References
Addo-Fordjour, P. & Rahmad, Z.B. (2015). Patterns of liana abundance,
reproductive traits and liana-tree relationships in relation to forest
management in a tropical forest in Ghana. J. Sustain. For. , 34,
832–857.
Aragão, L.E., Malhi, Y., Roman-Cuesta, R.M., Saatchi, S., Anderson, L.O.
& Shimabukuro, Y.E. 2007. Spatial patterns and fire response of recent
Amazonian droughts. Geophysical Research Letters , 34: L07701.
Bongers, F., Ewango, C.E., van der Sande, M.T. and Poorter, L. (2020).
Liana species decline in Congo basin contrasts with global patterns.Ecology , 101, p.e03004.
Blomberg, S.P., Garland, T., Ives, A.R., Lomberg, S.I.P.B. & Arland,
T.H.G. (2003). Testing for phylogenetic signal in comparative data:
behavioral traits are more labile. Evolution , 57, 717–45.
Bonan, G.B. (2008). Forests and climate change: forcings, feedbacks, and
the climate benefits of forests. Science, 320, 1444–1449.
Carlquist, S. (1991). Anatomy of vine and liana stem. In: The
Biology of Vines , ed(s). Putz, F.E. & Mooney, H.A. Cambridge
University Press, Cambridge, UK, pp. 53-71.
Carter, G.A., Teramura, A.H., Journal, A. & Jul, N. (1988). Vine
photosynthesis and relationships to climbing mechanics in a forest
understory. Am. J. Bot. , 75, 1011–1018.
Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F.S. & Golicher,
D.J. (2012). Taxonstand: An r package for species names standardisation
in vegetation databases. Methods Ecol. Evol ., 3, 1078–1083.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne,
E. A. (2009). Towards a worldwide wood economics spectrum. Ecol.
Lett. , 12, 351–366.
Chen, Y.-J.J., Bongers, F., Zhang, J.-L.L., Liu, J.-Y.Y. & Cao, K.-F.
(2014). Different biomechanical design and ecophysiological strategies
in juveniles of two liana species with contrasting growth habit.Am. J. Bot. , 101, 925–934.
Clark, D.B. & Clark, D.A. (1990) Distribution and effects on tree
growth of lianas and woody hemiepiphytes in a Costa Rican Tropical Wet
Forest. J.Trop. Ecol. , 6, 321-331.
Couvreur, T.L., Kissling, W.D., Condamine, F.L., Svenning, J.C., Rowe,
N.P. & Baker, W.J. (2015). Global diversification of a tropical plant
growth form: Environmental correlates and historical contingencies in
climbing palms. Frontiers in Genetics , 5, 1–18.
https://doi.org/10.3389/fgene.2014.00452
Darwin, C. 1875. The movements and habits of climbing plants. John
Murray, London, UK.
Dewalt, S.J., Schnitzer, S.A. & Denslow, J.S. (2000). Density and
diversity of lianas along a chronosequence in a central Panamanian
lowland forest. J. Trop. Ecol. , 16, 1–19.
di Porcia e Brugnera, M., Fischer, R., Taubert, F., Huth, A. &
Verbeeck, H. (2020). Lianas in silico, ecological insights from a model
of structural parasitism. Ecol. Modell. , 431, 109159.
Díaz, S. & Cabido, M. (1997). Plant functional types and ecosystem
function in relation to global change. J. Veg. Sci. , 8, 463–474.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S.,
Dray, S., et al. (2015). The global spectrum of plant form and
function. Nature , 529, 167-171.
Durigon, J., Durán, S.M. & Gianoli, E. (2013). Global distribution of
root climbers is positively associated with precipitation and negatively
associated with seasonality. J. Trop. Ecol. , 29, 357–360.
Feeley, K.J., Avies, S.T.J.D., Erez, R.O.P. & Ubbell, S.T.P.H. (2011).
Directional changes in the species composition of a tropical forest.Ecology , 92, 871–882.
Gallagher, R. V. & Leishman, M.R. (2012). A global analysis of trait
variation and evolution in climbing plants. J. Biogeogr. , 39,
1757–1771.
Gentry, A. H. (1991). The distribution and evolution of climbing plants.
In: The Biology of Vines , ed(s). Putz, F.E. & Mooney, H.A.
Cambridge University Press, Cambridge, UK, pp. 3-42.
Gerwing, J.J., Schnitzer, S.A., Burnham, R.J., Bongers, F., Chave, J.,
DeWalt, S.J., Ewango, C.E.N., Foster, R., Kenfack, D., Martínez-Ramos,
M., Parren, M., Parthasarathy, M., Pérez-Salicrup, D.R., Putz, E.F. &
Thomas, D.W. 2006. A standard protocol of liana censuses.Biotropica , 38, 256-261.
Gillman, L.N., Wright, S.D., Cusens, J., McBride, P.D., Malhi, Y. &
Whittaker, R.J. (2015). Latitude, productivity and species richness.Glob. Ecol. Biogeogr. , 24, 107–117. https ://doi.
org/10.1111/geb.12245
Gouveia, S.F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. &
Ferrari, S.F. (2014). Forest structure drives global diversity of
primates. J. Anim. Ecol. , 83, 1523–1530.
Hegarty, E.E. (1991). Vine-host interactions. In: The Biology of
Vines , ed(s). Putz, F.E. & Mooney, H.A. Cambridge University Press,
Cambridge, UK, pp. 347-375.
Ichihashi, R. & Tateno, M. (2011). Strategies to balance between light
acquisition and the risk of falls of four temperate liana species: to
overtop host canopies or not? J. Ecol. , 99, 1071–1080.
Ichihashi, R. & Tateno, M. (2015). Biomass allocation and long-term
growth patterns of temperate lianas in comparison with trees. New
Phytol. 207, 604-612.
Iida, Y., Poorter, L., Sterck, F.J., Kassim, A.R., Kubo, T., Potts,
M.D., et al. (2012). Wood density explains architectural
differentiation across 145 co-occurring tropical tree species.Funct. Ecol. , 26, 274–282.
Ilbert, B.E.G., Right, S.J.O.W., Andau, H.E.C.M.U., Itajima, K.A.K.,
Gilbert, B., Al, E.T., et al. (2006). Life history trade-offs in
tropical trees and lianas. Ecology , 87, 1281–1288.
Ingwell, L.L., Wright, S.J., Becklund, K.K., Hubbell, S.P., Schnitzer,
S.A., Joseph Wright, S., et al. (2010). The impact of lianas on
10 years of tree growth and mortality on Barro Colorado Island, Panama.J. Ecol. , 98, 879–887.
Isnard, S. & Silk, W.K. (2009). Moving with climbing plants from
Charles Darwin’s time into the 21st century. Am. J. Bot. , 96,
1205–1221.
Jin, Y. & Hong, Q. (2019). V.PhyloMaker: an R package that can generate
very large phylogenies for vascular plants. Ecography , 42,
1353-1359.
Laughlin, D.C., Gremer, J.R., Adler, P.B., Mitchell, R.M. & Moore, M.M.
(2020). The net effect of functional traits on fitness. Trends
Ecol. Evol. , 35, 1037-1047.
Lefcheck, J.S. (2016). piecewise SEM: Piecewise structural equation
modelling in r for ecology, evolution, and systematics. Methods
Ecol. Evol. , 7, 573–579.
Lefsky, M.A. (2010). A global forest canopy height map from the Moderate
Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter
System. Geophysical Research Letters , 37, L15401. https ://
doi.org/10.1029/2010G L043622
Letcher, S.G. & Chazdon, R.L. (2009). Lianas and self-supporting plants
during tropical forest succession. For. Ecol. Manage. , 257,
2150–2156.
Lohmann, L.G. (2003). Phylogeny, classification, morphological
diversification and biogeography of Bignonieae (Bignoniaceae, Lamiales)
(PhD thesis). University of Missouri-St. Louis, St. Louis, MI.
Lohmann, L.G., Bell, C.D., Calió, M.F. & Winkworth, R.C. (2013).
Pattern and timing of biogeographical history in the Neotropical tribe
Bignonieae (Bignoniaceae). Bot. J. Linn. Soc. , 171, 154–170.
Maitner, B.S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán,
S.M., … & Enquist, B. J. (2018). The bien r package: A tool to access
the Botanical Information and Ecology Network (BIEN) database.Methods Ecol. Evol ., 9 , 373-379.
Medina-Vega, J.A., Bongers, F., Schnitzer, S.A. & Sterck, F. J. (2021).
Lianas explore the forest canopy more effectively than trees under drier
conditions. Func. Ecol. , 35 , 318-329.
Meunier, F., Verbeeck, H., Cowdery, B., Schnitzer, S.A., Smith‐Martin,
C.M., Powers, J.S., Xu, X., Slot, M., De Deurwaerder, H.P., Detto, M.
and Bonal, D. (2021). Unraveling the relative role of light and water
competition between lianas and trees in tropical forests: A vegetation
model analysis. J. Ecol. , 109, 519-540.
Meyer, L., Diniz-Filho, J.A.F., Lohmann, L.G., Hortal, J., Barreto, E.,
Rangel, T., et al. (2020). Canopy height explains species
richness in the largest clade of Neotropical lianas. Glob. Ecol.
Biogeogr. , 29, 26-37.
Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B. &
Westoby, M. (2005). A brief history of seed size. Science , 307,
576–80.
Pausas, J.G. & Austin, M.P. (2001). Patterns of plant species richness
in relation to different environments: An appraisal. J. Veg.
Sci. , 12, 153–166. https ://doi.org/10.2307/3236601
Powers, J. S. (2015). Reciprocal interactions between lianas and forest
soil. In Ecology of lianas , ed(s). S. A. Schnitzer, F. Bongers,
R. J. Burnham, & F. E. Putz. Wiley Blackwell, Oxford, UK, pp. 175–187.
Putz, F.E. (1984). The natural history of lianas on Barro Colorado
Island, Panama. Ecology , 65, 1713–1724.
Putz, F. E. & Chai, P. (1987). Ecological studies of lianas in Lambir
national park, Sarawak, Malaysia. J. Ecol. , 75, 523-531.
Putz, F.E. & Holbrook, N.M. (1991). Biomechanical studies of vines. In:The Biology of Vines , ed(s). Putz, F.E. & Mooney, H.A.
Cambridge University Press, Cambridge, United Kingdom, pp. 73-97.
Reich, P.B. (2014). The world-wide ‘fast-slow’ plant economics spectrum:
a traits manifesto. J. Ecol. , 102, 275–301.
Rowe, N. & Speck, T. (2004). Plant growth forms: an ecological and
evolutionary perspective. New Phytol. , 166, 61–72.
Schnitzer, S.A. (2005). A mechanistic explanation for global patterns of
liana abundance and distribution. Am. Nat. , 166, 262–76.
Schnitzer, S.A. (2018). Testing ecological theory with lianas. New
Phytol. , 220, 366–380.
Schnitzer, S.A. & Bongers, F. (2002). The ecology of lianas and their
role in forests. Trends Eco. Evol. , 17, 223–230.
Schnitzer, S.A. & Bongers, F. (2011). Increasing liana abundance and
biomass in tropical forests: emerging patterns and putative mechanisms.Ecol. Lett. , 14, 397–406.
Schnitzer, S.A., van der Heijden, G.M. & Powers, J.S. (2016). Reply to
Verbeeck and Kearsley: Addressing the challenges of including lianas in
global vegetation models. Proc. Natl Acad. Sci. , 113 ,
E5-E6.
Schnitzer, S.A., Carson, W.P. & Letters, E. (2010). Lianas suppress
tree regeneration and diversity in treefall gaps. Ecol. Lett. ,
13, 849–57.
Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000). The impact of
lianas on tree regeneration in tropical forest canopy gaps: evidence for
an alternative pathway of gap-phase regeneration. J. Ecol. , 88,
655–666.
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. (2011). Mapping
forest canopy height globally with spaceborne lidar. Journal of
Geophysical Research , 116, G04021. https ://doi.org/10.1029/2011J
G001708
Speck, T. & Burgert, I. (2011). Plant Stems: Functional Design and
Mechanics. Annu. Rev. Mater. Res. , 41, 169–193.
Sperotto, P., Acevedo-Rodríguez, P., Vasconcelos, T.N.C. & Roque, N.
(2020). Towards a standardization of terminology of the climbing habit
in plants. Bot. Rev. , 86, 180-210.
Stevens, G.C. (1987). Lianas as structural parasites: the Bursera
simaruba example. Ecology 68: 77-81.
Ustin, S.L. & Gamon, J.A. (2010). Remote sensing of plant functional
types. New Phytol. , 186, 795–816.
van der Heijden, G.M.F. & Phillips, O.L. (2008). What controls liana
success in Neotropical forests? Glob. Ecol. Biogeogr. , 17,
372–383.
van der Heijden, G.M.F. & Phillips, O.L. (2009). Liana infestation
impacts tree growth in a lowland tropical moist. Biogeosciences ,
6, 2217–2226.
Vaughn, K.C. & Bowling, A.J. (2011). Biology and physiology of vines.Hortic. Rev. (Am. Soc. Hortic. Sci.) , 38, 1–21.
Verbeeck, H. & Kearsley, E. (2016). The importance of including lianas
in global vegetation models. Proc. Natl Acad. Sci. , 113 ,
E4-E4.
Verheijen, L.M., Aerts, R., Bönisch, G., Kattge, J. & Van Bodegom, P.M.
(2016). Variation in trait trade-offs allows differentiation among
predefined plant functional types: Implications for predictive ecology.New Phytol. , 209, 563–575.
Westoby, M., Falster, D.S., Molest, A.T., Vesk, P.A. & Wright, I. J.
(2002). Plant ecological strategies: Some leading dimensions of
variation between species. Annu. Rev. Ecol. Syst. , 33, 125-159.
Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier,
E., Hikosaka, K., et al. (2005). Assessing the generality of
global leaf trait relationships. New Phytol. , 166, 485–496.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z.,
Bongers, F., et al. (2004). The worldwide leaf economics
spectrum. Nature , 12, 821–827.
Wyka, T.P., Oleksyn, J., Karolewski, P. & Schnitzer, S.A. (2013).
Phenotypic correlates of the lianescent growth form: a review.Ann. Bot. , 112, 1667–81.
Yorke, S.R., Schnitzer, S.A., Mascaro, J., Letcher, S.G. & Carson, W.P.
(2013). Increasing liana abundance and basal area in a tropical forest:
The contribution of long-distance clonal colonization,Biotropica , 45, 317–324.