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Abstract

A graph is called a partial cube if it can be embedded into a hypercube isometrically. In
this paper, we study a class of Cayley graphs —Cayley graphs generated by transpositions
and show that a Cayley graph Γ generated by transpositions is a partial cube if and only
if Γ is a bubble sort graph. This result enhances a result of Alahmadi et al. [Math. Meth.
Appl. Sci. 39 (2016), 4856–4865]: BSn is a partial cube. As a corrollary, we give the
analytical expressions of the Wiener indices of bubble sort graphs.
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1 Introduction

Graphs that can be isometrically embedded into hypercubes are called partial cubes, introduced
by Graham and Pollak [13] as a model for interconnection networks and later for other appli-
cations, for examples see [3, 9, 20]. For research on partial cubes, we refer the readers to two
books [7, 14] and a survey [25].

One of the most challenging open problems in the area is to classify regular partial cubes,
in particular, vertex-transitive partial cubes. Wiechsel in 1992 [26] considered distance-regular
partial cubes and classified all distance-regular partial cubes based on their girth: hypercubes
are the only ones with girth 4, the 6-cycle and the middle-level graphs are the only ones with
girth 6, and even cycles of length at least 8 are the only ones with higher girths. Koolen [21]
generalized this result to a certain broader metrical hierarchy. Restricting the cubic case, Marc
[22] classified all cubic, vertex-transitive partial cubes. On the other hand, B. Brešar et al.
[4] introduced a new family of graphs: mirror graphs and proved that mirror graphs are a
subfamily of vertex-transitive partial cubes and, classified all mirror graphs that are obtained
by cubic inflation (thus are cubic graphs). And furthermore, Marc [23] proved that the mirror
graphs are equivalent to the Cayley graphs of a finite Coxeter group with canonical generators
and the tope graphs of a reflection arrangement.

A motivation for the study of partial cubes with high minimum degree comes from the
theory of oriented matroids [11]. Besides hypercubes, we know a little about partial cubes with
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high minimum degree. On the other hand, Cayley graphs are vertex-transitive. In view of these,
in this paper, we would like to form a natural connection between the study of vertex-transitive
partial cubes and the study of Cayley graphs with high degree, and consider an important
class of graphs Γ in networks theory—Cayley graphs on the symmetric group Sn generated by
transpositions, and obtain the main theorem: Γ is a partial cube if and only if Γ is a bubble
sort graph BSn, i.e., Theorem 3.3. Notice that BSn is an (n− 1)-regular mirror graph.

This paper is organized as follows. In Section 2, we provide some definitions and lemmas.
Next, we prove Theorem 3.3 and, as one of its applications, calculate the Wiener index of the
bubble sort graph BSn in Section 3.

2 Preliminaries

In this paper a graph Γ considered is simple, undirected with vertex set V (Γ) and edge set
E(Γ). For u, v ∈ V (Γ), the distance dΓ(u, v) (without causing confusion, d(u, v) for short) is
the length of a shortest path between u and v in Γ. A subgraph H of a graph Γ is called
isometric if dH(u, v) = dΓ(u, v) for all u, v ∈ V (H).

An embedding from graph Γ to graph Γ′ is an injective mapping π : V (Γ)→ V (Γ′) satisfying
uv ∈ E(Γ) =⇒ π(u)π(v) ∈ E(Γ′) for u, v ∈ V (Γ). If π additionally satisfies dΓ(u, v) =
dΓ′(π(u), π(v)) for any u, v ∈ V (Γ), then π is called isometric. Notice that if Γ can be embedded
into Γ′ isometrically, denoted by Γ ↪→ Γ′, then the subgraph H of Γ′ induced by the set
π(V (Γ)) = {π(u)|u ∈ V (Γ)} is isometric and H ∼= Γ. It’s easy to see that the relation ‘↪→’ is
transitive.

Observation 2.1. Let Γ, Γ′, Γ′′ be graphs. If Γ ↪→ Γ′ and Γ′ ↪→ Γ′′, then Γ ↪→ Γ′′.

Proof. Since Γ ↪→ Γ′, Γ′ ↪→ Γ′′, there exist isometric embeddings π : V (Γ) → V (Γ′) and
τ : V (Γ′)→ V (Γ′′), respectively. Then, for any u, v ∈ V (Γ),

dΓ(u, v) = dΓ′(π(u), π(v)) = dΓ′′(τ(π(u)), τ(π(v))) =: dΓ′′(τπ(u), τπ(v)),

where τπ is the composition of π and τ from Γ to Γ′′ defined as τπ(v) = τ(π(v)) for any
v ∈ V (Γ). Then τπ is an isometric embedding from Γ to Γ′′. Therefore, Γ ↪→ Γ′′

Let X be a finite or infinite set. A hypercube H(X) on X is a graph whose vertex set is
the family of all subsets of X, denoted by P(X), two vertices are adjacent if and only if they
differ by a singleton. If X is finite, the size of X is called the dimension of H(X). In this case,
we can also denote H(X) as Qn if |X| = n. Let X1, X2 be finite subsets of X. The distance
between X1 and X2 on the hypercube H(X) is called the Hamming distance, which evidently
equals |X14X2|, where X14X2 is the symmetric difference of X1 and X2. We say a graph is
a partial cube on the set X, if it can be embedded into H(X) isometrically.

2.1 Djoković-Winkler relation

In this subsection, we only consider connected graphs.

Definition 2.2 (Djoković-Winkler relation [8, 29]). Let Γ be a graph, e = uv, f = xy two edges
of Γ. The Djoković-Winkler relation Θ on E(Γ) is defined by: eΘ f ⇐⇒ d(u, x) + d(v, y) 6=
d(u, y) + d(v, x).

The following properties can be easily proved by simple calculation, but they are useful for
our proof in the next section.
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Observation 2.3. Let Γ be a bipartite graph and e, f ∈ E(Γ). If eΘ f , then e and f are
disjoint.

Observation 2.4. Let Γ be a graph and C an isometric even cycle in it. Then each pair of
antipodal edges of C are in relation Θ.

It is obvious that Djoković-Winkler relation Θ is reflexive and symmetric, but need not be
transitive. By means of transitivity of the relation Θ, a characterization of partial cubes by
means of relation Θ was obtained as follows:

Lemma 2.5. [29] Let Γ be a connected graph. Γ is a partial cube if and only if Γ is bipartite
and Θ is a transitive relation on E(Γ).

In other words, Γ is a partial cube if and only if Γ is bipartite and Θ is an equivalence
relation on E(Γ). In a partial cube Γ with edge set E(Γ), an equivalence class is a subset of
E(Γ) in which edges are related to each other by the equivalence relation Θ. Obviously the
equivalence classes of E(Γ) form a partition of E(Γ).

2.2 Cayley graphs generated by transpositions

Let’s denote the set {1, 2, · · · , n} by [n] and refer to its elements as points. A bijection of [n]
onto itself is called a permutation of [n]. Denote by ι the identity permutation. There are two
common ways in which permutations are written. First of all, a permutation u can be written
as a linear order u1u2 · · ·un of different points in [n] for which u(i) = ui. This notation is called
the one-line notation of permutations. A permutation u is called an r-cycle (r = 1, 2, · · · )
if for r distinct points u1, u2, · · · , ur of [n], u maps ui onto ui+1 (i = 1, · · · , r − 1), maps ur
onto u1, and leaves all other points fixed; denote by u = (u1u2 · · ·ur). In particular, 2-cycle
u = (u1u2) is called a transposition. The second common way to specify a permutation u is to
write u as a product of disjoint cycles, i.e., compositions of permutations represented by cycles,
in which 1-cycles are omitted, and call it a cycle notation of u. For example, a permutation
u = 62837154 in the one-line notation can be written as u = (16)(384)(57) in the cycle notation.
In the present paper, we mostly use the one-line notation to represent a permutation, but for
convenience, we use the cycle notation in Claim 3 of proof of Theorem 3.3.

Let u be a permutation of [n] with u(i) = i for some i ∈ [n], i.e., i is in a 1-cycle of u. Then
we call i a fixed point of u. The set of all fixed points of u is denoted by fix(u). If i is not a
fixed point of u, we say that it’s a support point and denote the set of all support points by
supp(u). In other words, supp(u) = [n] \ fix(u). The inversion set Inv(u) of u is defined as:
Inv(u) = {{i, j}|(i − j)(u−1(i) − u−1(j)) < 0}. The cardinality of Inv(u) is called the inverse
number of u, denoted by inv(u).

Let G be a group with the group operation denoted by ‘·’ and S a subset of G satisfying: (i)
x ∈ S ⇐⇒ x−1 ∈ S, (ii) the identity element is not in S. The Cayley graph Γ associated with
(G,S), denoted by Cay(G,S), is a simple graph with vertex set G and u, v ∈ G are adjacent
if and only if u−1 · v ∈ S. Notice that all Cayley graphs are vertex-transitive because, for any
g ∈ G, the mapping lg on G: x 7→ g · x for x ∈ G, is an automorphism of Cay(G,S).

We denote Sn as the symmetric group on n letters, most often points of [n], i.e., the set
of all permutations with function compositions as the group operation. If S is a subset of
transpositions on [n], then the Cayley graph Cay(Sn, S) on Sn is called the Cayley graph
generated by transpositions S. by the definition of Cayley graphs, permutation u = u1u2 · · ·un
is adjacent to permutation v = v1v2 · · · vn in Cay(Sn, S) if and only if for (ij) ∈ S, ui = vj,
uj = vi and uk = vk for k 6= i, j. In this case, we say that the edge e = uv is an (ij)-edge and
denote l(e) = (ij). Clearly, Cay(Sn, S) is bipartite with one part consisting of permutations
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of odd inverse number and the other part consisting of permutations of even inverse number.
Let S be a set of transpositions on [n]. The transposition generating graph T (S) of S is the
graph with vertex set [n] and two vertices i and j are adjacent if and only if (ij) ∈ S. Among
Cayley graphs generated by transpositions, there are three special graphs as follows: the bubble
sort graph BSn, the modified bubble sort graph MBn and the star graph STn, satisfying their
transposition generating graphs T (S) of order n are the path Pn, the cycle Cn and the star
K1,n−1, respectively. For example, MB3 = Cay(S3, {(12), (23), (13)}), which is isomorphic to
the complete bipartite graph K3,3.

We have the following properties about the Cayley graphs generated by transpositions:

Lemma 2.6. [12] Let Γ = Cay(Sn, S) be a Cayley graph generated by transpositions. Then Γ
is connected if and only if T (S) is connected.

Lemma 2.7. [6] Let S and S ′ be two sets of transpositions on [n]. Then Cay(Sn, S) and
Cay(Sn, S

′) are isomorphic if and only if T (S) and T (S ′) are isomorphic.

Lemma 2.8. Let n′, n (n′ 6 n) be two positive integers. Let S ′ be a transposition set on [n′],
S a transposition set on [n]. If T (S ′) can be embedded into T (S) as an induced subgraph, then
Cay(Sn′ , S

′) can also be embedded into Cay(Sn, S) as an induced subgraph.

Proof. Let π : [n′]→ [n] be the embedding from T (S ′) to T (S) as an induced subgraph. Then
by the definition of transposition generating graphs, for any i, j ∈ [n′], (ij) ∈ S ′ if and only if
(π(i)π(j)) ∈ S.

Define an injection τ from Sn′ to Sn: u′ = u′1u
′
2 · · ·u′n′ 7→ u = u1u2 · · ·un satisfying

uπ(i) = π(u′i) for i ∈ [n′], otherwise uj = j. Denote A = τ(Sn′) = {u ∈ Sn|u is fixed on [n] \
{π(1), π(2), · · · , π(n′)}} Let u′ = u′1u

′
2 · · ·u′n′ and v′ = v′1v

′
2 · · · v′n′ be vertices in Cay(Sn′ , S

′),
and u = τ(u′) = u1u2 · · ·un, v = τ(v′) = v1v2 · · · vn vertices in A. Now, we prove that u′, v′

are adjacent in Cay(Sn′ , S
′) if and only if u, v are adjacent in Cay(Sn, S).

If u′, v′ are adjacent, then v′ = u′ · (ij) for some (ij) ∈ S ′ and i, j ∈ [n′], that is, u′i = v′j,
u′j = v′i and u′k = v′k for k ∈ [n′] \ {i, j}. By the definition of τ , vπ(i) = π(v′i) = π(u′j) = uπ(j),
vπ(j) = π(v′j) = π(u′i) = uπ(i) and vk = uk for k ∈ [n] and k 6= π(i), π(j). Then u = v·(π(i)π(j)),
that is, u, v are adjacent in Cay(Sn, S). On the other hand, Assume that u, v are adjacent
in Cay(Sn, S), that is, for some (st) ∈ S, us = vt, ut = vs and uk = vk for k 6= s, t. By
the definition of τ , there exist i, j satisfying s = π(i), t = π(j) and (ij) ∈ S ′. Then u′i =
π−1(uπ(i)) = π−1(us) = π−1(vt) = π−1(vπ(j)) = v′j. Similarly, we can prove u′j = v′i and u′k = v′k
for k ∈ [n′] \ {i, j}. Thus v′ = u′ · (ij) and, further u′ and v′ are adjacent in Cay(Sn′ , S

′).
Thus Cay(Sn′ , S

′) is isomorphic to the subgraph of Cay(Sn, S) induced by A. Therefore,
Cay(Sn′ , S

′) can also be embedded into Cay(Sn, S) as an induced subgraph.

2.3 Sorting a permutation by a sequence of cyclically adjacent trans-
positions

In this subsection, we consider the distance between any pair of vertices u and v in the modified
bubble sort graph MBn, which is used for the proof of the main theorem in the next section. In
fact, since lu−1 : w→ u−1 ·w (w ∈ Sn) is an automorphism of MBn, d(u,v) = d(ι,u−1 ·v). So
we only consider the distance between the identity element and the others. Jerrum [16] gave a
polynomial-time algorithm for computing the distance between the identity element ι and any
permutation in the modified bubble sort graph MBn (i.e., Lemma 2.9). Before that, we first
introduce relevant notations in [16].

We call a transposition (st) on [n] is a cyclically adjacent transposition (shortly, a cat)
if t ≡ s + 1 (mod n), that is, (st) ∈ {(12), (23), (34), . . . , ((n − 1)n), (1n)} =: Πcat. For a
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permutation π of length n, A vector x = (x1, x2, · · · , xn) is called a displacement vector (or

just dvec) of π if (i) xi ≡ π−1(i) − i (mod n) for i ∈ [n]; (ii)
n∑
i=1

xi = 0. In particular, if let

xi = π−1(i)−i for i ∈ [n], then x is obviously a dvec of π, which is called the initial displacement
vector (or initial dvec) of π.

Let x = (x1, x2, · · · , xn) be an n-dimensional vector in Zn. Let Tij : Zn → Zn (i 6= j) be a
transformation defined as follows: if Tij is applied on x, the result Tij(x) = (x′1, x

′
2, · · · , x′n) is

given by

x′k =


xk, k 6= i or j;
xi − n, k = i;
xj + n, k = j.

It’s easy to see that Tij map a dvec to another dvec of π. For a devc x of a permutation
π of length n, we say that Tij strictly contracts x if and only if max(x) = xi, min(x) = xj
and xi − xj > n, where max(x) = max

16k6n
xk, min(x) = min

16k6n
xk. For all values of i and j, if

xi − xj 6 n, then we say that x admits no strictly contracting transformation. We call the
dvec of a permutation π, which is obtained after applying a series of transformations (probably
empty) on its initial dvec until it admits no strictly contracting transformation, the optimal
displacement vector (shortly, optimal dvec).

Suppose x = (x1, x2, · · · , xn) ∈ Zn, i, j ∈ [n] and i 6= j, and let r = i − j and s =
(i + xi)− (j + xj). Define the crossing number (shortly cnum), cij(x), of i and j with respect
to x by

cij(x) =

{
|{r ≤ k ≤ s|k ≡ 0 (mod n)}|, if r 6 s (i.e., xi > xj);
−|{s ≤ k ≤ r|k ≡ 0 (mod n)}|, otherwise.

Notice that, for any i, j ∈ [n], cij(x) = −cji(x) and xi =
∑n

k=1 cik(x). We define ic(x) by

ic(x) =
1

2

∑
i6=j

i,j∈[n]

|cij(x)| =
n−1∑
i=1

n∑
j=i+1

|cij(x)|.

Jerrum stated that for all optimal dvecs, the values of ic(x) are same, and, specially, proved
the following lemma.

Lemma 2.9. [10, 16] Let π be a permutation, x its displacement vector. Then L(π,Πcat) =
min ic(x) and ic(x) will be minimized when x is one of its optimal dvecs.

Combined Lemma 2.9 with the definition of optimal dvecs, for a permutation π, an algorithm
for computing L(π,Πcat) is presented as Algorithm 1.

If x is the initial dvec of π, then r = i− j, s = π−1(i)− π−1(j) for i, j ∈ [n]. So the cnum
cij(x) = 1 or −1 if and only if {i, j} is an inversion of π. Further, ic(x) = inv(π). In a sense
ic(x) is a generalization of inverse number inv(π). Combined with Lemma 2.9, we obtain

Corollary 2.10. Let π be a permutation. If its initial displacement vector x admits no strictly
contracting transformation, then L(π,Πcat) = inv(π).

Let us go back the problem we consider at the beginning of this subsection: the distance
between the identity element and the others π in the modified bubble sort graph MBn. If
π · π1 · π2 · · · · · πl = ι (π1, π2, . . . , πl ∈ Πcat) is a sequence that sorts π into ι, then each πi is
corresponding to an edge of MBn. So it’s easy to see that dMBn(ι, π) = L(π,Πcat). For any
pair of vertices u and v, since d(u,v) = d(ι,u−1 · v), we can compute the distance between u
and v by running Algorithm 1 when we set π = u−1 · v.
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Algorithm 1 [16] Computing the length of a minimum-length sequence of cat
Require: a permutation π on [n].
Ensure: the length of a minimum-length sequence of cat to sort π, L(π,Πcat).
1: x := (x1, x2, · · · , xn);
2: for i = 1 to n do
3: xi := π−1(i)− i;
4: end for
5: while max(x)−min(x) > n do
6: choose i, j with xi = max(x), xj = min(x);
7: xi ← xi − n;
8: xj ← xj + n;
9: end while

10: ic(x)← 0;
11: for i = 1 to n− 1 do
12: for j = i+ 1 to n do
13: r ← i− j; s← (i+ xi)− (j + xj);
14: for k = r to s do
15: if k ≡ 0 (mod n) then
16: ic(x)← ic(x) + 1;
17: end if
18: end for
19: end for
20: end for
21: return L(π,Πcat) = ic(x);

3 Main result

In this section, we give our main result: characterizing the partial cubes in Cayley graphs
generated by transpositions. First, we present a lemma due to Alahmadi et al. [2] and give its
detail proof here.

Lemma 3.1. [2] The bubble sort graph BSn is a partial cube.

Proof. Let X be the family of 2-element subsets of [n]. Then H(X) = Q(n
2)

. Let Inv : u 7→
Inv(u) be an injective map from Sn to P(X), where Inv(u) is the inversion set of u. We
know that the distance of two permutations u,v in BSn is Kendall τ distance (see [17, 18]):
dBSn(u,v) = |{{i, j}|(u−1(i) − u−1(j))(v−1(i) − v−1(j)) < 0}|. It deduces that dBSn(u,v) =
|Inv(u) 4 Inv(v)|, which is the Hamming distance in Q(n

2)
. Therefore, Inv is an isometric

embedding from BSn to Q(n
2)

, i.e., The bubble sort graph BSn is a partial cube.

Before giving the main result, we would like to introduce the characterization of cubic
vertex-transitive partial cubes, due to Marc [22].

Let’s denote Γ12Γ2 as the Cartesian product of graphs Γ1 and Γ2, which is with vertex set
V (Γ1)× V (Γ2). And two vertices (u, v) and (u′, v′) are adjacent in Γ12Γ2 if and only if either
u = u′ and vv′ ∈ E(Γ2) or uu′ ∈ E(Γ1) and v = v′. Marc [22] proved there are only five kinds
of cubic vertex-transitive graphs which are partial cubes.

Theorem 3.2. [22] Let Γ be cubic vertex-transitive partial cubes. Then Γ is isomorphic to one of
the following graphs: K22C2n, the generalized Petersen graph G(10, 3), the cubic permutahedron
(= BS4), the truncated cuboctahedron, or the truncated icosidodecahedron (see Fig. 1).

Now we give our main result as follows.

Theorem 3.3. Let Γ be a connected Cayley graph generated by transpositions. Then Γ is a
partial cube if and only if Γ ∼= BSn.

Proof. The sufficiency is from Lemma 3.1. Now we prove the necessity.
Let Γ = Cay(Sn, S) be a connected Cayley graph generated by a transposition set S such

that Γ is a partial cube. By Lemma 2.7, it is sufficient to prove that T (S) is isomorphic to the

6



Fig. 1: The four sporadic examples of cubic vertex-transitive partial cubes. (The picture is
from [22].)

path Pn. In what follows we prove it by three claims. Evidently, T (S) is connected by Lemma
2.6.

Claim 1. T (S) contains no triangles.
By contradiction. By Lemma 2.7, without loss of generality, we can assume that {(12), (23), (13)}

⊆ S constructs a triangle in T (S). By Lemma 2.8, Cay(S3, {(12), (23), (13)}) isomorphic to
K3,3 can be embedded into Γ as an induced subgraph, say, H. Then there exist two isometric
cycles C1 and C2 of length 4 in H sharing a path P3, say, one of two edges e. Then the antipodal
edge of e in C1 and the one of e in C2 are adjacent and are in relation Θ by Observation 2.4
and Lemma 2.5, a contradiction to Observation 2.3.

Now, we show that the maximum degree of T (S) is at most 2. If the maximum degree of
T (S) is at least 3, then T (S) contains a claw K1,3 as an induced subgraph by Claim 1.

Claim 2. T (S) contains no K1,3’s as induced subgraphs.
We assume to the contrary that T (S) contains an induced subgraph K1,3, by Lemma 2.7,

say induced by {1, 2, 3, 4} with center 1. Then (12), (13), (14) ∈ S and (23), (34), (24) 6∈ S.
By Lemma 2.8, Then we obtain that ST4 = Cay(S3, {(12), (13), (14)}) is isomorphic to the
subgraph H ′ of Γ induced by the vertex set A = {u ∈ Sn|5, 6, · · · , n are the fixed points of u}.
Now, we show that H ′ is isometric in Γ.

If H ′ is not isometric in Γ, then there exist two vertices u,v ∈ A satisfying dΓ(u,v) <
dH′(u,v), that is, there exists a path from u to v not in H ′ which is shorter than any paths in
H ′. Since Γ is bipartite and the diameter of ST4 is 4 (see [1]), we can deduce that dΓ(u,v) = 2
and dH′(u,v) = 4. By vertex-transitivity of Γ, we assume u = ι. Let P = uwv be a shortest
u-v path and say, e1 = uw, e2 = wv. Then v ∈ A and w 6∈ A. Set l(e1) = (ij), l(e2) = (st),
then (ij) 6= (st) and (ij), (st) 6∈ {(12), (13), (14)}, otherwise w ∈ A by Lemma 2.8. Since
w 6∈ A, {i, j} 6⊆ {1, 2, 3, 4}, {s, t} 6⊆ {1, 2, 3, 4} by the definition of A. Assume i, s 6∈ {1, 2, 3, 4}
(maybe i = s). From v = u(ij)(st) = (ij)(st), i and s must be in supp(v), contradicting to
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the fact that v ∈ A.
Thus, ST4 ↪→ Γ and Γ ↪→ H(X) for some set X. We deduce that ST4 ↪→ H(X) by

Observation 2.1. Combined with the obvious fact that ST4 is a cubic vertex-transitive graph
with Theorem 3.2, we obtain a contradiction.

Thus, we obtain that the maximum degree of T (S) is at most 2. Since T (S) is connected
and is of order n, T (S) is isomorphic either to Pn or to Cn.

Claim 3. T (S) 6∼= Cn (n > 4).
For convenience, let’s use the cycle notation to represent permutations.
We assume to the contrary that T (S) ∼= Cn and, say S = {(12), (23), (34), . . . , ((n −

1)n), (1n)} by Lemma 2.7. So Γ ∼= MBn. We construct a cycle of length 2n − 2 in MBn.
Denote

vi =


(

12 · · ·
(⌈

i
2

⌉
+ 1
) )(

n(n− 1) · · ·
(
n−

⌊
i
2

⌋) )
, for 0 6 i 6 n− 2;(

12 · · ·
(
n−

⌈
i
2

⌉)
n(n− 1)(n− 2) · · ·

(⌊
i
2

⌋
+ 2
) )
, for n− 1 6 i 6 2n− 3.

Then C = v0v1v2 · · ·v2n−3 is a (2n− 2)-cycle. Now we prove that C is an isometric subgraph
in MBn, that is, to prove dΓ(vk1 ,vk2) = dC(vk1 ,vk2) for any 0 6 k1 < k2 6 2n− 3. We divide
three cases to discuss.

Case 1. 0 6 k1 < k2 6 n− 2.

Since k2−k1 <
2n−2

2
, dC(vk1 ,vk2) = k2−k1. In this case, vk1 =

(
123 · · ·

(⌈
k1
2

⌉
+ 1
) )(

n(n−

1)(n − 2) · · ·
(
n−

⌊
k1
2

⌋) )
, vk2 =

(
123 · · ·

(⌈
k2
2

⌉
+ 1
)) (

n(n− 1)(n− 2) · · ·
(
n−

⌊
k2
2

⌋))
. v−1

k1
·

vk2 =
( (⌈

k1
2

⌉
+ 1
) (⌈

k1
2

⌉
+ 2
)
· · ·
(⌈

k2
2

⌉
+ 1
) )( (

n−
⌊
k1
2

⌋) (
n−

⌊
k1
2

⌋
− 1
)
· · ·
(
n−

⌊
k2
2

⌋) )
. Let

x = (x1, x2, · · · , xn) be the initial dvec of v−1
k1
· vk2 . Then

xi =
(
v−1
k1
· vk2

)−1
(i)− i =



⌈
k2
2

⌉
−
⌈
k1
2

⌉
, if i =

⌈
k1
2

⌉
+ 1;⌊

k1
2

⌋
−
⌊
k2
2

⌋
, if i = n−

⌊
k1
2

⌋
;

−1, if
⌈
k1
2

⌉
+ 2 6 i 6

⌈
k2
2

⌉
+ 1;

1, if n−
⌊
k2
2

⌋
6 i 6 n−

⌊
k1
2

⌋
− 1;

0, otherwise.

Since max(x)−min(x) = k2 − k1 < n, x admits no strictly contracting transformation. Then,
by Corollary 2.10, dΓ(vk1 ,vk2) = L(v−1

k1
·vk2 ,Πcat) = inv(v−1

k1
·vk2) = k2− k1. So dΓ(vk1 ,vk2) =

dC(vk1 ,vk2).
Case 2. 0 6 k1 6 n− 2 < n− 1 6 k2 6 2n− 3.

In this case, vk1 =
(

123 · · ·
(⌈

k1
2

⌉
+ 1
) )(

n(n−1)(n−2) · · ·
(
n−

⌊
k1
2

⌋) )
, vk2 =

(
12 · · ·

(
n−⌈

k2
2

⌉ )
n(n − 1)(n − 2) · · ·

(⌊
k2
2

⌋
+ 2
) )

. In order to compute v−1
k1
· vk2 , we discuss it by two

subcases.
Subcase 2.1. n− 1− k1 > k2 − n+ 2.

In this subcase, v−1
k1
·vk2 =

( (⌈
k1
2

⌉
+ 1
) (⌈

k1
2

⌉
+ 2
)
· · ·
(
n−

⌈
k2
2

⌉) (
n−

⌊
k1
2

⌋) (
n−

⌊
k1
2

⌋
− 1
)

(
n−

⌊
k1
2

⌋
− 2
)
· · ·
(⌊

k2
2

⌋
+ 2
) )

. Let x = (x1, x2, · · · , xn) be the initial dvec of v−1
k1
· vk2 . Then

xi =
(
v−1
k1
· vk2

)−1
(i)− i =



⌊
k1
2

⌋
−
⌈
k2
2

⌉
, if i = n−

⌊
k1
2

⌋
;⌊

k2
2

⌋
−
⌈
k1
2

⌉
+ 1, if i =

⌈
k1
2

⌉
+ 1;

−1, if
⌈
k1
2

⌉
+ 2 6 i 6 n−

⌈
k2
2

⌉
;

1, if
⌊
k2
2

⌋
+ 2 6 i 6 n−

⌊
k1
2

⌋
− 1;

0, otherwise.
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We obtain that max(x)−min(x) = k2−k1+1. When k2−k1 > n, dC(vk1 ,vk2) = 2n+k1−k2−2
and x can be contracted. By running Algorithm 1, we obtain dΓ(vk1 ,vk2) = L(v−1

k1
·vk2 ,Πcat) =

2n+k1−k2−2; When k2−k1 6 n−1, dC(vk1 ,vk2) = k2−k1 and x admits no strictly contracting
transformation. Then, by Corollary 2.10, dΓ(vk1 ,vk2) = L(v−1

k1
· vk2 ,Πcat) = inv(v−1

k1
· vk2) =

k2 − k1.
Subcase 2.2. n− 1− k1 < k2 − n+ 2.

In this subcase, v−1
k1
·vk2 =

( (
n−

⌊
k1
2

⌋) (
n−

⌊
k1
2

⌋
+ 1
) (
n−
⌊
k1
2

⌋
+2
)
· · ·
(⌊

k2
2

⌋
+ 2
) (⌈

k1
2

⌉
+ 1
)

⌈
k1
2

⌉ (⌈
k1
2

⌉
− 1
)
· · ·
(
n−

⌈
k2
2

⌉) )
. Let x = (x1, x2, · · · , xn) be the initial dvec of v−1

k1
· vk2 . Then

xi =
(
v−1
k1
· vk2

)−1
(i)− i =



⌊
k1
2

⌋
−
⌈
k2
2

⌉
, if i = n−

⌊
k1
2

⌋
;⌊

k2
2

⌋
−
⌈
k1
2

⌉
+ 1, if i =

⌈
k1
2

⌉
+ 1;

−1, if n−
⌊
k1
2

⌋
+ 1 6 i 6

⌊
k2
2

⌋
+ 2;

1, if n−
⌈
k2
2

⌉
6 i 6

⌈
k1
2

⌉
;

0, otherwise.

We obtain that max(x)−min(x) = k2−k1 +1. Similar to Subcase 2.1, we obtain dΓ(vk1 ,vk2) =
dC(vk1 ,vk2) = 2n + k1 − k2 − 2 when k2 − k1 > n, and dΓ(vk1 ,vk2) = dC(vk1 ,vk2) = k2 − k1

when k2 − k1 6 n− 1.
Case 3. n− 1 6 k1 < k2 6 2n− 3.

In this case, k2 − k1 <
2n−2

2
, so dC(vk1 ,vk2) = k2 − k1. vk1 =

(
12 · · ·

(
n−

⌈
k1
2

⌉)
n(n −

1)(n− 2) · · ·
(⌊

k1
2

⌋
+ 2
) )

, vk2 =
(

12 · · ·
(
n−

⌈
k2
2

⌉)
n(n− 1)(n− 2) · · ·

(⌊
k2
2

⌋
+ 2
) )

. Then v−1
k1
·

vk2 =
( (
n−

⌈
k1
2

⌉) (
n−

⌈
k1
2

⌉
− 1
)
· · ·
(
n−

⌈
k2
2

⌉) )( (⌊
k1
2

⌋
+ 2
) (⌊

k1
2

⌋
+ 3
)
· · ·
(⌊

k2
2

⌋
+ 2
) )

. Let

x = (x1, x2, · · · , xn) be the initial dvec of v−1
k1
· vk2 . Then

xi =
(
v−1
k1
· vk2

)−1
(i)− i =



⌈
k1
2

⌉
−
⌈
k2
2

⌉
, if i = n−

⌈
k1
2

⌉
;⌊

k2
2

⌋
−
⌊
k1
2

⌋
, if i =

⌊
k1
2

⌋
+ 2;

−1, if
⌊
k1
2

⌋
+ 3 6 i 6

⌊
k2
2

⌋
+ 2;

1, if n−
⌈
k2
2

⌉
6 i 6 n−

⌈
k1
2

⌉
− 1;

0, otherwise.

Since max(x)−min(x) = k2 − k1 < n, x admits no strictly contracting transformation. Then
dΓ(vk1 ,vk2) = L(v−1

k1
· vk2 ,Πcat) = inv(v−1

k1
· vk2) = k2 − k1.

Thus, the cycle C is isometric in MBn. Let’s denote v′2n−4 =
(
1n(n − 1)

)
. Then C ′ =

v0v1v2 · · ·v2n−5v
′
2n−4v2n−3 is another (2n− 2)-cycle. It can be proven that C ′ is also isometric

in MBn by the similar discussion. Let e = vn−3vn−2. Then e is both the antipodal edge of
v2n−4v2n−3 in C and the antipodal edge of v′2n−4v2n−3 in C ′. By Observation 2.4, eΘ v2n−4v2n−3

and eΘ v′2n−4v2n−3. However, v2n−4v2n−3 and v′2n−4v2n−3 are not in Djoković-Winkler relation
by Observation 2.3, that is, the Djoković-Winkler relation Θ is not transitive on E(Γ). There-
fore, by Lemma 2.5, Γ is not a partial cube, a contradiction.

In what follows, we compute the Wiener index of BSn by Theorem 3.3. First we give some
concepts we need.

For a connected graph Γ, the Wiener index W (Γ) of Γ is defined as

W (Γ) =
∑

{u,v}⊆V (Γ)

dΓ(u, v),

which was introduced by H. Wiener in 1947 [27].
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Definition 3.4. Let Γ be a graph and a, b a pair of adjacent vertices. Let Wab be the set of
vertices closer to a than to b, i.e.,

Wab = {v ∈ V (Γ)|d(v, a) < d(v, b)}.
We call Wab a semicube of the graph Γ and the semicubes Wab and Wba a pair of opposite
semicubes.

The formula for computing the Wiener index of partial cubes is presented in the following
lemma:

Lemma 3.5. [15, 19] Let Γ be a partial cube of order n and E1, E2, . . . , Ek its Θ equivalent
classes. For i = 1, 2, . . . , k, let uivi ∈ Ei be a representative element of Ei and ni = |Wuivi|.
Then

W (Γ) =
k∑
i=1

|Wuivi ||Wviui | =
k∑
i=1

ni(n− ni). (1)

Now, the Wiener index of BSn is obtained:

Theorem 3.6. W (BSn) =
(n!)2

4

(
n

2

)
.

Proof. Let i, j be any two integers where 1 6 i < j 6 n. Denote Vij = {v ∈ Sn|v−1(i) <
v−1(j)}, Vji = {v ∈ Sn|v−1(i) > v−1(j)}, then Vij ∩ Vji = ∅ and Vij ∪ Vji = Sn. We prove
that Vij and Vji are a pair of opposite semicubes for all pairs of i, j. Let u ∈ Vij,v ∈ Vji be
two adjacent vertices in BSn (for example, u = ij12 · · · (i − 1)(i + 1) · · · (j − 1)(j + 1) · · ·n,
v = ji12 · · · (i−1)(i+1) · · · (j−1)(j+1) · · ·n if j 6= i+1; Or u = ι, v =

(
i(i+1)

)
if j = i+1).

Then Inv(u) = Inv(v) \ {{i, j}}. Let w be a vertex in BSn. If w ∈ Vij, we can see that
Inv(w)4 Inv(v) = (Inv(w)4 Inv(u)) ∪ {{i, j}}, that is, dBSn(w,v) = dBSn(w,u) + 1. Thus,
Vij ⊆ Wuv. Otherwise, w ∈ Vji. We can see that Inv(w)4Inv(u) = (Inv(w)4Inv(v))∪{{i, j}},
that is, dBSn(w,u) = dBSn(w,v) + 1. Thus, Vji ⊆ Wvu. Since both (Wuv,Wvu) and (Vij, Vji)
are partitions of vertex set of BSn, Wuv = Vij and Wvu = Vji. Therefore, all the edges linked
between Vij and Vji are in a Θ equivalent class for each pair of i, j. Since |Wuv| = |Wvu| =
|Vij| = |Vji| = n!

2
, by Eq. (1), we obtain that

W (BSn) =
(n!)2

4

(
n

2

)
.

Now, we give the definition of mirror graphs, which is introduced by B. Brešar et al. [4].

Definition 3.7. Let Γ = (V,E) be a connected graph. Call a partition P = {E1, E2, · · · , Ek}
of E a mirror partition if for every i ∈ {1, 2, · · · , k}, there is an automorphism αi of Γ such
that

(M1) for every uv ∈ Ei, αi(u) = v, αi(v) = u, and

(M2) Γ− Ei consists of two components Γi1, Γi2, and αi maps Γi1 isomorphically onto Γi2.

A connected graph is called a mirror graph if it admits a mirror partition.

Marc [23] proved that the mirror graphs are equivalent to the Cayley graphs of a finite
Coxeter group with canonical generators. It’s easy to varify that BSn is in this class of Cayley
graphs. Thus, we obtain:

Proposition 3.8. The bubble sort graph BSn is a mirror graph.
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4 Conclusions

Thomassen [5] provided diverse examples of vertex-transitive subgraphs of hypercubes. Marc
[22] characterized all cubic vertex-transive partial cubes in 2017. But they were far from
classifying vertex-transitive partial cubes with high degree. In this paper we consider a class
of Cayley graphs with high degree—Cayley graphs Γ on the symmetric group generated by
transportations, and classify that Γ is a partial cube if and only if Γ is the bubble sort graph
BSn.

For bipartite vertex-transitive graphs, Mulder [24] proved that hypercubes are the only
regular—and so the only vertex-transitive—median graphs. Cayley graphs Γ on the symmetric
group generated by transportations we considered are also bipartite vertex-transitive graphs.
So one question in the future is to decide which class of bipartite Cayley graphs, except the
mirror graphs, are partial cubes.
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