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Abstract

In this paper, we generalized E.C. Kim’ s estimates by taking in to account the
trace of the divergencefree symmetric tensor non−zero. We have also shown
that E.C. Kim’s estimates still valid in case of the trace of the divergencefree
symmetric tensor vanished identically. In the equality case, we characterized
eta−Killing spinor with Killing pair over the Sasakian spin manifolds.
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1. Introduction

The Dirac operator is one of the fundemantal tool of the geometry and
topology for mathematicians [1, 19, 7]. The Dirac operator owes its fame to the
fact that Witten made basic proof of the positive mass theorem on the basis of
this operator [19]. The self−adjoining of the Dirac operator makes it possible5

to study its eigenvalues [4, 5, 7, 9, 10, 11]. One of these studies is the estimating
lower bound for the eigenvalues of the Dirac operator [2, 3, 13, 14, 15, 18]. The
lower bound estimates corresponding to the square of the first eigenvalue of
the Dirac operator defined on the closed Riemannian spin manifolds have been
studied intensively in terms of the scalar curvature, Energy-Momentum tensor10

and divergencefree tensor [5, 8, 12, 17]. In this direction, the first estimates
is given in 1963 by A. Lichnerowicz [17]. The author is used an integration of
the Schrödinger−Lichnerowicz formula defined on the closed Riemannian spin
manifold to get the following lower bound:

λ2 ≥ Scal

4
, (1.1)

where Scal is the scalar curvature of the manifold. Of course, this result is15

interesting when the scalar curvature is positive, but the estimate can be im-
proved. Accordingly, the first sharp estimate is obtained in 1980 by T. Friedrich
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as follows [6]:

λ2 ≥ m

4(m− 1)
Scal. (1.2)

This proof is based on a modification of the spinorial Levi−Civita connection.
The equality case is characterized by a non−trivial real−Killing spinor with20

positive scalar curvature.
In 1986, O. Hijazi obtained the following optimal estimates form ≥ 3−dimensional

in terms of the Yamabe operator [10]

λ2 ≥ m

4(m− 1)
µ1, (1.3)

where µ1 is the eigenvalue of the Yamabe operator. Later on, C. Bar obtained
an estimates in term of the Euler characteristic of M denoted by χ(M) [4] as25

follows:

λ2 ≥ 2Πχ(M)

Area(M)
. (1.4)

After this point, mathematicians choose to use different geometric invari-
ants such as Energy-momentum tensor and divergencefree symmetric tensor to
bring an optimal lower bound for the eigenvalues of the Dirac operator. In this
paper we optimized E.C.Kim estimates in terms of the trace of divergencefree30

symmetric tensor.
Before giving an optimal lower bound, let’s give some basic information

about the β−twist Dirac operator defined as follows:
Consider an m−dimensional closed Riemannian spin manifold with a spinor

bundle S over (M, g) and a spinorial Levi−Civita connection denoted ∇ lifted35

to the spinor bundle by using the Levi−Civita connection given on M . Also,
the Levi−Civita connection given on M is denoted by ∇. With respect to the
spinorial Levi−Civita conndection ∇, Dirac operator is locally expressed as:

DΦ =

m∑
i=1

ei · ∇eiΦ, (1.5)

where {e1, ..., em} orthonormal frame field on M , ” · ” denotes the Clifford
multiplication and Φ ∈ Γ(S). On the spinor bundle S Hermitian inner product40

is defined by [16]: (
V · Φ, V ·Ψ

)
= |v|2

(
Φ,Ψ

)
, (1.6)

where v ∈ Γ(TM) and Φ,Ψ ∈ Γ(S). The Spinorial Levi−Civita connection is
satisfied the following properties for all vector fields V,W ∈ Γ(TM) and spinor
fields Φ,Ψ ∈ Γ(S),

V
(
Φ,Ψ

)
=

(
∇V Φ,Ψ

)
+
(
Φ,∇V Ψ

)
∇V
(
W · Φ

)
= ∇VW · Φ +W · ∇V Φ.
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In 2009, E.C. Kim is obtained two estimates on an m−dimensional closed45

Riemannian spin manifold for the eigenvalues of the Dirac operator in terms of
the eigenvalue of the B−twist Dirac operator define as [5]:

DBΦ =

m∑
i=1

B−1(ei) · ∇eiΦ =

m∑
i=1

ei · ∇B−1(ei)Φ, (1.7)

where B is a nondegenerate symmetric (0, 2) tensor field on (M, g) identified
with the induced (1, 1)−tensor field B via B(V,W ) = g(V,B(W )). E.C Kim’s
estimate depends on the divergencefree symmetric tensors defined by:

div(B−1) =

m∑
i=1

(∇eiB)(ei) = 0.

E.C. Kim estimate obtained in [[5], Theorem 2.1] is describing with tr(B−1) =
0 and div(B−1) = 0. Accordingly, it is impossible to comment on the geom-
etry of the manifold in case tr(B−1) is non−zero. In this case by expanding50

E.C.Kim’ s twistor−like operator

TX(Φ) = ∇XΨ + pX ·Ψ + qB−1(X) ·DBΦ

(1.8)

to

TX(Φ) = ∇XΨ + pX ·Ψ + qB−1(X) ·DBΦ + rtr(B−1)X ·DBΦ

(1.9)

we generalized E.C. Kim’ s estimates as follows:

λ21 ≥ sup
p

inf
M

(
1

(mp2 − 2p+ 1)

(Scal
4

+
λ
2

1

α
+

∆α

2α

))
,

(1.10)

where λ1 ∈ R is the smallest nonzero eigenvalue of the DB , p < 1
2m and

α : M −→ R is a positive real−valued function defined as55

α =

(
(1− pm)|B−1|2 + p|tr(B−1)|2

)2
|B−1|2(1− pm)2 −mp2|tr(B−1)|2

. (1.11)

Recall that, if tr(B−1) = 0, twistor−like operator given in (1.9) induces to
(1.8) which is given by E.C. Kim in [5]. estimates still valid. Finally, in case
tr(B−1) 6= 0, we apply our estimates to the Sasakian spin manifolds which lead
us to describe eta−Killing spinor.

Theorem 1.1. On an m−dimensional closed Riemannian manifold (M, g), as-60

sume that β is a nondegenerate symmetric tensor on M such that div(B−1) = 0.
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Then, the first nonzero eigenvalue λ1 ∈ R of D associated with the eigenspinor
Φ1, satisfied

λ21 ≥ sup
p

inf
M

(
1

(mp2 − 2p+ 1)

(Scal
4

+
λ̃21
α

+
∆α

2α

))
,

(1.12)

where λ̃1 ∈ R is the smallest nonzero eigenvalue of the DB , p <
1

2m and α :
M −→ R is a positive real−valued function defined as65

α =

(
(1− pm)|B−1|2 + p|tr(B−1)|2

)2
|B−1|2(1− pm)2 −mp2|tr(B−1)|2

. (1.13)

The equality case of (1.12) is satisfied if and only if ∆α = 0 vanishes identi-
cally and if the spinorial Levi−Civita connection satisfies

∇V Φ1 = −pλV · Φ1 − qλ̃B−1(V ) · Φ1 − rtr(B−1)V · Φ1 (1.14)

for some constants λ, λ̃ ∈ R and for all vector fields V . Here p, q, r are real−valued
functions and Φ1 is the first eigenspinor field of both D and DB .

Proof. For any real−valued functions p, q, r and spinor field Φ ∈ Γ(S), define

the following modified spinorial Levi−Civita connection ∇̂ on Γ(S) by

TiΦ = ∇iΦ + pei ·DΦ + qB−1(ei) ·DBΦ + rtr(B−1)ei ·DBΦ.

One can easily compute,70

m∑
i=1

(
TiΦ, TiΦ

)
= div

[ m∑
i=1

(
Φ, ei ·DΦ +∇eiΦ

)
ei
]

+
(
mp2 − 2p+ 1

)
|DΦ|2

+
(
q2|B−1|2 − 2q + (2qr +mr2)|tr(B−1)|2

)
|DBΦ|2

−Scal
4
|Φ|2 +

(
2pq − 2r + 2prm

)
tr(B−1)

(
DΦ, DBΦ

)
.

(1.15)

Remember that, the real−valued function α with the eigenspinor Φ1 correspond-
ing to the eigenvalue λ1 of D satisfies the following equation [5]:∫

M

αdiv
[ m∑
i=1

(
Φ1, ei ·DΦ1 +∇eiΦ1

)
ei
]
µ = −1

2

∫
M

∆(α)|Φ1|2µ.

(1.16)

To vanishing the last term of equation (1.15), we set r as

r =
pq

1− pm
. (1.17)
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We still use the parameter r for ease of the calculation obtained below. Then,
taking integral of (1.15) over M by considering equation (1.16), we get75 ∫

M

α|TΦ1|2µ = −1

2

∫
M

(
∆(α)|Φ1|2 +

(
mp2 − 2p+ 1

)
αλ21|Φ1|2

+
(
q2|B−1|2 − 2q + (2qr +mr2)|tr(B−1)|2

)
α|DBΦ1|2

−αScal
4
|Φ1|2

)
µ.

(1.18)

Let’s define the P1 positive function as below to get an optimal result:

P1 : =

∫
M

[(
DBΦ1, DBΦ1

)
− λ̃21

(
Φ1,Φ1

)]
µ+

∫
M

[
α

m∑
i=1

(
TiΦ1, TiΦ1

)]
µ

=

∫
M

((
mp2 − 2p+ 1

)
αλ21|Φ1|2

)
µ− 1

2

∫
M

∆(α)|Φ1|2µ−
∫
M

λ̃21|Φ1|2µ

+

∫
M

[((
q2|B−1|2 − 2q + (2qr +mr2)|tr(B−1)|2

)
α+ 1

)
|DBΦ1|2

−αScal
4
|Φ1|2

]
µ ≥ 0.

(1.19)

Set the free parameters q and α as:

q = 1−r|tr(B−1)|2
|B−1|2 and α =

(
(1−pm)|B−1|2+p|tr(B−1)|2

)2

|B−1|2(1−pm)2−mp2|tr(B−1)|2 .

Taking into acoount (1.17) one can obtained the following equality:

q =
1− r|tr(B−1)|2

|B−1|2
=
r(1− pm)

p
. (1.20)

Solving (1.20) we get r = p
(1−pm)|B−1|2+p|trB−1|2 . Then, in terms of the param-

eter p, P1 can be rewritten as

P1 =

∫
M

((
mp2 − 2p+ 1

)
αλ21|Φ1|2

)
µ− 1

2

∫
M

∆(α)|Φ1|2µ−
∫
M

λ̃21|Φ1|2µ

+

∫
M

[(( mp2|tr(B−1)|2 − (1− pm)2|B−1|2

|B−1|2
(
|B−1|2(1− pm)2 + p|tr(B−1)|2

)2)α+ 1
)
|DBΦ1|2

−αScal
4
|Φ1|2

]
µ ≥ 0.

(1.21)

Finally, if |B−1|2 ≥ |tr(B
−1)|2
m and 1

2m > p are choosen to make α positive, then80

one can get the desired inequality given in (1.12).
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Note that, if tr(B−1) vanishes identically, the spinorial Levi−Civita con-
nection (1.9) reduces to (1.8). In this case all results are same with Kim’ s
estimations.

Consider the ratio of λ1 6= 0 and λ̃1 which are first eigenvalues of D and85

DB , respectively and denote this ration by κ1 := λ̃1

λ1
. Then under the same

contitions as in Theorem 1.1, the equation (1.21) can be rewritten as follows:

P2 : =

∫
M

(
αλ21

(
mp2 − 2p+ 1− κ21

α

)
|Φ1|2 −

1

2
∆(α)|Φ1|2 − α

Scal

4
|Φ1|2

)
µ ≥ 0.

(1.22)

This give us the following corollary:

Corollary 1.2. Under the same contitions as in Theorem 1.1, one has

λ21 ≥ sup
ζ

inf
M∗

(Scal
4ζ

+
∆α

2αζ

)
.

(1.23)

where ζ = mp2−2p+1− κ2
1

α and M̃ ⊂M is given by M̃ := {x ∈M : ζ(x) > 0}.90

Corollary 1.3. Under the same conditions as in Theorem 1.1, if real−valued
functions p = 2

m and r = − 2q
m are taken in the equation (1.19), one gets

λ21 ≥ inf
M

(Scal
4

+
λ̃21
|B−1|2

+
∆α

2α

)
, (1.24)

where α : M −→ R is a real−valued function defined by α = |B−1|2.

Proof. Inserting p = 2
m into the equation (1.20), one gets r = − 2q

m . This means95

that the term (2qr+mr2)|tr(B−1)|2 given in equation (1.19) is vanished. Then
P1 induces to:

P1 : =

∫
M

(
αλ21|Φ1|2 −

1

2
∆(α)|Φ1|2 − λ̃21|Φ1|2

+
(
(q2|B−1|2 − 2q)α+ 1

)
|DBΦ1|2 − α

Scal

4
|Φ1|2

)
µ ≥ 0.

(1.25)

If the free parameters q and α is taken as follows

q =
1

|B−1|2
and α = |B−1|2. (1.26)

one gets the desired result given in (1.24).
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As in Corollary 1.2, consider the ratio of λ1 6= 0 and λ̃1 which are the first100

eigenvalues of D and DB , respectively and denotes this ration by κ1 := λ̃1

λ1
.

Then under the same contitions as in Corollary 1.3, the equation (1.25) can be
rewritten as follows:∫

M

(
αλ21

(
1− κ21
|B−1|2

)
|Φ1|2 −

1

2
∆(α)|Φ1|2 − α

Scal

4
|Φ1|2

)
µ ≥ 0,

(1.27)

This proves:

Corollary 1.4. In the notations of Corallary 1.3, we have105

λ21 ≥ sup
ζ

inf
M∗

(Scal
4ζ

+
∆α

2αζ

)
.

(1.28)

where ζ = 1− κ2
1

|B−1|2 and M̃ ⊂M is given by M̃ := {x ∈M : ζ(x) > 0}.

In the next theorem, we construct a spinorial Levi−Civita connection with
respect to the nondegenerate symmetric tensor and its trace to give a lower
bound esimate.

Theorem 1.5. Assume that β is a nondegenerate symmetric tensor defined on110

an m−dimensional closed Riemannian manifold (M, g), such that div(B−1) = 0.

Let κ1 be the ratio of λ̃1 ∈ R, λ1 6= 0 ∈ R which are the first eigenvalues of
D and DB, respectively. Then, for any real−valued functions q, r : M −→ R
satisfying both

1

2|B−1|2
> q > 0 and q(1 + q|B−1|2) > (2qr +mr2)|tr(B−1)|2 (1.29)

we have115

λ1
2 ≥ sup

κ(q,r,κ1)

inf
M̃

(
Scal

4κ(q, r, κ1)
+

∆(α)

2κ(q, r, κ1)

)
, (1.30)

where κ(q, r, κ1) and α are real−valued functions defined on M by
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κ(q, r, κ1) =

(
(m− 1)

(
q|B−1|2(2m+mq|B−1|2 + 2q|tr(B−1)|2)

)(
q − 2q|B−1|2

)(
m+mq|B−1|2 + q|tr(B−1)|2

)2
+

(m− 1)
(
q|tr(B−1)|2

(
1−m|tr(B−1)|2

)
−m

)(
q − 2q|B−1|2

)(
m+mq|B−1|2 + q|tr(B−1)|2

)2
+

(
mr2 + 2q2

)
|tr(B−1)|4 +

(
q3 −m2qr2 − 2mq2r

)
|tr(B−1)|4|B−1|2(

q − 2q|B−1|2
)(
m+mq|B−1|2 + q|tr(B−1)|2

)2
+

+mq3|tr(B−1)|2|B−1|4 −
(
mqr2 + 2q2r

)
|tr(B−1)|6(

q − 2q|B−1|2
)(
m+mq|B−1|2 + q|tr(B−1)|2

)2 − κ21

)

α =
1

q − 2q2|B−1|2
(1.31)

respectively, and M̃ = {x ∈M |κ(q, r, κ1)(x) > 0}.
Eguality case of (1.30) is satisfied if and only if the spinorial Levi−Civita

connection satisfies

∇V Φ1 = −pλV · Φ1 − qλ̃B−1(V ) · Φ1 − rtr(B−1)V · Φ1 (1.32)

for some constant λ, λ̃ ∈ R, λ̃ 6= 0 and for all vector fields V . Here p, q, r are120

real−valued functions given in (1.45), (1.47) and Φ1 is the first eigenspinor of
both D and DB.

Proof. Considering the following modified spinorial Levi−Civita connection T
defined on Γ(S) by

TV Φ = ∇V Φ + pV ·DΦ + qB−1(V ) ·DBΦ + rtr(B−1)V ·DBΦ,

(1.33)

where p, q, r are real−valued functions defined on M . Assume that λ1 is the first125

eigenvalue of D asssociated with the eigenspinor Φ1 and λ̃1 is the first eigenvalue
of DB such that λ̃1 = κ1λ1. Using (1.15) − (1.16) with positive real−valued
function α and free functions γ, η : M −→ R to define the following posive
real−valued function P5 as follows:

P5 :=

∫
M

[(
DBΦ1, DBΦ1

)
− κ21λ21

(
Φ1,Φ1

)]
µ+

∫
M

α

m∑
i=1

|TΦ1|2

+γ2
(
DBΦ1 − ηDΦ1, DBΦ1 − ηDΦ1

)]
µ

=

∫
M

[(
mp2 − 2p+ 1

)
α+ γ2η2 − κ21

)
λ21|Φ1|2 −

Scal

4
α|Φ1|2 −

∆α

2
|Φ1|2

+2
(

(pq − r + prn
)
tr(B−1)α− γ2η

)
λ1
(
DBΦ1,Φ1

)
+
((
q2|B−1|2 − 2q + (2qr +mr2

)
|tr(B−1)|2

)
α+ γ2 + 1

)
|DBΦ1|2 ≥ 0.

(1.34)
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Using the relationDBΦ1 = κDΦ1, then multiplying modified spinorial Levi−Civita130

connection defined in 1.33 with ei and B−1(ei) and then summing over i =
1, ...,m gives equations 1.35 and 1.36, respectively. To vanish the last two lines
of (1.34) the real−valued functions p, q, r, α, γ, κ have to satify the following four
equations:

(1−mp)− (q +mr)tr(B−1)κ = 0 (1.35)(
1 + q|B−1|2 − r

(
tr(B−1)

)2)
κ− ptr(B−1) = 0 (1.36)(

pq − r + prm
)
tr(B−1)α− γ2κ = 0 (1.37)(

q2|B−1|2 − 2q + (2qr +mr2
)
|tr(B−1)|2

)
α+ γ2 + 1 = 0 (1.38)

Solving equation (1.36), one has135

p =

(
1 + q|B−1|2 − r|tr(B−1)|2

)
κ

tr(B−1)
. (1.39)

Inserting (1.35) into equation (1.37), we have:(
pq − r(1− pm)

)
tr(B−1)α− γ2κ =

(
pq − rκ(q +mr)tr(B−1)

)
tr(B−1)α− γ2κ(1.40)

Inserting p into equation (1.40), we get

γ2 = α
(
q(1 + q|B−1|2)− (2qr +mr2)|tr(B−1)|2

)
. (1.41)

Putting γ2 into equation (1.38), we obtain

α =
1

q(1− 2q|B−1|2)
. (1.42)

Note that equation (1.35) and (1.36) together give

κ =
1−mp

(q +mr)tr(B−1)
=

ptr(B−1)

(1 + q|B−1|2 − r|tr(B−1)|2)
. (1.43)

Also solving equations (1.35) and (1.36) we have,140

κ =
tr(B−1)

(m+mq|B−1|2 + q|tr(B−1)|2)
. (1.44)

This means

p =
(1 + q|B−1|2 − r|tr(B−1)|2)

(m+mq|B−1|2 + q|tr(B−1)|2)
. (1.45)

So the relations

α =
1

q(1− 2q|B−1|2)
> 0, γ2 =

(
q(1 + q|B−1|2)− (2qr +mr2)|tr(B−1)|2

)
q(1− 2q|B−1|2)

> 0.

κ2 =
p(1−mp)

(q +mr)(1 + q|B−1|2 − r|tr(B−1)|2)

=
(1−mp)

(q +mr)(m+mq|B−1|2 + q|tr(B−1)|2)
> 0

(1.46)
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imply the restriction

1

2|B−1|2
> q > 0 and q(1 + q|B−1|2) > (2qr +mr2)|tr(B−1)|2. (1.47)

Inserting (1.45) and (1.46) into (1.34) gives the desired estimates given in (1.30).
The limiting case of (1.30) are easy to check.145

2. Estimating over Sasakian Spin Manifolds

In this section, we get an eigenvalue estimate with the aid of the divergence-
free symmetric nondegenerate tensor B−1 = I

n −
1
nξ ⊗ κ by applying Theorem

1.1 and Theorem 1.5 to the Sasakian spin manifolds. Then, by using the re-
lations between the eta−Killing pair (u, v) corresponding to the eta−Killing150

spinor and the decomposition property of the spinor bundle built over Sasakian
spin manifold we investigate the geometric properties of the equality case.

On a 2n + 1 dimensional manifold M , Sasakian structure is defined by an
almost contact metric structure of M . An almost contact metric structure is
expressed by (φ, ξ, η, g). Here φ is a (1, 1)− tensor field, ξ is a vector field , η155

is a 1−form and g is denoted the metric. An almost contact metric structure
satisfies

η(ξ) = 1, Θ2 = −V + η(V )ξ, g(φV, φW ) = g(V,W )− η(V )η(W ). (2.1)

On an almost contact metric manifold a fundamental 2−form Θ is defined as

Θ(V,W ) = g
(
V, φ(W )

)
,

where V,W is a vector fields. In addition, if the following condition is satisfied(
∇V φ)W = g(V,W )− η(W )V (2.2)

for all vector fields V,W , then an almost contact metric structure is called
Sasakian structure and with this structure manifold is called Sasakian. More-160

over, if the Ricci curvature tensorRic defined on the Sasakian manifold (M,φ, ξ, κ, g)
satisfies

Ric = ug + vη ⊗ η (2.3)

for some constants u, v ∈ R with u+v = 2n, then Sasakian manifold (M,φ, ξ, η, g)is
called eta−Einstein. T.Friedrich and E.C.Kim showed that any Spinor bundle
connsructed on an almost contact metric manifold is splits under the action of165

the fundemantal 2−form. For more information see Θ [8].

Definition. On a Sasakian manifold (M,φ, ξ, η, g) endowed with spin structure,
eta−Killing spinor with Killing pair (u, v) is characterized by a nontrivial spinor
field Φ which is satisfied

∇V Φ = αV · Φ +Bκ(V )ξ · Φ (2.4)

for some real numbers u, v ∈ R, u 6= 0 and for all vector fields V .170
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Since eta−Killing spinor with Killing pair (α,B) is an eigenspinor of the
Dirac operator with eigenvalue λ = −(2m+ 1)α−B, Killing pair (α,B) can be
expressed in terms of the scalar curvature by considering some special decom-
position of the spinor bundle [8].

Theorem 2.1. Let (M,φ, ξ, κ) be a 2m + 1(m ≥ 1)−dimensional a closed175

Sasakian spin manifold. Let B−1 be a nondegenerate symmetric tensor field
on M defined by B−1 = I

n −
1
nξ ⊗ κ, div(B−1) = 0. Let λ1 ∈ R and λ̃1 ∈ R be

the first eigenvalue of D and DB, respectively. Then we have

λ21 ≥ sup
p,κ(p)

inf
M

1

(np2 − 2p+ 1)

(Scal
4

+
n2(np2 − 2pn+ 1)λ̃21

(n− 1)(p− 1)2

)
,

(2.5)

where p < 1
2n . In case that λ1 6= 0, inequality (2.5) can be rewritten as

λ21 ≥ sup
p

inf
M

1

(np2 − 2p+ 1)

( Scal
4κ(p)

)
, p <

1

2n
,

(2.6)

where κ(p) and µ1 are real−valued functions on M defined by180

κ(p) =
(n− 1)(p− 1)2(np2 − 2p+ 1)− n2(np2 − 2pn+ 1)µ2

1

(n− 1)(p− 1)2(np2 − 2p+ 1)
,

µ1 =
λ̃1
λ1
. (2.7)

The limiting case of (2.5) occurs, in case

1. n ≥ 5, if and only if there exist an eta−Killing spinor Φ1 with Killing pair(1

2
,−n

4
+

Scal

4(n− 1)

)
,
(
− 1

2
,
n

4
− Scal

4(n− 1)

)
(2.8)

such that Φ1 is a first eigenspinor of DB.

2. n = 3 if if and only if there exist an eta−Killing spinor Φ1 with killing
pair185 (−2 +

√
4 + 2Scal

4
,

4−
√

4 + 2Scal

4

)
, (2.9)

such that Φ1 is a first eigenspinor of DB.

Proof. Let’s define the nondegenerate symmetric tensor field B−1 on M by
B−1 = I

n −
1
nξ ⊗ κ. So, the positive function given in (1.13) can be rewritten

as follows:

α =
(n− 1)(p− 1)2

n2(np2 − 2pn+ 1)
. (2.10)
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Inserting the function α into (1.12), one gets ineguality (2.5) and (2.6), respec-190

tively. Considering B−1 = I
n −

1
nξ ⊗ κ, we get

tr(B−1) =
n− 1

n
, |B−1|2 =

n− 1

n2
. (2.11)

In limiting case, by taking into account (1.14), one can rewrite spinorial Levi−Civita
connection as follows:

∇eiΦ1 = −
(
pλ1 +

np

1− p
λ̃1

)
ei · Φ1 −

(1− pn)n2

(n− 1)(1− p)
λ̃1B

−1(ei) · Φ1

= −
(
pλ1 +

np

1− p
λ̃1

)
ei · Φ1 −

(1− pn)n2

(n− 1)(1− p)
λ̃1
(ei
n
− κ(ei)ξ

n

)
· Φ1

= −
(
pλ1 +

n

n− 1
λ̃1

)
ei · Φ1 −

n(1− pn)

(n− 1)(1− p)
λ̃1κ(ei)ξ · Φ1. (2.12)

Accordingly, in limiting case, eta−Killing spinor with Killing pair is described
as:195

(
α1, B1

)
=

(p(n− 1)λ1 + nλ̃1
n− 1

,
n(1− pn)λ̃1

(n− 1)(1− p)

)
. (2.13)

In the case m ≥ 2, eta−Killing spinor is characterized with eta−Killing pair
given in (2.8). Let M be a 3−dimensional Sasakian spin manifold. Then, by
using Proposition 3.2 and Proposition 3.3 given in [5], eta−Killing pair can be
rewritten in terms of the scalar curvature of M as follows:

(α1, B1) =
(−2 +

√
4 + 2Scal

4
,

4−
√

4 + 2Scal

4

)
. (2.14)

This means,200 (p(n− 1)λ1 + npλ1
n− 1

,
n(1− pn)λ̃1

(n− 1)(1− p)

)
=

(−2 +
√

4 + 2Scal

4
,

4−
√

4 + 2Scal

4

)
.

(2.15)

Accordingly, the first eigenvalue of D and DB can be desribed as follows;

λ1 =
(3p− 1)

(
− 2 +

√
4 + 2Scal

)
− p(1− p)

(
4−
√

4 + 2Scal
)

4p(3p− 1)
,

λ̃1 =
(1− p)

(
4−

√
4 + 2Scal

)
6(3p− 1)

, (2.16)

where p < 1
2n .

In the next theorem to consider application of Theorem 1.5 to the Sasakian
spin manifolds, we use same divergencefree symmetric tensor given in the proof
ot Theorem 1.1.205
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Theorem 2.2. Let (M,φ, ξ, κ) be a 2m + 1(m ≥ 1)−dimensional a closed
Sasakian spin manifold. Let B−1 be a nondegenerate symmetric tensor field
on M defined by B−1 = I

n −
1
nξ ⊗ κ, div(B−1) = 0. Let λ1 ∈ R and λ̃1 ∈ R be

the first eigenvalue of D and DB, respectively and denote κ1 = λ̃1

λ1
. Then, for

any real−valued functions q, r : M −→ R satisfying210

n2

2(n− 1)
> q > 0 and

q
(
n2 + q(n− 1)

)
(n− 1)2

> (2qr + nr2) (2.17)

we have

λ1
2 ≥ sup

κ(q,r,κ1)

inf
M

( Scal

4κ(q, r, κ1)

)
, (2.18)

where κ(q, r, κ1) and α are real−valued functions on M defined by

κ(q, r, κ1) =

(
(n− 1)2(n2q − 2q2(n− 1)

)
n4
(
n3 + q(n− 1)(2n− 1)

)2((n− 1)3
(
nq3 − 2n3qr

−4n2q2r + n2qr2 + 2nq2r − q3 + 2n2qr + 4nq2r − nqr2

−2q2r + n3r2 + 2qn2 + nq3
)

+ 3n4q − qn3 + 3n4q2

−6n3 + 2n2
)
− κ21

)
.

(2.19)

The limiting case of (2.18) occurs, in case

1. n ≥ 5, if and only if there exist an eta−Killing spinor Φ1 with killing pair(1

2
,−n

4
+

Scal

4(n− 1)

)
,
(
− 1

2
,
n

4
− Scal

4(n− 1)

)
(2.20)

such that Φ1 is a first eigenspinor of DB.215

2. n = 3 if and only if there exist an eta−Killing spinor Φ1 with killing pair(−2 +
√

4 + 2Scal

4
,

4−
√

4 + 2Scal

4

)
, (2.21)

such that Φ1 is a first eigenspinor of DB.

Proof. Let’s define the nondegenerate symmetric tensor field B−1 on M by
B−1 = I

n −
1
nξ ⊗ κ. So, the positive functions κ(q, r, κ1) can be rewritten as in

(2.19). These give us desired inegualty (2.18).220
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In limiting case, with respect to real functions p, q, r spinorial Levi−Civita
connection can be writtes as:

∇eiΦ1 = −pλ1ei · Φ1 − qλ̃1B−1(ei) · Φ1 − r
(n− 1

n

)
λ̃1ei · Φ1

= −pλ1ei · Φ1 − qλ̃1
(ei
n
− κ(ei)ξ

n

)
· Φ1 − r

(n− 1

n

)
λ̃1ei · Φ1

= − 1

n

(
npλ1 + qλ̃1 + r(n− 1)λ̃1

)
ei · Φ1 +

1

n
qλ̃1κ(ei)ξ · Φ1,

(2.22)

where real−valued functions p is given by

p =
n(n− 1)

(
q − r(n− 1)

)
n3 + (n− 1)q(2n− 1)

. (2.23)

Accordingly, in limiting case eta−Killing spinor with Killing pair, is de-
scribed by:225

(
α1, B1

)
=

(
− 1

n

(
npλ1 + qλ̃1 + r(n− 1)λ̃1

)
,

1

n
qλ̃1

)
(2.24)

In the case m ≥ 2, eta−Killing spinor is characterized with Killing pair given
in (2.20).

Let M be 3−dimensional Sasakian spin manifold. By using Proposition 3.2
and Proposition 3.3 given in [5], (α1, B1) can be characterized with Killing pair
given in (2.21).230
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