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Abstract5

We consider the nonautonomous modified Swift-Hohenberg equation

ut + ∆2u + 2∆u + au + b|∇u|2 + u3 = g(t, x)

on a bounded smooth domain Ω ⊂ Rn with n 6 3. We show that, if |b| < 4 and the external force g6

satisfies some appropriate assumption, then the associated process has a unique pullback attractor in the7

Sobolev space H2
0 (Ω). Based on this existence, we further prove the existence of a family of invariant8

Borel probability measures and a statistical solution for this equation.9
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1 Introduction14

In this article, we study the existence of invariant Borel probability measures and statistical solutions for
the following nonautonomous problem

ut + ∆2u+ 2∆u+ au+ b|∇u|2 + u3 = g(t, x), x ∈ Ω, t > τ, (1.1)

u =
∂u

∂ν
= 0, x ∈ ∂Ω, t ≥ τ, (1.2)

u(x, τ) = φ(x), x ∈ Ω, (1.3)

where Ω is an open connected bounded smooth domain in Rn, n 6 3, a and b are arbitrary real constants,15

ut = ∂u
∂t , g is the forcing satisfying g ∈ L2

loc(R, L2(Ω)), ν is the external normal vector on the boundary of16

Ω and φ is the initial datum. The equation (1.1) is known in the literature as the modified Swift-Hohenberg17

equation, and when b = 0, the equation (1.1) is known as the Swift-Hohenberg equation. The modified18

term b|∇u|2, reminiscent of the Kuramoto-Sivashinsky equation, comes from the study of various pattern19

formation phenomena involving some kind of phase turbulence or phase transition ( [1, 2]), which prevents20

the symmetry u→ −u.21

The Swift-Hohenberg type equation was introduced in 1977 by Swift and Hohenberg ( [3]) in the research22

of Rayleigh-Bénard’s convective hydrodynamics (see also [4]), arising in geophysical fluid flows in the at-23

mosphere, oceans and the earth’s mantle. It is closely contacted with nonlinear Navier-Stokes equations24

coupled with the temperature equation. Later, it has also played a valuable role extensively in the study of25

plasma confinement in toroidal devices ( [5]), viscous film flow, lasers ( [6]) and pattern formation ( [7]).26

In the previous work, most attention was paid to the existence of attractors (global attractor [8, 9],27

uniform attractor [10], pullback attractor [11, 12] and random attractor [12–14]), bifurcations (dynamical28

bifurcations [15,16], nontrivial-solution bifurcations [17]) and optimal control ( [18–21]) of different types of29

modified Swift-Hohenberg equations. Wang, Yang and Duan presented in [22] a lower number of recurrent30

solutions for the nonautonomous case by topological methods (see more in [23–25]). Nevertheless, up to our31

knowledge, invariant measures and statistical solutions of (1.1) have been barely discussed until now.32

The motivation of the current article is to investigate the existence of invariant Borel probability measures33

and statistical solutions for the nonautonomous modified Swift-Hohenberg equation. These two concepts are34

very useful in the research of turbulence (see [26]), an important research target in fluid dynamics. This is35

mainly due to the fact that some time-average quantities essentially measure several important aspects of36

turbulent flows. Later, the invariant measures and statistical properties of dissipative systems were studied37
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in a series of references. For instance, Wang considered the upper semi-continuity of stationary statistical1

properties for dissipative systems in [27].  Lukaszewicz, Real and Robinson in [28] constructed the invariant2

measures for general continuous dynamical systems on metric spaces by using the generalized Banach limit.3

For a much wider class of dissipative semigroups, Chekroun and Glatt-Holtz [29] also applied the generalized4

Banach limit to constructing the invariant measures, but they generalized and simplified the proofs of [27,28].5

Recently, a series of works developed some techniques to provide a construction of invariant measures for6

nonautonomous systems with minimal assumptions on the underlying dynamical process (see Foias et al. [26],7

Wang [27] and  Lukaszewicz et al. [28, 30, 31]). Nowadays, these theories have been employed to establish8

the existence of invariant measures and (trajectory) statistical solutions for some evolution equations, (see9

e.g. [32,35–47] and the references therein). However, invariant measures in these works were usually discussed10

in a closed subspace of L2(Ω) (see [26,30,31,33,34,45]) or its own product space ( [47]), and their regularity11

can be considered ( [26]). In this article we directly investigate the invariant measures and statistical solutions12

in a more regular Sobolev space H2
0 (Ω) (denoted by V in the sequel).13

The solution operator of problem (1.1)-(1.3) generates a norm-to-weak continuous process {U(t, τ)}t>τ on14

the phase space V . We will use the abstract theory for dissipative nonautonomous systems in [31, Theorem15

3.1] to construct the invariant measures. Accordingly, we need first to obtain the existence of pullback16

attractors in V . To be frank, for the argument, we can use the procedure in [11], in which the two-17

dimensional modified Swift-Hohenberg equation was considered. Nevertheless, in our article, we not only18

extend the dimensional from two to the range n = 1, 2, 3, but also relax the restriction imposed on the19

nonautonomous term g(t, x) (see the assumption (A) in Subsection 2.1) to some extent. This is sufficient to20

ensure the existence of pullback attractors.21

Besides the existence of pullback attractor of {U(t, τ)}t>τ , we also require the boundedness and continuity22

of the mapping τ 7→ U(t, τ)φ on (−∞, t] for every t ∈ R and φ ∈ V . However, this property is not trivial23

(see Lemmas 3.3 and 3.2). The continuous dependence of the nonautonomous dynamical system on their24

initial times differs essentially from that of the autonomous one. The continuity of the V -valued function25

t 7→ U(t, τ)φ does not imply the convergence ‖U(t, τ)φ − φ‖V → 0 as τ → t, due to the dependence of the26

continuity on τ . Actually, when τ → t−, U(t, τ)φ also changes simultaneously with different initial times τ .27

This is caused naturally by the nonautonomy. We will take advantage of the structure of the nonautonomous28

modified Swift-Hohenberg equation to cope with this problem.29

The remainder of this article is organized as follows. In Section 2, we give the assumption on g and some30

estimates for the solutions of the problem (1.1)-(1.3) to guarantee the existence of the pullback attractor. In31

the last section, we establish the existence of invariant Borel probability measures and statistical solutions.32

2 Existence of Pullback Attractors33

In this section we first introduce some basic notations that will be used through this article, give the34

existence of the weak solution, and then estimate the solutions of the problem (1.1)-(1.3) to ensure the35

existence of the existence of pullback attractors. We will always assume that n = 1, 2, 3.36

2.1 Basic notations and weak solutions37

For metric spaces X and Y , we conventionally denote by C(X,Y ) (Cb(X,Y )) the collection of continuous
(and bounded) functionals from X to Y . When Y = R, we simply use C(X) (Cb(X)) to represent C(X,R)
(Cb(X,R)). We also use the following abbreviations,

H = L2(Ω), V = H2
0 (Ω), W = H2

0 (Ω) ∩H4(Ω), ‖ · ‖ = ‖ · ‖2, where ‖ · ‖p = ‖ · ‖Lp(Ω)

for each p > 1, and choose ‖∆ · ‖ as the norm of V . Let V ′ and W ′ be the dual spaces of V and W ,38

respectively. At the same time, we denote by (·, ·) the inner product of L2(Ω), by 〈·, ·〉 the dual pairing39

between V ′ and V and by 〈〈·, ·〉〉 the dual pairing between W ′ and W , respectively. Obviously, we have the40

following dense embeddings41

W ⊂ V ⊂ H ⊂ V ′ ⊂W ′. (2.1)
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Let A := ∆2 : D(A) = W → H be the principal operator of (1.1). The operator A is positive, self-adjoint and
possesses a basis of eigenfunctions {ωi}i∈N+

, which is orthonormal in H and associated with the eigenvalues
{λi}i∈N+

such that
0 < λ := λ1 < λ2 6 λ3 6 · · · 6 λi 6 · · · → +∞.

Then {ωi}i∈N+
can be assumed to be an orthonormal basis of H.1

In the sequel, we write g(·, x) as g(·) : R → H with g(t)x = g(t, x). Then in the sense of distribution2

D(τ,+∞;W ′), the problem (1.1)-(1.3) can be written as3

ut +Au+ 2∆u+ au+ b|∇u|2 + u3 = g(t), t > τ, u(τ) = φ ∈ V. (2.2)

We now specify the definition of solutions to the problem (2.2).4

Definition 2.1. A function5

u ∈ C([τ,+∞), V ) ∩ L2(0, T ;W ) for each T ∈ (τ,+∞), (2.3)

is called a global weak solution of (2.2), provided that the generalized derivative u′(t) of u(t) with respect6

to t satisfies u′(t) ∈W ′ for all t > τ , and (2.2) holds in the sense of distribution D(τ,+∞;W ′).7

In order to obtain the existence of the pullback attractor and statistical solutions for the problem (2.2),8

we need some assumption on the parameter b and the external force g:9

(A) Assume that |b| < 4, g ∈ L2
loc(R, H) and there exists a T0 > 0 and an

α ∈

[
0,

(
n− 4

n− 12

)2

λ

)
such that ‖g(t)‖2 6 βe−αt,

for all t 6 −T0 and some β > 0.10

For each t ∈ R, we define

G(t) :=

∫ t

−∞
eλs‖g(s)‖2ds and G(t) :=

∫ t

−∞
e−

8λs
4−n [G(s)]

12−n
4−n ds.

With this assumption (A), we know that the nonautonomous term g satisfies

G(t), G(t) < +∞ for each t ∈ R.

According to the discussions in [8, 10] and standard methods in [48, 49], under the assumption (A), for11

all τ ∈ R and φ ∈ V , the problem (2.2) is globally well-posed in V and the corresponding weak solution12

u(t, τ ;φ) satisfies (2.3).13

In the following estimates, we denote c as an arbitrary positive constant, which only depends the param-14

eters of the original problem and the assumption (A) (i.e., a, b, λ, n,Ω), and may be different from line to15

line and even in the same line.16

2.2 Existence of pullback attractors17

We here give the necessary estimates of the weak solution of (2.3) to certify the existence of the pullback18

attractors.19

Lemma 2.2. Let the assumption (A) hold. Then for each initial datum φ ∈ V , we have the following
estimate for the solution u(t) = u(t, τ ;φ), for some positive constant C1 = C1(a, b, λ, n,Ω),

‖∆u(t)‖2 +

∫ t

τ

eλ(s−t)‖∆2u(s)‖2ds

6C1

[
1 + eλ(τ−t)‖∆φ‖

2(12−n)
4−n + e−λt[G(t) + G(t)]

]
. (2.4)
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Proof. Let |b| < 4. We first give some estimates of the solutions of (2.2) in H. Taking the inner product of1

(2.2) with u in H and the inequalities2

|(|∇u|2, u)| = 1

2
|(u2,∆u)| 6 1

4
‖∆u‖2 +

1

4
‖u‖44, (2.5)

|(2∆u, u)| 6 4− |b|
8
‖∆u‖2 +

8

4− |b|
‖u‖2, |(g(t), u)| 6 1

2
(‖u‖2 + ‖g(t)‖2)

into consideration, we have

d

dt
‖u‖2 + λ‖u‖2 +

4− |b|
4
‖∆u‖2

6

[(
λ+ 1− 2a+

16

4− |b|

)
‖u‖2 − 4− |b|

2
‖u‖44

]
+ ‖g(t)‖2.

Note that for every solution u, there holds3 (
λ+ 1− 2a+

16

4− |b|

)
‖u‖2 − 4− |b|

2
‖u‖44 6 1 +

2|λ+ 1− 2a+ 16
4−|b| |

2

4− |b|
:= N,

where the constant N is independent of u. Hence we get4

d

dt
‖u‖2 + λ‖u‖2 +

4− |b|
4
‖∆u‖2 6 N + ‖g(t)‖2. (2.6)

Replacing the time variable t with s in (2.6), then multiplying it by eλs and integrating the resulting equality
over [τ, t] with respect to s, we obtain that

‖u(t)‖2 +
4− |b|

4

∫ t

τ

eλ(s−t)‖∆u(s)‖2ds

6eλ(τ−t)‖φ‖2 +
N

λ
+

∫ t

τ

eλ(s−t)‖g(s)‖2ds. (2.7)

Next we show (2.4). From the proof of [22, Lemma 4.3], we see that5

‖∇u‖4 6 c‖∆2u‖
n+4
16 ‖u‖

12−n
16 and ‖u‖6 6 c‖∆2u‖ n12 ‖u‖

12−n
12 . (2.8)

Hence by Hölder inequality and Young’s inequality, we see that

|b(|∇u|2,∆2u)| 6|b|‖∇u‖24‖∆2u‖ 6 c‖∆2u‖
n+12

8 ‖u‖
12−n

8 6
1

8
‖∆2u‖2 + c‖u‖

2(12−n)
4−n , (2.9)

|(u3,∆2u)| 6‖u‖36‖∆2u‖ 6 c‖∆2u‖
n+4
4 ‖u‖

12−n
4 6

1

8
‖∆2u‖2 + c‖u‖

2(12−n)
4−n , (2.10)

|(2∆u,∆2u)| 61

8
‖∆2u‖2 + 8‖∆u‖2, |(g(t),∆2u)| 6 1

8
‖∆2u‖2 + 2‖g(t)‖2. (2.11)

Multiplying (2.2) by ∆2u, integrating the resulting equality over Ω, and combining the inequalities (2.9)-6

(2.11), we have7

d

dt
‖∆u‖2 + λ‖∆u‖2 + ‖∆2u‖2 6 c

(
‖∆u‖2 + ‖u‖

2(12−n)
4−n

)
+ 4‖g(t)‖2, (2.12)

and hence

‖∆u(t)‖2 +

∫ t

τ

eλ(s−t)‖∆2u(s)‖2ds

6eλ(τ−t)‖∆φ‖2 + c

∫ t

τ

eλ(s−t)
(
‖∆u(s)‖2 + ‖u(s)‖

2(12−n)
4−n + ‖g(s)‖2

)
ds,

which, together with (2.7) and (2.1), gives (2.4). This ends the proof.8
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Remark 2.3. The requirement |b| < 4 is attributed to the estimate (2.5). Originally, the ε-Young’s inequality1

can decrease one of the coefficients of ‖∆u‖2 and ‖u‖44, but each case except the choice in (2.5) will make2

the other coefficient more than 1
4 , so that we have to let |b| < b̂ for some b̂ ∈ (0, 4) to ensure the following3

estimates to go smoothly.4

To introduce the pullback attractors, we adopt the attractor theory of the norm-to-weak continuous5

process in [11,50]. Here we will not repeat much of those definitions.6

Let P(V ) be the family of all nonempty subsets of V . A nonautonomous set D̂ = {D(t)}t∈R is a subset of7

P(V ) indexed by time t. Given another nonautonomous set D̂′ = {D′(t)}t∈R, we use “D̂′ ⊆ D̂” to indicate8

that D′(t) ⊆ D(t) for each t ∈ R. Let D be a universe in P(V ), i.e., a given collection of nonautonomous9

sets such that whenever D̂ ∈ D and D̂′ ⊆ D̂, we have D̂′ ∈ D.10

The global weak solution of (2.2) generates a norm-to-weak process {U(t, τ)}t>τ in V by setting U(t, τ)φ =11

u(t, τ ;φ) for each φ ∈ V . A nonautonomous set B̂ = {B(t)}t∈R is pullback D-absorbing for {U(t, τ)}t>τ ,12

if for each t ∈ R and D̂ = {D(t)}t∈R ∈ D, there exists a T (t, D̂) 6 t such that U(t, τ)D(τ) ⊆ B(t) for all13

τ 6 T (t, D̂). What we emphasize is the concept — pullback D-flattening, which is called (PDC) in [11, 50].14

In this article we use the calling of Kloeden and Langa [51].15

Definition 2.4. The process {U(t, τ)}t>τ is said to be pullback D-flattening, provided that for each t ∈ R,16

D̂ = {D(t)}t∈R ∈ D and ε > 0, there exist T = T (D̂, t, ε) 6 t and a finite-dimensional subspace V1 of V17

such that18

1. P (∪τ6TU(t, τ)D(τ)) is bounded, and19

2. ‖(I − P )(∪τ6TU(t, τ)φ)‖V < ε, for all φ ∈ D(τ),20

where P : V → V1 is a bounded projection.21

Now denote by R the set of all functions r : R→ (0,+∞) such that22

lim
t→−∞

eλt[r(t)]
2(12−n)

4−n = 0. (2.13)

Let Dλ be the class of all families D̂ = {D(t)}t∈R ⊂ B(V ) such that D(t) is nonempty and D(t) ⊂ B(r(t))23

for some r ∈ R, where B(V ) denotes the set of all bounded subsets of V and B(r(t)) denotes the closed ball24

in V centered at the origin with radius r(t).25

We are going to prove the pullback Dλ-flattening of {U(t, τ)}t>τ . The procedure of the proof is a modifi-26

cation of that of [11, Theorem 4.1], according to the relaxation of the assumption (A) relative to that in [11].27

We present it here for the reader’s convenience.28

Lemma 2.5. Under the assumption (A), the process {U(t, τ)}t>τ is pullback Dλ-flattening.29

Proof. Let Vk be the closed subspace of V spanned by {ωi}ni=1 and Pk : V → Vk be the corresponding
projection with k > 2. We denote that

u = Pku+ (1− Pk)u := u1 + u2.

Fix t ∈ R, ε > 0 and D̂ = {D(t)}t∈R ∈ Dλ and consider φ ∈ D(τ) for some τ < t. By the setting above,30

there is a function r : R→ R+ satisfying (2.13) such that31

‖∆φ‖ 6 r(τ). (2.14)

Then by (2.4), we have

‖∆u1(t, τ ;φ)‖2 6 ‖∆u(t)‖2 6 C1

[
1 + eλ(τ−t)[r(τ)]

2(12−n)
4−n + e−λt[G(t) + G(t)]

]
.

By (2.13), we have a T = T (D̂, t) 6 t such that32

‖∆u1(t)‖2 6 ‖∆u(t)‖2 6 C1

[
2 + e−λt[G(t) + G(t)]

]
(2.15)
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for all τ 6 T , which turns out the condition (1) of Definition 2.4.1

Now we check the condition (2) of Definition 2.4. Take into consideration the scalar product of (2.2) and
∆2u2 in H. Similar to the treatment above (2.12) and owing to embeddings and λk‖∆u2‖2 6 ‖∆2u2‖2, we
have

d

dt
‖∆u2‖2 + λk‖∆u2‖2 6 c

(
‖∆u‖2 + ‖u‖

2(12−n)
4−n + ‖g(t)‖2

)
and hence

‖∆u2(t, τ ;φ)‖2 6ceλk(τ−t)‖∆φ‖2 + c

∫ t

τ

eλk(s−t)‖∆u(s)‖2ds

+ c

∫ t

τ

eλk(s−t)‖u(s)‖
2(12−n)

4−n ds+ c

∫ t

τ

eλk(s−t)‖g(s)‖2ds

:= I1 + I2 + I3 + I4. (2.16)

Fix t ∈ R, ε > 0 and D̂ ∈ Dλ as above. Note that by (2.14)

I1 6 ceλ(τ−t)
[
[r(τ)]

2(12−n)
4−n + 1

]
.

We thus deduce from (2.13) the existence of T1 = T1(D̂, t, ε) 6 t such that2

I1 <
ε

4
, whenever τ 6 T1. (2.17)

By (2.4) and (2.14), we have

I2 6c
∫ t

τ

eλk(s−t)
[
1 + eλ(τ−s)[r(τ)]

2(12−n)
4−n + e−λs[G(s) + G(s)]

]
ds

6c
∫ t

τ

eλk(s−t)ds+ c
[
eλτ [r(τ)]

2(12−n)
4−n + [G(t) + G(t)]

]
e−λkt

∫ t

τ

e(λk−λ)sds

6
c

λk
+

ce−λt

λk − λ

[
eλτ [r(τ)]

2(12−n)
4−n + [G(t) + G(t)]

]
. (2.18)

By (2.13) and (2.18), we obtain a T2 = T2(D̂, t, ε) 6 t and an K2 > 0 such that3

I2 <
ε

4
, whenever τ 6 T2 and k > K2. (2.19)

Applying (2.7) in I3, we have

I3 6
c

λk
+ c

[
eλτ [r(τ)]

2(12−n)
4−n e

8λτ
4−n + [G(t)]

12−n
4−n λ

]
e−λkt

∫ t

τ

e(λk− 12−n
4−n λ)sds

6
c

λk
+

c(4− n)

(4− n)λk − (12− n)λ
e−

12−n
4−n λt

[
eλτ [r(τ)]

2(12−n)
4−n e

8λτ
4−n + [G(t)]

12−n
4−n λ

]
.

The existence of T3 6 t and K3 > 0 can be obtained with no hard, such that4

I3 <
ε

4
, when τ 6 T3 and k > K3. (2.20)

As to I4, we know that for each δ > 0,

I4 6c
∫ t−δ

−∞
eλk(s−t)‖g(s)‖2ds+ c

∫ t

t−δ
eλk(s−t)‖g(s)‖2ds

6ce−(λk−λ)δe−λtG(t− δ) + c

∫ t

t−δ
‖g(s)‖2ds. (2.21)
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Since g ∈ L2
loc(R, H), we can find a δ0 > 0 sufficiently small such that1

c

∫ t

t−δ0
‖g(s)‖2ds <

ε

8
. (2.22)

For the δ0 above, since −δ0 < 0, we can further find from (3.1) an K4 > 0 sufficiently large such that when2

k > K4,3

ce−(λk−λ)δ0e−λtG(t− δ0) <
ε

8
. (2.23)

Then it follows immediately from (2.21), (2.22) and (2.23) that4

I4 <
ε

4
, whenever k > K4. (2.24)

Define
T = min{T1, T2, T3} and K = max{K2,K3,K4}.

One easily sees from (2.16), (2.17), (2.19), (2.20) and (2.24) that when k > K and τ 6 T ,

‖∆u2(t, τ ;φ)‖2 < ε for all φ ∈ D(τ),

and the condition (2) of Definition 2.4 is satisfied, which accomplishes the proof.5

Now we are ready to give the existence of the pullback attractors.6

Theorem 2.6. Under the assumption (A), the process {U(t, τ)}t>τ has a unique pullback Dλ-attractor.7

Proof. According to [11, Theorem 2.1] (or [50]) and Lemma 2.5, it suffices to construct a pullback Dλ-8

absorbing set B̂ in Dλ for {U(t, τ)}t>τ .9

Indeed, let
r2
0(t) = C1

[
2 + e−λt(G(t) + G(t))

]
and B̂ = {B(t)}t∈R with B(t) = {φ ∈ V : ‖∆φ‖ 6 r0(t)}. By the assumption (A), let t < −T0 and we have

e−λt(G(t) + G(t)) 6 e−αt + e−
12−n
4−n αt,

which assures (2.13) by replacing r therein by r0 and B̂ ∈ Dλ.10

We now check that B̂ is pullback Dλ-absorbing. Fix t ∈ R and D̂ = {D(t)}t∈R ∈ Dλ with r defined as11

(2.13) and D(t) ⊂ B(r(t)) for all t ∈ R. Then by (2.15), we have a T ′ = T ′(D̂, t) 6 t such that U(t, τ)D(τ) ⊆12

B(t) for all τ 6 T ′. This proves the pullback Dλ-absorbing property. The proof is complete.13

3 Existence of Invariant Measures and Statistical Solutions14

In this section we study the existence of invariant Borel probability measures and statistical solutions for15

the nonautonomous modified Swift-Hohenberg problem (1.1)-(1.3). For this aim, we need first to ensure the16

boundedness and continuity of the weak solution u(t, τ ;φ) with respect to the initial time τ .17

3.1 Bounded continuity with respect to the initial time18

First, some auxiliary estimates for the weak solutions are necessary as follows for the proof of bounded19

continuity with respect to the initial time.20

Lemma 3.1. Let φ, ψ ∈ V , u1(t) = u(t, τ ;φ) and u2(t) = u(t, τ ;ψ) for t > τ . Then we have a positive
constant C2 = C2(a, b, n,Ω) such that

‖∆u1(t)−∆u2(t)‖2

6‖∆φ−∆ψ‖2 exp

(
C2

∫ t

τ

(
‖∆u1(s)‖2 + 1

) (
‖∆u2(s)‖2 + 1

)
ds

)
. (3.1)
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Proof. Let v(t) = u1(t)− u2(t) for all t > τ . We have1

dv

dt
+ ∆2v + 2∆v + av + b∇(u1 + u2) · ∇v + v3 + 3u1u2v = 0. (3.2)

Taking the following estimates into account

|(2∆v,∆2v)| 6 1

3
‖∆2v‖2 + 3‖∆v‖2, (v3,∆2v) = 3(|∆v|2, v2) + 6(|∇v|2v,∆v),

|6(|∇v|2v,∆v)| 6 6‖∆v‖‖v‖4‖∇v‖28 6 c‖∆v‖4 6 c(‖∆u1‖+ ‖∆u2‖)2‖∆v‖2,

|b(∇(u1 + u2) · ∇v,∆2v)| 6 1

3
‖∆2v‖2 + c‖∇(u1 + u2)‖24‖∇v‖24

6
1

3
‖∆2v‖2 + c(‖∆u1‖+ ‖∆u2‖)2‖∆v‖2,

(3.3)

|(3u1u2v,∆
2v)| 6 1

3
‖∆2v‖2 +

27

4
‖u1u2‖24‖v‖24 6

1

3
‖∆2v‖2 + c‖∆u1‖2‖∆u2‖2‖∆v‖2,

we obtain from (3.2)2

d‖∆v(t)‖2

dt
6 c

(
‖∆u1(t)‖2 + 1

) (
‖∆u2(t)‖2 + 1

)
‖∆v(t)‖2. (3.4)

By using Gronwall’s lemma to (3.4), we obtain (3.1) and complete the proof.3

We next prove that the V -valued mapping τ 7→ u(t, τ ;φ) is continuous and bounded on (−∞, t]. To this4

end, we define for each t ∈ R,5

M(t, φ) := 1 + ‖∆φ‖
2(12−n)

4−n + e−λt(G(t) + G(t)). (3.5)

We know from Lemma 2.2 that C1M(t, φ) is an upper bound of ‖∆u(t, ·;φ)‖2 over (−∞, t].6

Lemma 3.2. Let the assumption (A) hold. Fix τ ∈ R and φ ∈ V . Then for every ε > 0, there exists a7

positive number δ = δ(ε, τ, φ) (surely depending also on a, b, g, n, λ and Ω) such that8

‖∆u(τ, τ ′;φ)−∆φ‖ < ε, τ ′ ∈ (τ − δ, τ). (3.6)

Proof. Observe that

‖∆u(τ, τ ′;φ)−∆φ‖2 =‖∆u(τ, τ ′;φ)‖2 − ‖∆φ‖2 − 2(∆u(τ, τ ′;φ)−∆φ,∆φ)

6
∫ τ

τ ′

d

ds
‖∆u(s, τ ′;φ)‖2ds− 2(∆u(τ, τ ′;φ)−∆φ,∆φ). (3.7)

For the former part of (3.7), by (2.4), (2.7) and (2.12), we have∣∣∣∣∫ τ

τ ′

d

ds
‖∆u(s, τ ′;φ)‖2ds

∣∣∣∣ 6 c

[
M(τ, φ)(τ − τ ′) +

∫ τ

τ ′
‖g(s)‖2ds

]
.

Due to the fact g ∈ L2
loc(R, H), for the given ε above, we see that there is a δ1 = δ1(ε, τ, φ) > 0 such that9 ∣∣∣∣∫ τ

τ ′

d

ds
‖∆u(s, τ ′;φ)‖2ds

∣∣∣∣ < ε2

2
, τ ′ ∈ (τ − δ1, τ). (3.8)

Now we consider the latter part of (3.7). By the density of H6
0 (Ω) in V , we have an element ψ ∈ H6

0 (Ω)

(note that ∆2ψ ∈ V ) with ‖∆(ψ − φ)‖ < ε2

16C1M(τ,φ) such that

|(∆u(τ, τ ′;φ)−∆φ,∆φ)|
6|(∆(u(τ, τ ′;φ)− φ),∆ψ)|+ |(∆(u(τ, τ ′;φ)− φ),∆(ψ − φ))|

6|〈u(τ, τ ′;φ)− φ,∆2ψ〉|+ ε2

8
. (3.9)
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Next we estimate the term |〈u(τ, τ ′;φ)− φ,∆2ψ〉|. Since

|〈u(τ, τ ′;φ)− φ,∆2ψ〉| =
∣∣∣∣〈∫ τ

τ ′

d

ds
u(s, τ ′;φ)ds,∆2ψ

〉∣∣∣∣
6(τ − τ ′)1/2

(∫ τ

τ ′

∥∥∥∥du(s)

ds

∥∥∥∥2

V ′
ds

)1/2

‖∆3ψ‖,

as long as there exists δ2 = δ2(τ, φ) > 0 such that when τ ′ ∈ (τ − δ2, τ),1 ∫ τ

τ ′

∥∥∥∥du(s)

ds

∥∥∥∥2

V ′
ds 6 C3, (3.10)

for some positive constant C3 = C3(τ, φ), we easily find δ′2 = δ′2(ε, τ, φ) ∈ (0, δ2) such that2

|〈u(τ, τ ′;φ)− φ,∆2ψ〉| < ε2

8
whenever τ ′ ∈ (τ − δ′2, τ). (3.11)

Then we pick δ = min{δ1, δ′2}, combine (3.7)-(3.11) and obtain that when τ ′ ∈ (τ − δ, τ), (3.6) holds true,3

which ends the proof.4

We now only need to verify (3.10). Actually, by (2.4), (2.7) and Young’s inequality, together with some
computations, we have

‖∆2u‖V ′ 6 ‖∆u‖, ‖∆u‖V ′ 6 c‖∆u‖, ‖u‖V ′ 6 c‖∆u‖, (3.12)

‖|∇u|2‖V ′ 6 c‖∇u‖24 6 c‖∆2u‖
4+n
8 ‖u‖

12−n
8 6 c

(
‖∆2u‖+ ‖u‖

12−n
4−n

)
,

‖u3‖V ′ 6 c‖u‖36 6 c‖∆2u‖n4 ‖u‖
12−n

4 6 c
(
‖∆2u‖+ ‖u‖

12−n
4−n

)
.

Note moreover that

eλ(τ ′−τ)

∫ τ

τ ′
‖∆2u(s)‖2ds 6 C1M(τ, φ), for all s ∈ [τ ′, τ ].

By the above discussion and the estimation in the proof of Lemma 2.2, we know that∫ τ

τ ′

∥∥∥∥du(s)

ds

∥∥∥∥2

V ′
ds 6c

∫ τ

τ ′
(‖∆u(s)‖2 + ‖u(s)‖

2(12−n)
4−n + ‖g(s)‖2 + ‖∆2u‖2)ds

6ceλ(τ−τ ′)
∫ τ

τ ′
eλ(s−τ)(‖∆u(s)‖2 + ‖u(s)‖

2(12−n)
4−n

+ ‖g(s)‖2)ds+ c

∫ τ

τ ′
‖∆2u(s)‖2ds

6ceλ(τ−τ ′)M(τ, φ). (3.13)

Thus (3.10) can be trivially deduced from (3.13) by choosing δ2 = 1.5

Lemma 3.3. Let the assumption (A) hold. Then for every t ∈ R and φ ∈ V , the V -valued mapping6

τ 7→ u(t, τ ;φ) is bounded and continuous on (−∞, t].7

Proof. The boundedness can be easily obtained by (2.4) and (3.5). The continuity is read as follows, by8

fixing τ , t ∈ R and φ ∈ V , with t > τ , for every ε > 0, there exists a positive number δ depending only on9

ε, τ , t, φ (and surely also on the parameters a, b, g, n, λ and Ω) such that10

‖∆u(t, τ ′;φ)−∆u(t, τ ;φ)‖ < ε, whenever |τ ′ − τ | < δ. (3.14)

We first consider the right continuity, saying the case when τ ′ > τ . By Lemma 3.1, we have

‖∆u(t, τ ′;φ)−∆u(t, τ ;φ)‖2

6‖∆φ−∆u(τ ′, τ ;φ)‖2 exp

(
c

∫ t

τ ′

(
‖∆u(s, τ ;φ)‖2 + 1

) (
‖∆u(s, τ ′;φ)‖2 + 1

)
ds

)
6‖∆φ−∆u(τ ′, τ ;φ)‖2 exp

(
c

∫ t

τ

(M(s, φ) + 1)
2

ds

)
.
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Then the continuity of u(·, τ ;φ) over [τ, t] guarantees the existence of the positive number δ = δ(ε, τ, t, φ)1

such that (3.14) holds for all τ ′ ∈ (τ, τ + δ).2

The left continuity can be similarly obtained by utilizing Lemma 3.2 and we omit the details here.3

3.2 Construction of statistical solutions4

We are now well prepared to combine the existence of the pullback attractor and the abstract result5

(see [31]) to verify the existence of invariant measures. We first recall the definition of the generalized6

Banach limit.7

Definition 3.4 ( [45, Definition 4.1]). A generalized Banach limit is any linear functional, denoted by8

LIM
t→+∞

, defined on the collection of all bounded real-valued functions on [0,+∞) and satisfying9

1. LIM
t→+∞

ζ(t) > 0 for nonnegative functions ζ on [0,+∞);10

2. LIM
t→+∞

ζ(t) = lim
t→+∞

ζ(t) if the latter limit exists.11

Using Theorem 2.6, (2.3), Lemma 3.3 and [31, Theorem 3.1], we can obtain the existence of invariant12

measures for the process {U(t, τ)}t>τ . The details are stated in the following theorem.13

Theorem 3.5. Let the assumption (A) hold and ÂDλ = {ADλ(t)}t∈R be the unique pullback Dλ-attractor of
{U(t, τ)}t>τ in V given by Theorem 2.6. Given a generalized Banach limit LIM

t→+∞
and a continuous mapping

ξ : R→ V with {ξ(t)}t∈R ∈ Dλ, there exists a unique family of Borel probability measures {µt}t∈R in V such
that the support of the measures µt is contained in ADλ(t) and for all Υ ∈ C(V ),

LIM
τ→−∞

1

t− τ

∫ t

τ

Υ(U(t, s)ξ(s))ds =

∫
ADλ (t)

Υ(u)dµt(u)

=

∫
V

Υ(u)dµt(u) = LIM
τ→−∞

1

t− τ

∫ t

τ

∫
V

Υ(U(t, τ)u)dµt(u)ds. (3.15)

Additionally, the measure µt is invariant in the sense that14 ∫
ADλ (t)

Υ(u)dµt(u) =

∫
ADλ (τ)

Υ(U(t, τ)u)dµτ (u), t > τ. (3.16)

We next investigate the statistical solutions for the equation (2.2). Rewrite (1.1) as15

du

dt
= F (u, t) := g(t)−∆2u− 2∆u− au− b|∇u|2 − u3. (3.17)

We see F : W × (τ,+∞) → W ′. Associated to statistical solutions of (2.2), we define below the class T of16

test functions such that each function Ψ ∈ T satisfies17

dΨ(u(t))

dt
= 〈〈F (u(t), t),Ψ′(u(t))〉〉, for every global weak solution u(t) of (2.2). (3.18)

Definition 3.6 ( [39, Definition 3.3]). The class T is defined to be the set of all real-valued functionals Ψ18

on V that are bounded on each bounded set of V such that19

1. the Fréchet derivative Ψ′(u) exists for every u ∈W ;20

2. Ψ′(u) ∈W for all u ∈W and the mapping u 7→ Ψ′(u) belongs to Cb(W,W );21

3. for every global solution u of (2.2), equality (3.18) holds true.22

We now give the definition of statistical solutions for the equation (3.17) and prove its existence.23

Definition 3.7. A family {µt}t∈R of Borel probability measures in V is called a statistical solution (in24

the phase space V ) of (3.17) if the following conditions are satisfied,25

10



1. the function t 7→
∫
V

Γ(u)dµt(u) is continuous for every Γ ∈ Cb(V );1

2. for almost all t ∈ R, the measure µt is carried by V and the function u 7→ 〈〈F (u(t), t), φ〉〉 is µt-
integrable for every φ ∈W , and the mapping

t 7→
∫
V

〈〈F (u, t), φ〉〉dµt(u)

belongs to L1
loc(R) for every φ ∈W ;2

3. for each test function Ψ ∈ T , it holds that∫
V

Ψ(u)dµt(u)−
∫
V

Ψ(u)dµτ (u) =

∫ t

τ

∫
V

〈〈F (u, s),Ψ′(u)〉〉dµs(u)ds,

for all τ, t ∈ R with t > τ .3

The main result of this article reads as follows.4

Theorem 3.8. Let the assumption (A) hold. Then the family of Borel probability measures {µt}t∈R guar-5

anteed by Theorem 3.5 is a statistical solution of the equation (3.17).6

Proof. It is sufficient to check that the family of Borel probability measures {µt}t∈R obtained by Theorem7

3.5 satisfies Definition 3.7.8

Firstly, for each given t0 ∈ R, we show that for every Γ ∈ Cb(V ) there holds9

lim
t→t0

∫
V

Γ(u)dµt(v) =

∫
V

Γ(u)dµt0(u). (3.19)

Indeed, it follows from the equalities (3.15) and (3.16) that10 ∫
V

Γ(u)dµt(u)−
∫
V

Γ(u)dµt0(u) =

∫
ADλ (t0)

(Γ(U(t, t0)u)− Γ(u)) dµt0(u), t > t0. (3.20)

Since U(t, t0)u→ u in V as t→ t+0 , Γ ∈ Cb(V ) and ADλ(t0) is compact in V , (3.20) gives (3.19) for the case11

when t > t0. The left continuity can be similarly proved.12

Secondly, for every t ∈ R, we have known that µt is carried by ADλ(t). Define for every φ, u ∈W ,13

Ψ(u) = 〈〈F (u(t), t), φ〉〉. (3.21)

Obviously Ψ maps W into R. We next show that Ψ is continuous. Let u∗ ∈W be fixed and consider u ∈W
with ‖u− u∗‖W 6 1. Note that F is also a function from V × R into V ′. By (3.12) and (3.3), we have

|Ψ(u)−Ψ(u∗)| = |〈〈F (u(t), t)− F (u∗(t), t), φ〉〉| = |〈F (u(t), t)− F (u∗(t), t), φ〉|
6c‖∆φ‖‖∆(u− u∗)‖+ c|(∇(u+ u∗)∇(u− u∗), φ)|

+ c|((u2 + uu∗ + u2
∗)(u− u∗), φ)|

6c‖∆φ‖‖∆(u− u∗)‖+ c(‖∇u‖4 + c‖∇u∗‖4)‖∇(u− u∗)‖4‖φ‖
+ c(‖u‖28 + ‖u∗‖28)‖u− u∗‖4‖φ‖

6c‖∆φ‖‖∆(u− u∗)‖+ c(‖∆u‖+ ‖∆u∗‖)‖∆(u− u∗)‖‖φ‖
+ c(‖∆u‖2 + ‖∆u∗‖2)‖∆(u− u∗)‖‖φ‖

6c
(
1 + ‖∆u‖+ ‖∆u∗‖+ ‖∆u‖2 + ‖∆u∗‖2

)
‖u− u∗‖W ‖φ‖W ,

where we have used the embeddings (2.1). This assures the continuity of Ψ on W . Thus (3.15) and (3.21)
certifies the µt-integrability of the functional u 7→ Ψ(u), for every φ ∈ W . Hence item (1) of Definition 3.7
and (3.21) indicate that

t 7→
∫
V

〈〈F (u, t), φ〉〉dµt(u)

11



belongs to L1
loc(R) for every φ ∈W .1

At last, for all Ψ ∈ T and t, τ ∈ R with t > τ , we have by (3.18) that2

Ψ(u(t))−Ψ(u(τ)) =

∫ t

τ

〈〈F (u(θ), θ),Ψ′(u(θ))〉〉dθ. (3.22)

Now for all s < τ , let u∗ ∈W and u(θ) = U(θ, s)u∗ for θ > s. It follows easily from (3.22) that3

Ψ(U(t, s)u∗)−Ψ(U(τ, s)u∗) =

∫ t

τ

〈〈F (U(θ, s)u∗, θ),Ψ
′(U(θ, s)u∗)〉〉dθ. (3.23)

Thus by (3.15), (3.23), Fubini’s theorem and some calculations, we obtain that∫
V

Ψ(u)dµt(u)−
∫
V

Ψ(u)dµτ (u)

= LIM
σ→−∞

1

τ − σ

∫ τ

σ

∫
V

(Ψ(U(t, s)u∗)−Ψ(U(τ, s)u∗)) dµs(u∗)ds

= LIM
σ→−∞

1

τ − σ

∫ τ

σ

∫
V

∫ t

τ

〈〈F (U(θ, s)u∗, θ),Ψ
′(U(θ, s)u∗)〉〉dθdµs(u∗)ds

= LIM
σ→−∞

1

τ − σ

∫ τ

σ

∫ t

τ

∫
V

〈〈F (U(θ, s)u∗, θ),Ψ
′(U(θ, s)u∗)〉〉dµs(u∗)dθds. (3.24)

Furthermore, by the semigroup property of the process and the property of invariant measures, we get∫
V

〈〈F (U(θ, s)u∗, θ),Ψ
′(U(θ, s)u∗)〉〉dµs(u∗)

=

∫
V

〈〈F (U(θ, τ)U(τ, s)u∗, θ),Ψ
′(U(θ, τ)U(τ, s)u∗)〉〉dµs(u∗)

=

∫
V

〈〈F (U(θ, τ)u∗, θ),Ψ
′(U(θ, τ)u∗)〉〉dµτ (u∗),

which is independent of the variable s. We thus infer the equality

(3.24) =

∫ t

τ

∫
V

〈〈F (U(θ, τ)u∗, θ),Ψ
′(U(θ, τ)u∗)〉〉dµτ (u∗)dθ

=

∫ t

τ

∫
V

〈〈F (u∗, θ),Ψ
′(u∗)〉〉dµθ(u∗)dθ,

that is rightly the item (3) of Definition 3.7. The proof is complete.4

Remark 3.9. In this article, the restriction |b| < 4 on b enables the nonautonomous modified Swift-5

Hohenberg equation to possess a unique pullback attractor, which consequently ensures the existence of in-6

variant measures and statistical solutions. However, when |b| > 4, it is still an open problem whether the7

invariant measures and statistical solutions exist, since in this case, the existence of pullback attractors may8

not be guaranteed generally, which increases the difficulty and urges new methods in related area.9
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