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Abstract 

Arctium lappa has a long medicinal and edible history with great economic importance. We

combined Illumina and PacBio sequences to generate the first high-quality chromosome-level

draft  genome of  A. lappa.  The assembled genome is  approximately 1.79 Gb with a  N50

contig  size  of  6.88  Mb.  Approximately  1.70  Gb  (95.4%)  of  the  contig  sequences  were

anchored onto 18 chromosomes using Hi-C data; the scaffold N50 was improved to be 91.64

Mb. Furthermore, we obtained 1.12 Gb (68.46%) of repetitive sequences and 32,771 protein-

coding  genes; 616  positively  selected  candidate  genes  were  identified.  Additionally,  we

compared the transcriptomes of  A. lappa roots at three different developmental stages and

identified 8,943 differentially  expressed genes  (DEGs)  in  these tissues.  Among candidate

genes related to lignan biosynthesis, the following were found to be highly correlated with the

accumulation  of  arctiin: 4-coumarate-CoA  ligase  (4CL),  dirigent  protein  (DIR),  and

hydroxycinnamoyl transferase (HCT). These data can be utilized to identify genes related to

A. lappa quality or provide a basis  for molecular identification and comparative genomics

among related species. 

KEYWORDS
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1 | INTRODUCTION

Arctium lappa is a biennial Asteraceae herb  that  is found all  over the world (Chan et al.,
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2011). According to Flora of China, there are about 11 species of Arctium, of which A. lappa

is the most used therapeutic species. Nearly 1500 years ago the dried and mature fruit of A.

lappa, a traditional Chinese medicine, was recorded for the first time in Ming Yi Bie Lu. It is

described in Chinese Pharmacopoeia as  the  main treatment for  the  common cold of wind-

heat, cough with sputum, swelling and pain of the throat, measles, rubella, and mumps. The

roots and stems of A. lappa are also used medicinally in the Compendium of Materia Medica.

Aside from its long-standing medicinal history A. lappa also has nutritive value; it is known

as “Oriental Ginseng” in Japan and the leaves and stems of the plant can be eaten raw or

stewed. In many countries the plant is considered a healthy vegetable and thought to prevent

disease (Kang et al., 2013); it contains cellulose, protein, calcium, phosphorus, iron, etc. At

present, there are several types of functional foods derived from A. lappa on the market, such

as  A. lappa tea,  A. lappa drinks, and  A. lappa cans. In addition to its high medicinal and

nutritive value, A. lappa has also become a popular plant in academic research.

Studies  investigating  the  biological  activity  of  A.  lappa have  provided  evidence  of

anticancer, anti-inflammatory, antibacterial, antiviral,  and antioxidant properties (Liu et al.,

2014, Yang et al., 2015, Wang et al., 2019). A variety of compounds have been isolated from

A.  lappa,  including  lignans,  fatty  acids,  phytosterols,  polysaccharides,  terpenoids,  and

phenolic acid (Wang et al., 2019, Xu et al., 2006). Pharmacological studies on A. lappa has

mainly  focused  on  two  dibenzylbutyrolactone  lignans  arctigenin (C21H24O6) and  arctiin

(C27H34O11). Arctigenin was first  identified in  A.  lappa, and arctiin  is  a  chemical  quality

marker for the quality of Arctii Fructus (Gao et al., 2018, Kang et al., 2019). Arctigenin from

the extract of the fruits of  A. lappa and  Forsythia suspensa can inhibit the proliferation of
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HepG2  cells  and  inhibit  autophagy (Okubo et  al.,  2020).  According  to the  Chinese

Pharmacopoeia, The content of arctiin in dried fruits of A. lappa should be equal to or greater

than 5.0% (PPRC, 2020). Zhou et al. showed that arctiin isolated from A. lappa protects mice

from acute  lung  injury  (ALI)  induced  by  lipopolysaccharide  (LPS) (Zhou et  al.,  2018).

However, research into the synthetic pathways of arctiin and arctigenin remains unclear.  

Genomic analysis has been reported in a variety of medicinal plants such as  Platycodon

grandiflorus, Isatis  indigotica,  etc. (Kang et  al.,  2020,  Kim et  al.,  2020). Genomic

background is an important way to study the metabolic processes of medicinal plants.  Past

research into the genetics of  A. lappa focused on the mitochondrial or chloroplast genomes

(Xing et al., 2019,  Zhang et al., 2020). In this study, the first draft of the A. lappa genome

(Figure  1)  was generated  using Illumina and PacBio sequencing.  The generated genomic

sequence  data  provides knowledge  into the  genetics of  A.  lappa and  provide  additional

resources for investigating the function of key genes in various metabolic processes.
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FIGURE 1 Morphological characteristics of A. lappa. (a) Plant. (b) Flower. (c) Fruit

2 | MATERIALS AND METHODS

2.1 | Sample collection, Illumina library preparation and sequencing

Plant material was collected from an A. lappa plant grown in a field at Liaoning University of

Traditional Chinese Medicine (N39°03′35″，E121°52′12″), China. Young leave tissue of  A.

lappa  was  collected  and  genomic  DNA  was  extracted  using  DNAsecure  Plant  Kit

(TIANGEN, China).  Based on the manufacturer’s instructions  (Illumina, USA),  the library

construction  kit was used to construct a sequence library with an insert size of 350 bp and

then  sequenced  using the Illumina HiSeq X Ten platform, and 144.06 Gb raw reads were

obtained. Finally, we constructed a 20-kb single-molecule real-time DNA sequencing library
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and sequenced on the Pacbio Sequel platform (Pacific Biosciences, USA), obtaining about

189.11 Gb PacBio data (Table S1). 

We extracted DNA from young leaves of the same  A. lappa plant  to construct  a Hi-C

library.  The  A.  lappa leaf  cells  were  lysed  and  the  extracted  chromatin  was  fixed  with

formaldehyde and digested with Hind  endonucleaseⅢ . The DNA molecules were released

from crosslinking by removing the proteins with protease; the purified DNA was then cut into

350-bp fragments  and ligated to  sequencing  adaptors (Yaffe et  al.,  2011). The fragments

labelled with biotin were collected with streptavidin beads. The PCR-enriched libraries were

sequenced using an Illumina HiSeq X Ten instrument, generating approximately 244.91 Gb of

raw data (Table S1).

Total RNA of fruit, perianth, stem, petiole, involucre, leaf, root, and stalk from the same A.

lappa plant was  extracted using an RNAprep Pure Plant Kit (TIANGEN, China). A cDNA

library was constructed using the NEBNext Ultra RNA Library Prep Kit for Illumina (New

England Biolabs, USA) and sequenced on an Illumina Hiseq X Ten platform.

2.2 | Estimation of genome size and genome assembly 

K-mer (k = 17) statistics (the modified Lander-Waterman algorithm) was used to estimate the

size of the  A.  lappa  genome (Liu et al.,  2013). Long reads obtained using PacBio SMRT

sequencing were assembled  de novo using FALCON (length_cutoff_pr = 4000, max_diff =

100, max_cov = 100), and then polished using Quiver and error-corrected with Pilon (Chin et

al.,  2016,  Walker et  al.,  2014).  Then,  the  Hi-C sequencing data  were compared with the

generated scaffolds using BWA-mem, and the contig sequences were anchored onto the 18

chromosomes of A. lappa with LACHESIS (Simão et al., 2017).
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2.3 | Annotation of genome sequences 

TEs  of the  A.  lappa  genome were identified by combining de novo and homology-based

methods. We used RepeatModeler, LTR_FINDER, and RepeatScout to build a de novo repeat

library,  then used  RepeatMasker  v.4.0.5  and  RepeatProteinMask against  the  Repbase  TE

library and  the TE protein database,  respectively (Tarailo-Graovac et  al.,  2009,  Xu et  al.,

2007, Price et al., 2005). We also used the software Tandem Repeats Finder (TRF) to identify

tandem repeats (Benson et al., 1999).

Protein-coding genes of the A. lappa genome were predicted by combining the following

three  methods:  homology-based  prediction,  de  novo prediction, and  transcriptome-based

prediction.  TBLASTN was used  to  compare homologous  protein  sequences  from 4 plant

genomes (Artemisia annua,  Helianthus annuus,  Chrysanthemum nankingense,  and  Lactuca

sativa) downloaded from the Ensembl Plants and NCBI to the A. lappa genome assembly, and

a E-value cut-off of 1e-5 was used (Gertz et al., 2006). Solar software was used to conjoin the

BLAST hits (Homo-set), and then GeneWise was used to predict the exact gene structure of

the corresponding genomic region in each BLAST hit  (Altschul et al.,  1990,  Birney, et al.,

2020).  TopHat  v.2.0.8  and  Cufflinks  v.2.1.1  were  used  to  map  transcriptome  data  to

assemblies (Kim et al.,  2013,  Ghosh, et al.,  2016).  We used Trinity to assemble RNA-seq

sequences and then create pseudo-unigenes, which were also located on the assembly, and

PASA was used to predict gene models (Campbell et al., 2006). Augustus v.2.5.5, GENSCAN

v.1.0, GlimmerHMM v.3.0.2, geneid, and SNAP were used to predict coding regions in the

repeat-masked genome. Gene model evidence was combined into a non-redundant set of gene

structures using EVidenceModeler (EVM) (Haas et al., 2008). 

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135



BLASTP (E-value < 1e-04)  was used  to perform functional annotation of protein-coding

genes with the SwissProt and NR databases (Altschul et al.,  1997). Protein domains were

annotated by searching against the InterPro and Pfam databases using the InterProScan (v.4.8)

and HMMER (v. 3.1) (Finn et al., 2017, El-Gebali et al., 2019, Zdobnov et al., 2001, Finn et

al., 2015). GO terms  of the genes were obtained from the corresponding InterPro or Pfam

entry (Ashburner et al., 2000).  The  KEGG database obtained through BLAST specifies the

pathways that may involve genes, with an E-value cut-off of 1e-04 (Kanehisa et al., 2004).

Noncoding  RNA,  tRNA,  miRNA, snRNA,  and  rRNA  fragments  were respectively

predicted using tRNAscan-SE software, INFERNAL software,  Rfam database (version 9.1),

and comparing with the rRNA sequences using  BLASTN with an E-value  cut-off  of 1e-10

(Lowe et al., 1997, Nawrocki et al., 2009, Griffithsjones et al., 2005).

2.4 | Gene family cluster, divergence time estimation and WGD 

Protein-coding  gene  sequences from  A. lappa and  ten other plant genome sequences of A.

annua, Coffea canephora, Cynara cardunculus, C. nankingense, Daucus carota, H. annuu, O.

sativa, Solanum  lycopersicum, Vitis vinifera, and Zea  mays were  used  for  gene  family

clustering.  When  there  were  multiple  transcripts  representing  a  gene,  only  the  longest

transcript  in  the  coding  region  was  used  for  further  analysis;  secondly,  genes  encoding

proteins with less than 30 amino acids were removed. We obtained the corresponding protein

sequences of all species through BLASP (E-value < 1E−5). Protein sequences of all species

were clustered into paralogous and orthologous using OrthoMCL and the inflation parameter

was set as 1.5 (Li et al., 2003).

Following the above analysis,  we used MUSCLE to compare the 895 single-copy gene
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protein sequences obtained by gene family clustering, and all the comparison results formed a

super comparison matrix (Edgar et al., 2004). Then, we constructed the phylogenetic tree of

11 species using RAxML (Stamatakis et al., 2014); the maximum likelihood method was used

with the  bootstrap value  =  100.  Finally,  the  MCMCtree  program of  PAML was  used  to

calculate  the  divergence  time  based  on  the  constructed  phylogenetic  tree  (burn-in  =

5,000,000; sample number = 1,000,000; sample frequency = 50) (Yang et al., 2007). 

Using  BLASTP (E value < 1E-5), the protein sequences of  A. lappa,  C. cardunculus,  C.

nankingense,  and  H.  annuu were  searched  against  themselves  for  homogeneity  blocks.

MCScanX  was  then  used  to  determine  syntenic  blocks, calculate  the  4DTv  (fourfold

degenerate sites) for syntenic segments, and plot the distribution of 4DTv values (Wang et al.,

2012). 

2.5 | Expansion and contraction of gene families

Gene family expansion and contraction analysis was performed (p-value = 0.05) according to

the results of clustering analysis of gene family, and  CAFÉ program was used to  filter  out

gene  families with  abnormal  gene  numbers in  individual  species (Han et  al.,  2013).

Probabilistic graphical model (PGM) was used to calculate the probability of gene family size

change.

2.6 | Positively selected genes in A. lappa

Multiple sequence alignments were performed on the protein sequences of single-copy genes

of  C.  cardunculus,  C.  nankingense,  and  H.  annuus being  selected  for  analysis  using

MUSCLE; the  alignment  results  were  used  as  templates  to  generate  multiple  sequence

alignment results corresponding to the coding sequence (CDS) (Edgar et al., 2004). For each
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gene family,  the branch-site model in PAML was used to  test whether the gene family was

positively selected in the foreground branch (A. lappa), and the LRT was used to determine

whether there is a positive selection (Yang et al., 2007). The P-value was calculated using the

χ2 statistic,  and multiple tests  were corrected according to the false discovery rate (FDR)

method.

2.7 | Comparative transcriptome analysis of roots at different developmental stages

DESeq2  was  used  for  normalizing  gene  expression  (BaseMean)  in  each  sample  and

identifying DEGs for each compared group using “P-adj (adjusted p value) < 0.05” as the

threshold (Love et al., 2014). GO enrichment analysis of  DEGs was implemented using the

GOseq R package, in which gene length bias was corrected. GO terms with corrected P-value

less than 0.05 were considered significantly enriched by DEGs. We used KOBAS software to

test the statistical enrichment of  DEGs  in KEGG pathways. Pathways with q-value < 0.05

were considered as significantly enriched. 

2.8 | Metabolism-related genes of A. lappa 

Raw RNA reads were filtered and trimmed to yield clean reads and these high-quality reads

were mapped  to  the  draft  reference  genome  using  Hisat2  with  default  parameters.

FeatureCounts was used to count the number of reads mapped to each gene (Mortazavi et al.,

2008, Liao et al., 2014). Then the FPKM of each gene was calculated based on the length of

the gene and reads count mapped to this gene. Alignment of genomic protein files of A. lappa

and other Asteraceae plants using Arabidopsis protein sequences with BLAST (E-value <

1E−5) and protein (identity ≥ 50%, align_ratio ≥ 50%) sequences were extracted. Pfam_scan

was used to search for proteins that contain the corresponding domains.
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3 | RESULTS

3.1 | Genome size estimation and assembly

Genomic DNA was extracted from A. lappa and sequenced using an Illumina HiSeq platform.

We obtained 144.06 Gb of 350-bp paired-end (PE) reads that were used for k-mer analysis.

Analysis  was  based  on  the  peak  value (depth=56)  from the  depth  and  k-mer  number

frequency  distribution  curve (Figure 2a), as  well  as the  total  number  of  k-mers

(102,732,089,104) (Table S2). The heterozygosity rate of the A. lappa genome was estimated

to be 0.14% and the genome size was about 1,821.08 Mb. We used PacBio SMRT sequencing

and Hi-C sequencing to assemble the genome of A. lappa (Chin et al., 2013). The assembled

genome size was 1.79 Gb (Table S3) with a contig N50 = 6.88 Mb and a scaffold N50 = 91.64

Mb,  respectively  (Table  1).  There  was 1.70  Gb  (95.4%)  of  contig  sequences  that  were

anchored onto 18 chromosomes of A. lappa using LACHESIS (Figure 2b, 2c, Table S4). 
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FIGURE 2 A. lappa genome assembly.  (a) Sequencing depth and k-mer number frequency

distribution curve of A. lappa (horizontal axis is the depth of k-mer, and vertical axis is the

number  of k-mers corresponding to the depth). (b) Hi-C contact  map data  analysis  (each

group represents an individual chromosome). (c) Distribution of A. lappa genomic features. 

Table 1 Summary of the final genome assembly of A. lappa

Sample ID
Length Number

Contig (bp) Scaffold (bp) Contig Scaffold

Total 1,786,740,615 1,786,776,515 2,293 1,934

Max 22,631,658 180,240,226 - -
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Number (≥2 kb) - - 2,293 1,934

N50 6,883,471 91,637,793 82 8

N60 5,381,283 82,935,164 112 10

N70 4,043,964 73,314,808 150 12

N80 3,129,478 70,146,235 201 14

N90 1,675,446 63,474,660 277 17

3.2 | Quality evaluation for genome assembly 

Evaluation using CEGMA (Core Eukaryotic Genes Mapping Approach) showed that 95.56%

of conserved genes were assembled (Table S5) (Parra et al., 2007). Furthermore, assessment

using BUSCO (Benchmarking Universal  Single-Copy Orthologs) found that  among 1,440

orthologous single-copy genes, 89.7% of them were assembled from the A. lappa genome

(Table S6) (Simão et al., 2017). BWA-MEN was used to map high-quality reads from short-

insert-size  PE libraries  to  the  genome assembly (Li et  al.,  2014).  SAMtools  was used to

calculate sequencing depth distribution of each position to evaluate the integrity of genome

assembly (Li et al., 2009). The rate that could be mapped to the assembly and the coverage

rate of all short reads were about 99.66% and 99.13% respectively (Table S7). Overall, we are

confident our A. lappa genome assembly is of high quality and coverage.

3.3 | Genome annotation 

Repetitive  sequence  content  accounted for  68.46%  of  the  A.  lappa  genome,  the  largest

amount of which was long terminal repeat retrotransposons (62.24%). DNA, LINE, and SINE

classes repeat elements respectively accounted for 3.2%, 0.85%, and 0.03% of the genome

(Table  S8).  From the assembled  A. lappa genome there were 32,771 predicted genes. The

average transcript  size was 1,158.31 bp,  the average length of exons was 229.64 bp,  the

average length of introns was 898.2 bp, and the average number of exons per gene was 5.04

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237



(Table S9). 

We  also  annotated  noncoding  RNA genes  in  the  assembled  genome. Ultimately,  we

predicted 1,648 transfer RNA (tRNA) genes, 1,740 microRNA (miRNA) genes, 2,751 small

nuclear RNA (snRNA) genes, and 796 ribosomal RNA (rRNA) genes in the A. lappa genome

(Table  S10). Accounting for  98.90% of  all  genes in  the  A. lappa genome,  32,425 of the

protein-coding  genes  were  predicted  to  be  functional.  These  protein-coding  genes  were

further analyzed using NR (29,436, 89.8%), Swiss-Prot (24,062, 73.4%), Kyoto Encyclopedia

of Genes and Genomes (KEGG; 22,525, 68.7%), and  gene ontology (GO; 29,646, 90.5%)

(Table S11). 

3.4 | Gene family cluster, divergence time estimation and whole-genome duplication

(WGD)

All protein-coding genes from 11 sequenced genomes (see Section “Materials and methods”)

were clustered into 36,240 gene families (two or more members), including 895 single-copy

orthologs  (Figure 3a).  Among  gene  families of A. lappa,  A. annua,  C. cardunculus, C.

nankingense,  and H. annuus,  682  were  unique  to  A. lappa (Figure 3b).  These  A.  lappa-

specific  gene  families  were  annotated  in  the  KEGG database,  and  their  functional  terms

mainly include vitamin B6 metabolism, sesquiterpenoid, and triterpenoid biosynthesis (Table

S12). These A. lappa-specific gene families were enriched in GO terms of terpene synthase

activity, and cellulose synthase activity, etc. (Table S13). Moreover, many of these genes may

play roles in  the  formation of the cell  wall  in  A. lappa as they are involved in cellulose

synthase (UDP-forming) activities or cellulose metabolic processes.

According  to  the  phylogenetic  tree,  the  result  of  inferring  the  divergence  time  was as
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follows: calibration times of divergence between  Oryza sativa and  Z. mays (40-53 million

years ago, Mya),  C. canephora and  S. lycopersicum (77-91 Mya),  S. lycopersicum and  V.

vinifera (110-124  Mya),  A. annua and  C. nankingense (6-10  Mya),  A. annua and  C.

cardunculus (32-41 Mya)  were obtained from the TimeTree database (Hedges et al., 2006).

The divergence time between  A. lappa and  C. cardunculus was estimated to be around 83

Mya (Figure 3c).

In  A. lappa,  265 gene families (2,212 genes) were substantially expanded, and 125 gene

families (340 genes) were contracted (Figure 3d). Among the expanded gene families, there

are 51 gene families significantly enriched for GO terms (Table S14). In the KEGG pathway,

functional categories of expanded gene families mainly included photosynthesis, fatty acid

metabolism, and biosynthesis of unsaturated fatty acids, etc. (Table S15). Contraction genes

were  annotated  in  ABC transporters,  alpha-linolenic  acid  metabolism, etc. in  the  KEGG

pathway.
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FIGURE 3 The genome evolution of  A. lappa.  (a) The distribution of genes in different

species. (b) Common and unique gene families among the  five species.  (c) Estimation of

divergence time. (d) Expansion and contraction of gene families.

Earlier studies have shown that there is whole-genome triplication (WGT-1) in Asterids II

such as C. cardunculus and H. annuus (Badouin et al., 2017). We performed WGD analysis in

A. lappa. One peak around 0.27 was observed  in the 4DTv values in the  A. lappa genome

(Figure 4a). According to the results of inter-specific synteny analysis, it can be seen that the

A. lappa genome duplication event should be WGT-1 that occurred before the diversification
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of Asterids II (Figure 4b).

FIGURE 4  Whole-genome  duplication analysis  of  the  A.  lappa genome.  (a) 4DTv

distribution  in  A.  lappa and  other  representative  plant  species.  (b) Inter-specific  synteny

analysis of A. lappa genome.

3.5 | Positively selected genes in A. lappa

A. lappa was used as the foreground branch and C. nankingense, A. annua, H. annuus, and C.

cardunculus were used as background branches; 616 candidates (P <0.01, false discovery rate

<0.05) of positively selected genes were identified by likelihood ratio test (LRT) in A. lappa

(Table  S16). The  GO terms of positively selected genes showed that within the biological

process,  assignments  were  mostly  enriched  in  the  organic  cyclic  compound  metabolic

process,  and  molecular  function  was  mainly  grouped  into  signal  transducer  activity  and

molecular  transducer  activity.  The  KEGG pathways  of  positively  selected  genes  include

nicotinate and nicotinamide metabolism and vitamin B6 metabolism, etc.

3.6 | Comparative transcriptome analysis of roots at different developmental
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stages

In addition to being used for medicine, the root of A. lappa is a raw material for food such as

A. lappa tea. Here we compared the transcriptome analysis of the roots of seedling (Root0),

annual  root  (Root1),  and  two-year  root  (Root3),  and  determined  candidate  differentially

expressed genes (DEGs) for each tissue. In all pairwise comparisons (Root1 vs Root0, Root2

vs Root0, and Root2 vs Root1), a total of 30,714 DEGs were identified, of which 270 DEGs

overlapped (Figure 5a). The result showed that in the three-group difference analysis, Root2

vs Root0 had the most DEGs (5,624), of which 2,754 were up-regulated genes, 2,878 were

down-regulated genes.  In addition,  Root2 vs Root1 had the least DEGs (3,082), of which

1,013 were up-regulated genes, 2,069 were down-regulated genes. There were 5,202 DEGs

between Root1 and Root0, of which 2,694 genes were up-regulated and 2,508 genes were

down-regulated  (Figure  5b).  We  used  cluster  Profile  software  to  perform  GO  function

enrichment  analysis  on  DEGs.  It  was  classified  into  three  parts  of  “cell  component”,

“molecular function”, and “biological process” using GO to obtain their functional definition

(padj less than 0.05 was used as the threshold of significant enrichment). DEGs were mainly

enriched  in  GO  terms  such  as  thylakoid  (GO:0009579),  thylakoid  part  (GO:0044436),

photosystem  (GO:0009521),  etc. (Figure  S1).  In  order  to  further  study  the  biological

explanation, all DEGs were mapped to the KEGG database. According to KEGG pathway

enrichment analysis, the DEGs between Root1 vs Root0, Root2 vs Root0, and Root2 vs Root1

were annotated to 107, 105, and 91 pathways, respectively (Figure  S2). There were 13 up-

regulated genes in Phenylpropanoid biosynthesis in Root1 vs Root0, 13 up-regulated genes in

Phenylpropanoid  biosynthesis  in  Root2  vs  Root0 and  5  up-regulated  genes  in
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Phenylpropanoid biosynthesis in Root2 vs Root1.

FIGURE 5 Differentially expressed genes (DEGs) at the three stages of root development.

(a) Venn diagram of the number of DEGs in stage comparisons:  Root1 vs Root0, Root2 vs

Root0, and  Root2  vs  Root1.  (b) The  number  of  up- and down-regulated  DEGs in  three

comparisons. 

3.7 | Metabolism-related genes of A. lappa 

Lignans are phenylpropanoid dimers, which can be divided into eight subgroups (Umezawa et

al., 2003). Arctiin and arctigenin are dibenzylbutyrolactone lignans with numerous biological

effects. The biosynthetic pathway of dibenzylbutyrolactone lignans is well established (Figure

6). The phenylpropanoid pathway is an important secondary metabolic synthesis pathway and

the common starting pathway to lignans,  lignins, and flavonoids  in  plants (Suzuki et  al.,

2007). Phenylpropanoid biosynthesis starts with formation of the phenylalanine. Coniferyl

alcohol is a precursor of synthetic lignans derived from phenylalanine (Ralph et al., 2019,

Ferrer et al., 2008). Lignans can be composed of only one enantiomer, or both enantiomers.

However,  lignins  are  composed  of  many  substructures (Suzuki et  al.,  2007).  Moreover,
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matairesinol  synthesizes  arctigenin  by  an  unidentified  enzyme,  which  is  glycosylated  to

arctiin by an unknown glucosyltransferase (Morimoto et al., 2013). Metabolism-related genes

related to lignan biosynthesis pathway were found in  A. lappa (Table  2).  The growth of  A.

lappa fruit  can be divided into the  following five stages:  pre-flower  stage (Fruit1),  early

flowering stage (Fruit2), flowering stage (Fruit3), late flowering stage (Fruit4), and mature

stage (Fruit5). We identified the main chemical components of the fruits of  A. lappa at five

different growth stages and identified 31 compounds, including 21 lignans. In addition, the

embryonic  parenchyma  cells  or  endocarp  stone  cells of  A.  lappa at  five  different

developmental stages were quantitatively analyzed. There was little accumulation of arctiin or

arctigenin in embryonic parenchyma cells or endocarp stone cells of A. lappa at the first three

stages.  Embryonic  parenchyma cells  and endocarp  stone  cells  produced and accumulated

great quantity of arctiin when A. lappa fruit was in the late flowering stage and mature stage.

The content of arctigenin was the most in endocarp stone cells in the late flowering stage and

decreased in the mature stage (Li et al., 2019) (Figure S3). The late flowering stage and the

mature stage were key stages for the massive accumulation of arctiin. The up-regulated genes

indicated that these genes might be related to the synthesis of arctiin in A. lappa (Figure 7).

Pearson  correlation  coefficients  (|cor|>0.7,  P<0.05)  were  calculated  based  on  the  arctiin

content and related gene expression. The results showed that expression of a  4-coumarate-

CoA  ligase  (4CL)  gene  (ID:  evm.model.000137F.68),  a  dirigent  protein (DIR) gene

(evm.model.000171F.169), and  a  hydroxycinnamoyl  transferase (HCT) gene

(evm.model.000054F.303)  were  highly  correlated  with  embryonic  parenchyma  cells  and

endocarp stone cells of A. lappa (Table S17). Additionally, related metabolic candidate genes
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were  not  annotated  in  the  expansion  and  contraction  of  gene  families  or  the  positively

selected genes. 

FIGURE 6 Lignan biosynthesis pathways in A. lappa. PAL: phenylalanine ammonia lyase;

C4H:  cinnamate  4-hydroxylase;  C3H:  coumarate  3-hydroxylase;  COMT:  catechol-O-

methyltransferase;  4CL:  4-coumarate-CoA  ligase;  CCoAOMT:  caffeoyl-CoA  O-

methyltransferase;  CCR: cinnamoyl  CoA  reductase;  CAD:  cinnamyl  alcohol

dehydrogenase;  HCT: hydroxycinnamoyl  transferase;  DIR:  dirigent  protein;  PLR:

pinoresinol/ lariciresinol reductase; SIRD: ecoisolariciresinol dehydrogenase.

TABLE 2 Statistics of metabolism-related genes of lignan 

Gene name A. lappa C. nankingense A. annua H. annuus C. cardunculus

4-coumarate-CoA ligase (4CL) 8 12 12 15 10

cinnamate-4-hydroxylase (C4H) 2 2 5 3 2

caffeoyl-CoA O-methyltransferase 6 32 14 21 6
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(CCOAOMT)

cinnamoyl-CoA reductase (CCR) 2 5 7 4 2

phenylalanine ammonia-lyase (PAL) 5 5 6 9 5

coumarate3-hydroxylase (C3H) 2 2 4 2 2

cinnamyl alcohol dehydrogenase (CAD) 8 13 7 14 10

caffeic acid/5-hydroxy-ferulic acid O-

methytransferase (COMT)
5 13 20 13 2

dirigent protein (DIR) 3 7 7 6 2

hydroxycinnamoyl transferase (HCT) 5 21 13 22 5

pinoresinol/lariciresinol reductase (PLR) 3 9 13 16 7

ecoisolariciresinol dehydrogenase (SIRD) 6 15 12 15 8



FIGURE 7 Heat map of lignan biosynthesis-related genes in five different stages of A. lappa.

4 | DISCUSSION
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In this paper,  A. lappa was sequenced  using an Illumina HiSeq platform, and  the genome

sequence  was  assembled  using  PacBio  SMRT  sequencing and  Hi-C sequencing.  The

assembled genome had a contig N50 = 6.88 Mb and scaffold N50 = 91.64 Mb. The 1.70 Gb

contig sequence was anchored on the 18 chromosomes of A. lappa. The assembled A. lappa

genome  size  was  about  1.79  Gb, larger  than  those of  P.  grandiflorus (680  Mb)  and  I.

indigotica  (293.88 Mb), and smaller than  that of  H. annuus (2 Gb) belonging to  the same

family (Kim et al., 2020,  Kang et al., 2020,  Badouin et al., 2017). CEGMA, BUSCO, and

SAMtools were used to evaluate the genome assembly quality and coverage. These analyses

showed the genome assembly was of high quality and coverage.

Repetitive  sequences  make up a  large portion of  the  A.  lappa genome,  accounting for

68.46% of the genome; long terminal repeat retrotransposons accounted for a large portion of

repetitive sequences (62.24%). Transposable elements (TEs) can cause gene recombination or

mutation, which are a great value to molecular breeding. There were 32,771 genes annotated

in the  A. lappa genome, more than that of S. miltiorrhiza (30,478)  but less than  that of  H.

annuus (52,232).

Through the analyses of gene family cluster and divergence time estimation, we found the

evolutionary state of  A.  lappa and  C. cardunculus is  close.  WGD events  are  common in

plants,  and can almost be detected in a large number of sequenced plant genomes. In the

history of angiosperms, many polyploidization events have been discovered, including WGTs

in the common ancestor of core dicots (Ren et al., 2018). The A. lappa WGD event identified

in this study is WGT-1.

Subsequently, 682 unique genes and 265 gene families (2,212 genes) were obtained by
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comparative  analysis  of  A.  lappa genome.  The  results  are  conducive to  the  location  and

screening of genes related to specific traits of A. lappa in the future. At the same time, a total

of 616 positive selection candidate genes were compared, which were the result of the long-

term evolution of A. lappa. 

Comparative  transcriptome  analysis  is  a  useful  and  routine  method  for  studying  the

spatiotemporal  patterns  of  gene  expression (Higuchi et  al.,  1990).  DEGs are  one  of  the

fundamental reasons for the diversity of cell morphology and function, and they are also the

mechanistic basis  for  plant  growth  and  development  along  with  other physiological  and

pathological  processes.  In this study, we first  identified three groups of DEGs in roots at

different developmental stages, and then identified genes that were up-regulated  or down-

regulated  in  each  comparison.  Some  of  the  up-regulated  genes  are  involved  in

Phenylpropanoid  biosynthesis,  which  is  the  upstream  pathway  of  lignin  and  lignans

biosynthesis. With the growth of plants, the roots of A. lappa gradually fibrosis. These data

will help us understand the development process of the  A. lappa root and genes that play a

key role in A. lappa development.

In the analysis of lignan metabolism-related genes in  A. lappa,  in addition to  A. lappa,

other plants of the Asteraceae are also enriched in these genes. However, arctiin components

were not  reported in these plants,  indicating that  the same gene played different  roles  in

different plants, and that there might be other factors affecting the synthesis of arctiin. These

data provide a reference for the study of the synthetic pathways of arctinin and arctigenin and

serve as a valuable resource for A. lappa biology. In the future, we will conduct further gene

function verification studies on candidate genes.
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CODE AVAILABILITY

The  execution  of  this  work  involved  many  software  tools,  whose  versions,  settings  and

parameters are described below. 

(1) FALCON: version 3.1;  (2) LACHESIS: version 201701;  (3) BWA: version 0.7.8,

default  parameters;  (4)  Tandem  Repeat  Finder: version  409,  default  parameters;  (5)

RepeatMasker: version  4.0.5,  default  parameters;  (6)  Repbase: version  15.02;  (7)

RepeatModeler: version 1.0.11, default parameters; (8) RepeatScout: version 1.0.5, default

parameters;  (9) LTR_FINDER: version 1.0.7, default parameters;  (10)  Augustus: version

2.5.5,  default  parameters;  (11)  GENSCAN: version 1.0,  default  parameters;  (12)  geneid:

version 1.4, default parameters; (13) GlimmerHMM: version 3.0.2, default parameters; (14)

SNAP: version  11-29-2013;  (15)  BLAST: version  2.2.26,  default  parameters; (16)

GeneWise: version 2.2.0, default parameters; (17) TopHat: version 2.0.8, default parameters;

(18)  CEGMA:  version  2.5;  (19)  Trinity: version  2.4.0,  default  parameters; (20)  PASA:

version 2.3.3, default parameters; (21) EVidenceModeler: version 1.1.1, default parameters;

(22)  InterPro: version 5.16, default parameters;  (23) Pfam database: version 03-30-2016;

(24) InterProScan: version 4.8, default parameters; (25) NR database: version 08-10-2015;

(26)  KEGG database:  version 08-31-2015;  (27) SwissProt database: version 05-24-2016;

(28) HMMER: version 3.1b1, default parameters; (29) tRNAscan-SE: version 1.3.1, default

parameters; (30) BUSCO: version 3.0.2, Embryophyta Version odb9.
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