mater Res. 1992;26:457–65.
10. Del Bigio MR. Biological reactions to cerebrospinal fluid shunt
devices: a review of the cellular pathology. Neurosurgery. United
States; 1998;42:316–9.
11. Strahle J, Garton HJL, Maher CO, Muraszko KM, Keep RF, Xi G.
Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular
Hemorrhage. Transl Stroke Res. 2012;3:25–38.
12. Bhattathiri PS, Gregson B, Prasad KSM, Mendelow AD. Intraventricular
hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage:
Results from the STICH trial. Acta Neurochir Suppl. 2006;65–8.
13. McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D,
Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick
DD. Ventricular zone disruption in human neonates with intraventricular
hemorrhage. J Neuropathol Exp Neurol. 2017;76:358–75.
14. Castaneyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM,
Strahle JM, Dahiya SM, Limbrick DD. Blood exposure causes ventricular
zone disruption and glial activation in vitro. J Neuropathol Exp Neurol.
2018;77:803–13.
15. Jaeger CB, Winn SR, Tresco PA, Aebischer P. Repair of the
blood-brain barrier following implantation of polymer capsules. Brain
Res. 1991;551:163–70.
16. Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory
mechanisms of blood-brain barrier damage in ischemic stroke. Am J
Physiol - Cell Physiol. 2019;316:C135–53.
17. Del Bigio MR. Biological reactions to cerebrospinal fluid shunt
devices: A review of the cellular pathology. Neurosurgery.
1998;42:319–26.
18. Achyuta AKH, Stephens KD, Lewis HGP, Murthy SK. Mitigation of
reactive human cell adhesion on poly(dimethylsiloxane) by immobilized
trypsin. Langmuir. 2010;26:4160–7.
19. Harris C, Pearson K, Hadley K, Zhu S, Browd S, Hanak BW, Shain W.
Fabrication of three-dimensional hydrogel scaffolds for modeling shunt
failure by tissue obstruction in hydrocephalus. Fluids Barriers CNS.
BioMed Central; 2015;12:1–15.
20. Ding Y, Zhang T, Wu G, McBride DW, Xu N, Klebe DW, Zhang Y, Li Q,
Tang J, Zhang JH. Astrogliosis inhibition attenuates hydrocephalus by
increasing cerebrospinal fluid reabsorption through the glymphatic
system after germinal matrix hemorrhage. Exp Neurol [Internet].
Elsevier; 2019;320:113003. Available from:
https://doi.org/10.1016/j.expneurol.2019.113003
21. Klebe D, McBride D, Krafft PR, Flores JJ, Tang J, Zhang JH.
Posthemorrhagic hydrocephalus development after germinal matrix
hemorrhage: Established mechanisms and proposed pathways. J Neurosci
Res. 2020;98:105–20.
22. Brydon HL, Keir G, Thompson EJ, Bayston R, Hayward R, Harkness W.
Protein adsorption to hydrocephalus shunt catheters: CSF protein
adsorption. J Neurol Neurosurg Psychiatry. 1998;64:643–7.
23. Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A,
García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM,
Pérez-Fígares JM, Jiménez AJ. Astrocytes acquire morphological and
functional characteristics of ependymal cells following disruption of
ependyma in hydrocephalus. Acta Neuropathol. 2012;124:531–46.
24. Cozzens JW, Chandler JP. Increased risk of distal
ventriculoperitoneal shunt obstruction associated with slit valves or
distal slits in the peritoneal catheter. J Neurosurg. 1997;87:682–6.
25. Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P,
Pérez-Fígares JM. Structure and function of the ependymal barrier and
diseases associated with ependyma disruption. Tissue Barriers.
2014;2:1–14.
26. Heaton A, Keegan T, Holme S. In vivo regeneration of red cell
2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3
and CPDA-1 red cells. Br J Haematol. 1989;71:131–6.
27. Castaneyra-Ruiz L, McAllister JP, Morales DM, Brody SL, Isaacs AM,
Limbrick DD. Preterm intraventricular hemorrhage in vitro: Modeling the
cytopathology of the ventricular zone. Fluids Barriers CNS
[Internet]. BioMed Central; 2020;17:1–11. Available from:
https://doi.org/10.1186/s12987-020-00210-7
28. Skousen JL, Bridge MJ, Tresco PA. A strategy to passively reduce
neuroinflammation surrounding devices implanted chronically in brain
tissue by manipulating device surface permeability. Biomaterials
[Internet]. Elsevier Ltd; 2015;36:33–43. Available from:
http://dx.doi.org/10.1016/j.biomaterials.2014.08.039
29. Harris CA, McAllister JP. Does drainage hole size influence adhesion
on ventricular catheters? Child’s Nerv Syst. 2011;27:1221–32.
30. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to
biomaterials. Semin Immunol [Internet]. 2007/12/26. 2008;20:86–100.
Available from: https://pubmed.ncbi.nlm.nih.gov/18162407
31. Chittiboina P, Pasieka H, Sonig A, Bollam P, Notarianni C, Willis
BK, Nanda A. Posthemorrhagic hydrocephalus and shunts: What are the
predictors of multiple revision surgeries? Clinical article. J Neurosurg
Pediatr. 2013;11:37–42.
32. Bir SC, Konar S, Maiti TK, Kalakoti P, Bollam P, Nanda A. Outcome of
ventriculoperitoneal shunt and predictors of shunt revision in infants
with posthemorrhagic hydrocephalus. Child’s Nerv Syst [Internet].
Child’s Nervous System; 2016;32:1405–14. Available from:
http://dx.doi.org/10.1007/s00381-016-3090-6
33. Del Bigio MR, Fedoroff S. Short‐term response of brain tissue to
cerebrospinal fluid shunts in vivo and in vitro. J Biomed Mater Res.
1992;26:979–87.
34. Collins P, Hockley AD, Woollam DHM. Surface ultrastructure of
tissues occluding ventricular catheters. J Neurosurg. 1978;48:609–13.
35. Beer R, Pfausler B, Schmutzhard E. Management of nosocomial external
ventricular drain-related ventriculomeningitis. Neurocrit Care.
2009;10:363–7.
36. Lewis A, Taylor Kimberly W. Prediction of ventriculoperitoneal shunt
placement based on type of failure during external ventricular drain
wean. Clin Neurol Neurosurg [Internet]. Elsevier B.V.;
2014;125:109–13. Available from:
http://dx.doi.org/10.1016/j.clineuro.2014.07.022
37. Schiweck J, Eickholt BJ, Murk K. Important shapeshifter: Mechanisms
allowing astrocytes to respond to the changing nervous system during
development, injury and disease. Front Cell Neurosci. 2018;12:1–17.
38. Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged
morphology changes of astrocytic and neuronal primary cilia under
reactive insults. Mol Brain. Molecular Brain; 2020;13:1–16.