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Abstract

Metabarcoding  provides  a  powerful  tool  for  investigating  biodiversity  and  trophic

interactions, but the high sensitivity of this methodology makes it vulnerable to errors,

resulting  in  artefacts  in  the  final  data.  Metabarcoding  studies  thus  often  utilise

minimum sequence copy thresholds  (MSCTs)  to  remove artefacts  that  remain  in

datasets; however, there is no consensus on best practice for the use of MSCTs. To

mitigate erroneous reporting of results and inconsistencies, this study discusses and

provides  guidance  for  best-practice  filtering  of  metabarcoding  data  for  the

ascertainment  of  conservative  and  accurate  data.  The  most  common  MSCTs

identified in the literature were applied to example datasets of Eurasian otter (Lutra
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lutra) and cereal crop spider (Araneae: Linyphiidae and Lycosidae) diets. Changes in

both the method and threshold value considerably affected the resultant data. Of the

MSCTs tested, it  was concluded that the optimal  method for the examples given

combined a sample-based threshold with removal of maximum taxon contamination,

providing  stringent  filtering  of  artefacts  whilst  retaining  target  data.  Choice  of

threshold value differed between datasets due to variation in artefact abundance and

sequencing depth, thus studies should employ controls (mock communities, negative

controls with no DNA and unused MID-tag combinations) to select threshold values

appropriate for each individual study.

Keywords: contamination, diet, eDNA, environmental DNA, false positives
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Introduction

Metabarcoding provides a powerful  tool  for  ecological  studies  of  biodiversity  and

trophic interactions (Deiner  et  al.  2017;  Taberlet  et  al.  2018).  By combining high

throughput sequencing (HTS) with DNA barcoding, large volumes of high-resolution

data can be generated from many samples simultaneously (Taberlet et al. 2018). As

an accurate means of detecting and identifying not just common species, but also

cryptic and rare species, metabarcoding has in many cases superseded traditional

methods such as morphological analysis of prey remains in gut contents and faeces,

and direct observation (Bowser et  al.  2013; Roslin and Majaneva 2016; Elbrecht,

Vamos, et al. 2017). The high sensitivity of metabarcoding does, however, render it

vulnerable to error (Alberdi et al. 2018; Jusino et al. 2019), with differences in the

treatment of samples producing distinct data, and thus conclusions, from the same

samples (Alberdi et al. 2018; Alberdi et al. 2019). Better guidelines on best practice

for  data processing are thus required for  metabarcoding studies as they become

increasingly commonplace. 

False positives, or ‘artefacts’, can be introduced at any stage of the metabarcoding

process, from sample collection through to bioinformatic analysis (Alberdi et al. 2019;

Jusino et al. 2019). These can occur through contamination from environmental or

lab sources (Leonard et al. 2007; Siddall et al. 2009; Czurda et al. 2016), tag-jumping

and  sample  mis-assignment  (transfer  of  sample-specific  tags  between  samples;

Schnell  et  al.  2015)  or  PCR  and  sequencing  errors  (chimeras  or  mis-identified

sequences; Shin et al. 2014;  Bjornsgaard Aas et al. 2016). Artefacts may also be

produced  through  errors  in  reference  databases  (such  as  GenBank  and  BOLD;
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Valentini  et  al.  2009),  resulting in  sequences being assigned to  the wrong taxon

(Keskin et al. 2016; Rulik et al. 2017; Taberlet et al. 2018). Many of these artefacts

can be limited through careful study design (e.g. pre- and post-PCR workstations;

King et al. 2008; Murray et al. 2015) or the use of bioinformatics software to detect

and remove erroneous sequences (e.g. UNOISE; Edgar 2016). However, it is likely

that some artefacts will remain regardless of precautionary steps taken (Weyrich et

al. 2019, Nakagawa et al. 2018), potentially inflating species richness (Schnell et al.

2015; Clare et al. 2016; Zinger et al. 2019) and distorting data interpretation. 

Minimum sequence copy thresholds (MSCTs) are one adaptable method commonly

used to reduce the prevalence of artefacts (e.g. Hänfling et al. 2016). The choice of

threshold must be carefully considered as it can considerably impact the data; low

thresholds will be unsuccessful at removing artefacts, leaving false positives in the

resultant data, whereas high thresholds may remove too much data, resulting in false

negatives (Hänfling et al. 2016). This is especially true for dietary studies in which

DNA of the focal consumer can be present at much higher concentrations than that

of the food items (i.e. prey) and is undegraded, often resulting in its greater degree of

amplification, depending on the PCR primers used. The use of general primers that

amplify the consumer will result in a lower proportion of each sample being assigned

to food item DNA, whereas specific primers that avoid amplifying the consumer may

reduce amplification of some food items over others due to primer bias (Piñol et al.

2014).  This  variation  increases  the  risk  of  target  sequences  being  excluded  if

inappropriate filtering thresholds are selected. 
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Experimental  controls  are  valuable  components  for  empirically  assigning  MSCT

thresholds, as they provide a mechanism for estimating the proportion of artefacts

within a dataset (Taberlet et al.  2018; Alberdi et al.  2019). Theoretically, negative

controls (e.g. extraction blanks, PCR blanks and unused MID-tag (molecular identifier

tag)  combinations)  should  contain  no  DNA,  and  positive  controls  (e.g.  mock

communities) should only contain DNA from selected taxa. This is, however, rarely

the case, and these unexpected reads facilitate effective determination of optimal

thresholds  for  data  clean-up.  Reads  in  negative  controls  may  be  previously

undetected contamination present in other samples (predominately identified using

extraction and PCR blanks; Leonard et al. 2007; Czurda et al. 2016; Alberdi et al.

2019) or may occur due to tag-jumping or sequence mis-assignment (predominately

identified using unused MID-tag combinations; Schnell et al. 2015). Such artefacts

are  impossible  to  identify  with  certainty  without  negative  controls  since  they  are

mostly assigned to taxa that occur in high read abundances across many samples

and are thus indistinguishable from environmental DNA (Carew et al. 2016; Jensen

et al. 2016). Further artefacts are detected through the presence of positive control

taxa in eDNA samples and eDNA taxa in positive controls, likely through tag-jumping,

mis-assignment  or  sample  cross-contamination.  Unexpected  reads  in  positive

controls  also  allow  low  abundance  artefacts  from  contaminants  and  PCR  or

sequencing  errors,  that  may  occur  across  eDNA  samples  too,  to  be  identified.

Control  samples thus highlight  artefacts prevalent  throughout unfiltered data,  with

those identified through negative controls increasing the frequency of occurrence of

taxa, those identified through positive controls inflating sample diversity, and both

contributing to higher total read counts and, ultimately, false positives.
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Application  of  MSCTs,  and  use  of  controls  for  assessing  thresholds,  remains

ambiguous  and  non-standardised,  with  many  studies  employing  entirely  distinct

methodologies and thresholds (e.g. Gebremedhin et al. 2016; Guardiola et al. 2016;

McInnes et al. 2017). Here we compared common practices for removing artefacts

from eDNA metabarcoding data using example datasets of Eurasian otter, Lutra lutra

(Linnaeus,  1758),  and  cereal  crop  spider  (Araneae:  Linyphiidae  and  Lycosidae)

dietary DNA. Samples were processed alongside experimental controls, allowing the

practicality of controls for selecting filtering thresholds to be assessed. Through these

examples,  distinctions  in  the  data  outputs  when  using  different  techniques  are

highlighted, providing a basis for standardisation and outlining optimal solutions for

the use of MSCTs on metabarcoding datasets. We hypothesised that; (i) data with

MSCTs applied would still contain artefacts; (ii) the extent of artefact removal would

differ depending upon the method of MSCT applied, with different MSCTs removing

artefacts  from  different  sources  (e.g.  artefacts  in  blanks  vs.  those  in  mock

communities); (iii) low filtering thresholds would fail  to remove many artefacts; (iv)

high  thresholds  would  remove  too  much  data,  resulting  in  the  loss  of  target

sequences and hence trophic relationships; (v) using multiple MSCTs simultaneously

would remove more artefacts than MSCTs applied on their own; (vi) experimental

controls would greatly benefit the choice of filtering method and threshold through

identification of known target sequences and artefacts.

Methods
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The methodologies discussed herein refer to techniques considered best practice for

environmental DNA metabarcoding, such as the use of negative controls (samples

included in DNA extraction and/or amplification steps), unused MID-tag combinations

(combinations of MID-tags that are not included in PCR amplification or sequencing),

positive controls (tissue extract DNA of a known species amplifiable by the selected

primers,  but  not  expected  to  occur  in  eDNA  samples)  and  mock  communities

(mixtures  of  positive  controls  comprising  DNA  of  several  species).  Theoretically,

blanks (i.e. negative controls and unused MID-tag combinations) should contain no

reads, and mock communities should contain reads only from selected taxa, with

these taxa only occurring within mock communities. Thus, unexpected reads in such

controls  facilitate  effective  determination  of  optimal  thresholds  for  data  clean-up.

Therefore,  inclusion  of  these  controls  throughout  the  metabarcoding  process  is

recommended for stringent data review, and is often necessary for the techniques

discussed. 

To review existing artefact removal methodologies in use for DNA metabarcoding

data, the methods used in 154 studies conducting metabarcoding on eukaryotic DNA

for environmental monitoring or dietary analysis were tabulated (Table S1). Given the

focus of this study on the clean-up of dietary metabarcoding data, which presents

many unique challenges, each method was applied to four different datasets from

two dietary studies: a dietary study of the Eurasian otter,  Lutra lutra (one COI and

one  16S  dataset)  and  a  dietary  study  of  cereal  crop  money  spiders  (two  COI

datasets).
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Example dataset one: British otter diet 

Faecal samples were collected during otter post-mortems by the Cardiff University

Otter Project. Extracted faecal DNA was amplified using two metabarcoding primer

pairs designed to amplify regions of the 16S rRNA and cytochrome c oxidase subunit

I (COI) genes, each primer having ten-base-pair molecular identifier tags (MID tags)

to  facilitate  post-bioinformatic  sample  identification.  Extraction  and  PCR negative

controls, unused MID tag combinations, repeat samples and mock communities were

included  alongside  the  focal  eDNA  samples.  Mock  communities  comprised

standardised mixtures of DNA of marine species not previously detected in the diet of

Eurasian otters (Table S2; Supplementary Information 1). The resultant DNA libraries

for each marker were sequenced on separate MiSeq V2 chips with 2x250bp paired-

end reads. Greater detail regarding sample processing, amplification and sequencing

is provided in Supplementary Information 2.

Example dataset two: cereal crop spider diet

Money spiders (Bathyphantes,  Erigone,  Microlinyphia and  Tenuiphantes;  Araneae:

Linyphiidae) and wolf spiders (Pardosa; Araneae: Lycosidae) were visually located

on  transects  through  barley  fields.  Gut  DNA,  extracted  from  the  whole  spider

abdomen, was amplified using two COI metabarcoding primer pairs. One primer pair

was  selected  for  broad  amplification  of  all  invertebrates  present,  including  the

predator,  and  the  other  designed  to  exclude  spider  DNA  to  avoid  predator

amplification,  each  primer  having  ten-base-pair  MID  tags  to  facilitate  post-

bioinformatic  sample identification.  Extraction and PCR negative controls,  unused
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MID  tag  combinations,  repeat  samples  and  mock  communities  were  included

alongside  the  focal  eDNA  samples.  Mock  communities  comprised  standardised

mixtures  of  DNA of  exotic  species  not  previously  recorded  in  Britain  (Table  S2;

Supplementary  Information 1).  The resultant  DNA libraries for  each marker  were

sequenced  on  a  MiSeq  V3  chip  with  2x300bp  paired-end  reads.  Greater  detail

regarding  sample  processing,  amplification  and  sequencing  is  provided  in

Supplementary Information 3.

Sequence analysis 

Bioinformatic analyses were carried out using a custom pipeline. Sequences were

first checked for truncation of MID-tags by determining the proportion of sequence

files containing exactly 10bp before their respective primer. In all cases, the degree

of truncation was deemed acceptable (≤10%).

FastP (Chen et al. 2016) was used to check the quality of reads, discard poor quality

reads (<Q30, <125bp long or too many unqualified bases, denoted by ‘N’) and merge

read pairs from MiSeq files (R1 and R2). Merged reads were assigned a sample ID

based on the MID tags associated with each primer using the ‘trim.seqs’ function of

Mothur (Schloss et al. 2009); this also removed the MID tag and primer sequences

from the reads. Using the files created by Mothur, reads were demultiplexed to obtain

one file  per  sample ID.  Read headers were modified for  each file  to  include the

sample ID and reads were then concatenated back into one file. Sequences were

denoised  (removal  of  PCR  and  sequencing  errors),  clustered  into  zero-radius

9

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191



operational  taxonomic  units  (zOTUs)  and  an  OTU  table  was  created  using  the

commands ‘fastx_uniques’, ‘unoise3’ and ‘otutab’ in Usearch (v. 11) (Edgar 2016;

Edgar 2020). Taxonomic assignment for each zOTU was obtained using the ‘blastn’

command in BLAST+, using a threshold of 97% similarity and e-value of 0.00001,

against a downloaded database of DNA barcoding sequences submitted to online

databases  (e.g.  Genbank;  National  Center  for  Biotechnology  Information  2008;

Camacho et al. 2009).  

Before assigning taxonomic identities to  each zOTU,  BLAST results  were filtered

using the ‘dplyr’ package in R [version 3.6.0] using R Studio [version 1.2.1335] (R

Core Team 2019). This was used to retain only accession codes with the top BIT

score for each zOTU. These data were then processed via MEGAN [version 6.12.3]

(Huson et al. 2016) to assign taxonomic names to each zOTU. As erroneous entries

on online databases can prevent species-level assignments, zOTUs for which the top

BLAST hit (i.e. top BIT score) was not resolved to species-level were thus manually

checked  and  assigned  the  most  appropriate  taxon.  Taxonomic  identity  for  each

zOTU was added to the OTU table produced by Usearch and reads were aggregated

by taxonomic identity for each sample in R using the ‘aggregate’ function with a sum

base function. OTUs were allocated taxonomic identities to overcome issues such as

over-splitting of taxonomic groups, and to facilitate ecological interpretation of the

data, particularly regarding identification of artefacts (e.g. identifying marine species

in non-coastal otters).

Minimum Sequence Copy Thresholds (MSCTs)
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The seven most common MSCTs identified from the literature (Table 1) were tested

and their efficacy in cleaning all datasets compared. Filtering methods were enacted

in excel using IF formulae. 
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Table  1:  Seven  post-bioinformatic  filtering  methods  often  applied  to  eDNA
metabarcoding  datasets,  selected  from  those  identified  in  a  review  of  154
metabarcoding studies (Table S1). The ‘method name’, herein used to refer to
these  methods,  is  given  alongside  the  description  (how  the  methods  are
executed) and the aim of each.

Method name Method Description Method Aim

1. No filter No OTU or sample filtering. No clean-up/maximum preservation of data.

2. Singletons
Remove any read counts of

one.
Remove extremely low frequency artefacts

(e.g. sequencing artefacts).

3. <10
Remove any read counts

that are less than ten.

Remove low frequency artefacts (e.g.
sequencing artefacts, low-lying PCR

contamination)

4. Max 
Contamination

Remove any read counts
within each OTU that are

lower than the highest read
count within a

negative/blank control for
that OTU.

Remove contamination detected by the
negative controls (e.g. extraction/PCR

contamination, tag-jumping)

5. Total %

Remove any read counts
less than a proportion of the
total dataset read count for

all reads.

Remove low frequency artefacts (e.g.
sequencing artefacts, PCR contamination)

6. Sample %

Remove any read counts
within a sample that are less
than a proportion of the total
sample read count for that

sample.

Remove sample contamination (e.g.
environmental, extraction or PCR

contamination)

7. Taxon %

Remove read counts with an
abundance less than a

proportion of the total OTU
read count for that OTU.

Remove cross contamination (e.g. cross
contamination, tag-jumping)

If  the  read count  (i.e.  number  of  reads per  sample  per  taxon)  did  not  pass the

designated  threshold,  then  it  was  converted  to  zero  (rather  than  subtracting  the

threshold, thus not altering the remaining read counts). For proportional methods (5-

7, Table 1), a variety of thresholds were tested to explore how choice of threshold

can affect  data  output.  The range of  thresholds tested were chosen based upon

artefacts identified in control samples; we started with a low threshold and increased
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the value until most of the identifiable artefacts were removed. We also explored the

effectiveness  of  using  different  MSCTs  in  pairwise  combinations;  this  involved

simultaneously  applying  ‘Max  Contamination’  with  each  proportional  threshold

method (5-7), and ‘Sample %’ with ‘Taxon %’.

Basic statistics were calculated to assess the effectiveness of each filtering method;

total  read count was used to assess the loss of reads across the whole dataset,

presence of singleton reads was used to assess removal of PCR and sequencing

errors, reads in blanks (negative controls and unused MID-tags) were used to assess

levels  of  contamination  and  tag-jumping,  and  mock  communities  were  used  to

assess presence of false positives within samples. Artefacts could also be identified

through taxa unexpectedly occurring in samples, such as taxa from dietary samples

in controls, marine taxa associated with otters that did not have access to marine

habitats, exotic taxa in British spider samples and mock community taxa in negative

controls, unused MID tags or dietary samples.

To visualise the results of each method, tables of reads were converted into heat

charts  using  the  ‘ggplot2’  package  (Warnes  et  al.,  2012)  in  R.  Frequency  of

occurrence for each taxon across all MID-tag combinations was also calculated for

each filtering  method  and  used to  create  heat  charts.  Relative  frequencies  were

calculated  by  dividing  frequency  of  occurrence  by  the  total  number  of  MID-tag

combinations;  these  values  then  underwent  non-metric  multidimensional  scaling

(NMDS) to visualise dissimilarity between the taxa present following application of

each  MSCT.  This  was  conducted  using  the  ‘metaMDS’  function  in  the  ‘vegan’

package (Oksanen et al. 2013) with two dimensions (stress <0.1) and a Bray-Curtis
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dissimilarity  calculation  (Bray  and  Curtis  1957).  Ellipses  were  created  using  the

‘ordiellipse’ function with the default ‘sd’ setting (standard deviation).

Results

Sequencing output

Sequencing yielded 17.6, 13.7, 11.2 and 11.0 million paired-end reads, for the otter

16S  and  COI,  and  spider  general  and  exclusion  datasets,  respectively,  which

decreased  to  11.7,  7.9,  7.9  and  7.4  million,  respectively,  following  bioinformatic

analysis.  Comparison of  post-bioinformatic  clean-up methods produced the  same

general patterns across the four datasets (otter 16S, otter COI, spider general COI

and spider exclusion COI). We therefore used the simplest dataset (otter 16S) to

graphically  represent  artefact  removal  (Figures 1-2;  Table 2),  with  supplementary

information  presenting  the  same  data  for  the  other  datasets  (otter  COI,  spider

general COI and spider exclusion COI; Figures S1-3; Tables S2-4), as well as graphs

depicting read counts per sample (Figures S4-7) and the spatial distribution of otter

faecal samples with marine taxa presences (Figures S8-9). The effectiveness of each

clean-up method across all datasets is also summarised in Table 3. 

No filter applied (‘No Filter’)

The highest read counts and occurrence of artefacts were observed in data with no

MSCT  applied.  False  positives  in  mock  communities,  reads  in  blanks,  mock
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community  taxa present  in  blanks and eDNA samples,  taxa from eDNA samples

occurring in control  samples, and obviously erroneously present taxa (e.g. marine

taxa occurring in faecal samples from otters with no access to marine habitats) all

occurred frequently across the datasets (Figure 1; Table 2). Artefacts appeared to be

much more prevalent for taxa with high total read counts (e.g. mock community taxa,

taxa commonly consumed by the predator and the focal predator itself). Many low

abundance reads, including singletons, were also observed in the unfiltered data,

possibly representing rare species but likely also sequencing errors. 

Remove singleton reads (‘Singletons’)

Removing singleton reads resulted in data very similar to that of unfiltered data in all

cases, with only few artefacts removed (Figure 1; Table 2).

Remove read counts less than 10 (‘< 10’)

Removing reads with an abundance less than 10 reduced the occurrence of artefacts

in blanks, mock communities and the presence of mock community taxa in other

samples. However, artefacts persisted in all controls and samples, producing data

very similar to unfiltered data (Figure 1; Table 2).  

Remove maximum taxon contamination (‘Max Contamination’)
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Removing reads less than or equal to the maximum read count in blanks per taxon

removed no reads from some taxa and high values from others (otter 16S: minimum

read  removal  =  0,  maximum =  8757,  average  =  394;  otter  COI:  minimum =  0,

maximum 23413, average = 117; spider amplification: minimum = 0, maximum =

5851, average = 136; spider exclusion: minimum = 0, maximum = 10764, average =

155). Taxa experiencing high levels of read removal were often those with high total

read counts. This cleared all  reads from blanks (Tables 2-3), all  mock community

taxa from eDNA samples and taxa with high read abundances in eDNA samples from

controls (Figure 1). False positives were still present in mock communities though

(Figure 1), as were singleton reads. This method also cleared several erroneously

located taxa, such as marine species associated with inland otters, but not all (Figure

1; Table 2). 

Proportion of total read count (‘Total %’)

This method removed artefacts present in blanks (Table 2), false positives in mock

communities and erroneously located taxa (Figure 1; Table 2). Mock community taxa

were  cleared  from blanks  and  eDNA samples  to  an  extent,  but  some  were  still

present even at high thresholds (Table 2). Taxa from dietary samples with high read

abundances were not filtered efficaciously though, with many occurring in controls

even  at  high  thresholds.  Thresholds  tested  across  the  datasets  ranged  between

removing reads that contributed to less than 0.0001% and 0.02% of the total read

count. The lowest thresholds only filtered out a proportion of the artefacts, whilst the

highest thresholds filtered out all false positives within mock communities and almost
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all reads in blanks (Figure 1; Table 2); however, the latter also removed target reads,

shown  by  the  loss  of  mock  community  taxa  within  mock  communities.  A  lower

threshold was therefore necessary to give a balance between false positives and

false negatives. The optimal threshold was identified as 0.003%, 0.0008%, 0.0005%

and  0.005%  for  otter  16S,  otter  COI,  spider  general  amplification  and  spider

exclusion, respectively, removing reads with abundances less than 79, 352, 39 and

236, respectively.

Proportion of read count per sample (‘Sample %’)

This  method  removed  false  positives  from  mock  communities  (Figure  1)  and

erroneously located taxa (Table 2). Low abundance taxa (e.g. foreign taxa occurring

through sequencing errors) were less prevalent (Figure 1), as were singletons. Taxa

with high total  read abundances (e.g. mock community taxa and common taxa in

dietary samples) and reads present in blanks were only filtered to an extent (Figure

1; Table 2), resulting in artefacts from both being prevalent in filtered data regardless

of the threshold utilised. This method removed fewer reads from samples with low

total read counts, therefore these samples were more likely to still contain artefacts.

Thresholds tested across the datasets included removing reads that contributed less

than 0.01% to 8% of  a sample’s  reads.  The highest thresholds were required to

remove all  false positives from mock communities.  A much higher  threshold was

required for some datasets (e.g. otter 16S) when they contained taxa with greater

relative read counts. The high thresholds required to clear mock communities of false

positives  also  removed  many  target  reads  (highlighted  by  the  loss  of  mock
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community taxa), thus lower thresholds effectively balanced false positives and false

negatives. The optimal threshold was identified as 1%, 0.3%, 0.38% and 1% for otter

16S, otter COI, spider general amplification and spider exclusion, respectively. These

thresholds removed reads to a varying degree (otter 16S: minimum read removal for

a sample = 0, maximum = 8757, average = 394; otter COI: minimum = 0, maximum =

23413, average = 117; spider general amplification: minimum = 1, maximum = 240,

average = 80; spider exclusion: minimum = 1, maximum = 1704, average = 199).

Proportion of read count per taxon (‘Taxon %’)

This method filtered out reads in blanks (Figure 1; Table 2), as well as artefacts from

taxa with  high read abundances,  clearing most  of  these from the datasets when

using  sufficient  thresholds.  A  large  proportion  of  reads  were  removed  using  this

method (Figure 1; Table 2), especially from taxa with high total read counts. Taxa

with low read counts had fewer reads removed, resulting in these containing more

artefacts, highlighted by the prevalence of singleton reads and taxa identified as PCR

or sequencing errors (e.g. foreign taxa; Figure 1). This method proved insufficient at

removing false positives from eDNA samples, with false positives prevalent in mock

communities regardless of the threshold used, and erroneously located taxa were

only removed when using a high threshold (Figure 1; Table 2). Thresholds tested

included removing reads that contributed to less than 0.1% - 3% of a taxon’s reads.

With low thresholds applied, many more artefacts were observed in blanks, but a

threshold of 3% cleared most of these artefacts from the datasets in most cases. The

highest thresholds removed a high proportion of reads, therefore lower thresholds
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were selected to give a balance between clearing out artefacts and not losing too

many reads;  this was 0.5%, 0.8%, 0.5% and 1% for otter 16S, otter  COI,  spider

general amplification and spider exclusion, respectively. These thresholds removed

reads to different extents (otter 16S: minimum read removal for a taxa  = 0, maximum

= 26039, average = 553; otter COI: minimum = 0, maximum = 2040, average = 49;

spider general amplification: minimum = 0, maximum = 306, average = 28; spider

exclusion: minimum = 0, maximum = 1286, average = 76). 

Combining methods

Many of the thresholds tested for MSCTs based on read counts (‘Total %’, ‘Sample

%’  and ‘Taxon %’)  did  not  clear  all  artefacts,  particularly  regarding  clearance  of

blanks. Proportional methods were thus also combined with ‘Max Contamination’ to

overcome this  issue.  ‘Sample  %’  thresholds  were  also  combined with  ‘Taxon %’

thresholds  given  their  complementary  removal  of  artefacts.  Combining  methods

removed more artefacts than using just one method. ‘Total %’ thresholds or ‘Sample

%’ thresholds combined with ‘Max Contamination’ left very few artefacts in the data.

These methods were  highly  complementary,  with  proportional  thresholds  clearing

most false positives from mock communities and erroneously located taxa (Figure 1;

Table 2), whilst the contamination threshold cleared reads in blanks and artefacts

from taxa with high read counts (e.g. mock community taxa in non-mock community

samples and faecal taxa in controls; Figure 1; Table 2). These combinations also

cleared singletons and taxa suspected to be PCR or sequencing errors (Figure 1;

Table 2). Combining these methods sometimes allowed lower thresholds to be used
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concurrently for  optimal results,  but in other cases did not change the thresholds

required (otter 16S: optimal sample % = 0.5%, optimal total % = 0.002%; otter COI:

optimal sample % = 0.2%, optimal total % = 0.0008%; spider general amplification:

optimal  sample % = 0.38%, optimal  total  % = 0.005%; spider  exclusion:  optimal

sample % = 0.39%, optimal total % = 0.005%). 

‘Taxon  %’  thresholds  combined  with  ‘Max  Contamination’  still  contained  many

artefacts; all reads in blanks and singletons were removed, but false positives were

still  present  in  mock  communities  as  were  erroneously  located taxa (although in

lower abundances compared to either filter alone; Figure 1; Table 2). This is likely

due to the similar action of both filters. Combining ‘Taxon %’ thresholds with ‘Sample

%’ thresholds removed more artefacts and performed similarly to MSCTs combining

‘Sample %’ thresholds with ‘Max Contamination’. Combining these methods cleared

the majority of reads from blanks, all singleton reads, artefacts from taxa with high

read  counts  and  most  false  positives  in  mock  communities  (Figure  1;  Table  2);

however, there were still artefacts present in the negative controls and erroneously

located taxa were still  present (Table 2). Combining these methods also removed

many  overall  reads.  The  optimal  combination  of  thresholds  changed  between

datasets (otter 16S: sample = 0.5%, taxon = 0.3%; otter COI: sample = 0.2%, taxon =

0.3%; spider general amplification: sample = 0.5%, taxon = 0.3%; spider exclusion:

sample = 0.5%, taxon = 0.3%). Lowering the sample threshold introduced more false

positives to the data, whilst increasing the threshold removed target reads. Lowering

the taxon threshold retained more reads in blanks and artefacts from taxa with high

total read counts, whilst increasing the taxon threshold greatly decreased the total

read count, resulting in loss of target reads.
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Figure 1: Otter diet 16S counts. The number of presences of each taxon is displayed for each method (low count = yellow,
high count = purple) along with the number of taxa in each dataset following clean-up. Differences in common taxa, mock
communities,  predator amplification and erroneous taxa can be observed. ‘Low’,  ‘Mid’  and ‘High’  depict the context-
dependent range of values utilised for proportional thresholds (‘Total %’, ‘Sample %’ and ‘Taxon %’), with ‘Opt + MC’
denoting the threshold deemed ‘optimal’ combined with the ‘Max Contamination’ method (for specific values see Table
S3). The same figure is available for three other datasets (otter COI, spider general COI and spider exclusion COI) in
supplementary information (Figures S1-3). 

Table 2: Performance of different minimum sequence copy thresholds on otter 16S data. ‘Low’, ‘Mid’ and ‘High’ depict the
context-dependent range of values utilised for proportional thresholds (‘Total %’, ‘Sample %’ and ‘Taxon %’), with ‘Opt +
MC’ denoting the threshold deemed ‘optimal’ combined with the ‘Max Contamination’ method (for specific values see
Table S3). Expected presences of marine taxa (~) were defined by the number of Eurasian otters (Lutra lutra) displaying
reads for each marine taxon that was located along the coast or near an estuary. Similar tables were produced for three
other datasets (otter COI, spider general COI and spider exclusion COI) and are presented in supplementary information
(Tables S2-4). 
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Table 3: Success of different filtering methods in achieving the key objectives
of post-bioinformatic data clean-up. Green, orange and red denote positive,
neutral and negative outcomes, respectively. ‘Low’, ‘Mid’ and ‘High’ depict the
value utilised for proportional  thresholds (‘Total %’,  ‘Sample %’ and ‘Taxon
%’),  with  ‘Opt  +  MC’  denoting  the  ‘optimal’  threshold  combined  with  ‘Max
Contamination’ methods (for specific values see Table S3).
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NMDS analysis

Choice of MSCT method greatly affected the final composition of the data across all

four datasets, as shown by NMDS (Figure 3). Application of ‘No Filter’, ‘Singletons’

and  ‘<  10’  MSCTs  produced  similar  outcomes,  with  the  ‘<  10’  threshold  also

appearing to elicit  similar  effects to MSCTs based on ‘Total  %’ and ‘Sample %’.

‘Sample %’ and ‘Total %’ thresholds were the most similar and gave results distinct

from  those  of  taxon  MSCTs  (‘Taxon  %’  and  ‘Maximum  Contamination’).  By

combining  taxon  MSCTs  with  either  ‘Sample  %’  or  ‘Total  %’  thresholds,  an

intermediate result was obtained. All combinations of taxon filters with ‘Sample %’ or

‘Total %’ thresholds performed similarly to one another; however, with the otter 16S

data those that combined ‘Sample %’ or ‘Total  %’ with ‘Maximum Contamination’

were more dissimilar to taxon methods than combinations between ‘Sample %’ and

‘Taxon %’. 
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Figure 2: Otter 16S non-metric multidimensional  scaling of relative frequency of occurrence for each taxon following
application of different minimum sequence copy thresholds, including different methods and thresholds where possible.
Ellipse colours denote each method with None, Singletons, <10 and Maximum Contamination not having ellipses given
the lack of modifiable threshold. The same figure is available for three other datasets (otter COI, spider general COI and
spider exclusion COI) in supplementary information (Figures S7-9).
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Discussion

Here we have illustrated the efficacy of different filtering methods and thresholds for

removal  of  artefacts  from metabarcoding data,  allowing us  to  identify  an  optimal

method for artefact removal; utilising a threshold that removes a proportion of read

counts per sample, combined with a threshold that removes reads with a count less

than the maximum contamination identified per taxon (‘Opt sample % + MC’; Table

3).  For  optimisation  of  thresholds,  previous  studies  have  disproportionately

emphasised the importance of mock communities (e.g. Elbrecht and Leese 2017;

Jusino et al. 2019); however, since the biases affecting true unknown mixtures of

eDNA are almost impossible to experimentally replicate (Alberdi et al.  2018), data

cannot  be  adequately  filtered using  only  mock communities.  By sequencing and

analysing mock communities, blank samples and eDNA together, it was possible to

fully  assess which filters  and thresholds were optimal  in  cleaning metabarcoding

data of this nature. 

Identifying artefacts

Despite  all  appropriate  precautionary  steps being  taken to  reduce contamination

(e.g.  screening  negative  controls,  pre-  and  post-PCR  workstations),  and

bioinformatic programmes used to remove erroneous sequences, artefacts were still

observed in the unfiltered data. Such contamination is, however, largely unavoidable

when using a method so broad-spectrum and sensitive (Alberdi et al. 2018; Jusino et

al. 2019). Artefacts primarily manifested as unexpected reads in control samples, but

also as erroneous taxa and misassigned reads. Erroneous taxa, usually existing in

low read counts in the unfiltered data (De Barba et al. 2013; Ficetola et al. 2015) are,
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in this case, taxa produced through PCR or sequencing errors that are ecologically

highly  unlikely  to  appear  in  their  respective  samples  (e.g.  foreign  species),  thus

rendering them easy to identify and eliminate. Mis-assigned reads were more difficult

to  identify,  primarily  detected  through  mock  community  taxa  occurring  in  eDNA

samples  and  vice  versa;  however,  some  datasets  also  allow  detection  of  mis-

assignment between eDNA samples through the presence of, for example, marine

taxa in land-locked sites (Figures S1-6). In such cases, reads were assumed to be

derived  from  other  samples  through  cross-contamination,  tag-jumping  or  mis-

assignment (Schnell et al. 2015; Alberdi et al. 2019). If easily identifiable, this can be

fortuitous  for  threshold  determination,  but  where  samples  share  taxa  that  could

theoretically co-occur, they will remain undetected. 

Detection  of  artefacts  is  facilitated through the  presence of  unexpected reads in

controls.  Such  reads  in  negative  controls  may  occur  due  to  low  levels  of

contamination (e.g. from reagents or samples; Leonard et al. 2007; Czurda et al.

2016; Alberdi et al.  2019) that went undetected during screening of samples and

may be present throughout only a few, or potentially all samples. Reads present in

blanks may also occur due to tag-jumping or mis-assignment (Schnell et al. 2015),

which  are  primarily  identifiable  through  unused  MID-tag  combinations.  These

artefacts are hard to detect without blanks because they are frequently assigned to

taxa that legitimately occur in high read abundances across many samples (Jensen

et al. 2015; Carew et al. 2018), such as mock community taxa and common taxa in

eDNA  samples  (e.g.  commonly  consumed  taxa  or  the  consumer  itself).  Further

artefacts  were detected through the presence of  mock community  taxa in eDNA

samples and common eDNA taxa in mock communities; these were concluded to be

primarily  due  to  tag-jumping  or  mis-assignment  rather  than  sample  cross-
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contamination  because  eDNA  and  mock  community  samples  were  processed

separately.  Unexpected reads in  mock communities also allowed low abundance

artefacts from contaminants and PCR or sequencing errors to be identified, which

may have occurred across the eDNA samples. Control samples showed artefacts

were prevalent throughout the unfiltered data, with those identified through blanks

increasing  the  frequency  of  occurrence  of  taxa,  those  identified  through  mock

communities  inflating  sample  diversity  and  both  contributing  to  higher  total  read

counts and, ultimately, false positives

The  composition  of  mock  communities  is  of  great  importance  to  the  process  of

identifying artefacts.  If  the mock communities are comprised of species that may

feasibly occur in the eDNA samples taken from the focal study system, the utility of

those controls is reduced.  Although the mock communities in this study comprised

species considered highly unlikely to appear in the corresponding eDNA samples,

distinct problems were encountered for all datasets. For the otter dietary analysis,

the mock communities contained marine taxa unlikely to have been consumed by

otters, yet high read counts were observed in the COI mock communities for brill

(Scophthalmus  rhombus),  a  species  known  to  be  consumed  by  otters  and  not

included in the mock community mixtures. The marine samples from which DNA was

extracted were collected as part of a larger marine surveying initiative and, whilst

care  was  taken  by  the  practitioners  responsible  for  the  collection,  cross-

contamination between species was possible.  Since this  taxon could  legitimately

occur in both mock communities and eDNA samples, false presences are harder to

confirm, but its marine origin meant that in areas lacking access to marine prey by

otters,  reads could still  be identified as artefacts.  The mock community  mixtures

used  for  the  spider  dietary  analysis  included  exotic  species  from Round  Island,
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Mauritius,  collected  as  part  of  a  separate  study.  These  were  selected  for  their

absence in Britain and taxonomic relevance to the expected prey species (also small

invertebrates).  Given  the  poorly  described  entomological  fauna  of  Round  Island,

Mauritius,  the  identities  of  a  minority  of  these  species  were  not  resolved  in  the

bioinformatics process, resulting in their designation as ‘not assigned’ and thus their

exclusion from the filtering process alongside other unassigned taxa.

Performance of Minimum Sequence Copy Thresholds (MSCTs)

Artefacts were removed to varying extents depending on the filtering method and

threshold utilised. Basic MSCTs commonly used in the literature, such as removing

singletons (e.g. Oliverio et al. 2018) or reads with an abundance less than 10 (e.g.

Gebremedhin et al. 2016), removed very few artefacts. This will, however, vary with

sequencing depth, with relatively greater depths increasing the likelihood of artefacts

having more than 10 occurrences (De Barba et al. 2014; Elbrecht & Leese 2015).

MSCTs removing reads with  an  abundance below a proportion of  the  total  read

count performed better,  reducing abundance of all  detectable artefacts;  however,

applying one threshold across all  read counts potentially indiscriminately removes

target reads with low abundances and retains abundant artefacts. This bias can be

overcome by using MSCTs based on sample read counts, as the read count will

inevitably vary between samples despite best efforts to facilitate consistent sample

read depths (Deagle et al  2019).  Sample MSCTs efficaciously removed artefacts

from within samples, with lowered levels of cross-contamination and erroneous taxa,

but did not clear artefacts from blanks, nor abundant taxa.
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MSCTs that removed reads less than the maximum read count present in the blanks

for each taxon (‘Max Contamination’), and those which removed reads less than a

given proportion of the total read count for that taxon (‘Taxon %’), removed artefacts

from blanks and abundant taxa, but not mock communities or erroneous taxa. Of

these two methods, removal of maximum taxon contamination was more suitable as

it removed all artefacts from negative controls and taxa with high read counts without

removing  too  many  reads  overall.  To  achieve  the  same  result  using  thresholds

based on taxon read counts resulted in much greater read losses, increasing the

likelihood of  false negatives.  Proportional  taxon thresholds also showed a strong

bias towards removing reads from abundant taxa. Whilst helping to remove artefacts

produced through tag-jumping, this would potentially produce false negatives if taxa

legitimately occurred in many samples. Comparing proportional taxon thresholds to

others that cleared out similar amounts of artefacts revealed that proportional taxon

thresholds produced the highest loss of reads, thus making this method more likely

to lead to false negatives.  Removal of maximum taxon contamination is logically

superior given that the taxa for which the greatest number of reads will be removed

will  be  based  on  those  that  are  verifiably  contaminating  the  blanks.  Care  must,

however, be taken to ensure that the protocols followed to produce the blanks are

sufficiently  stringent  but  not  unnecessarily  conservative  (e.g.  negative  control

volumes included being based on the  average volume pooled per  plate,  vs.  the

maximum volume pooled per plate),  since this will  cause this filtering method to

produce many false negatives through overly strict removal of data.

Combining MSCTs
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Combining  different  MSCTs improved the  performance of  all  filters,  leading to  a

greater reduction in artefact presence. The weakest combination used proportional

taxon thresholds  with  removal  of  maximum taxon contamination  (‘Taxon %’  with

‘Maximum Contamination’); these analogous methods removed artefacts in similar

ways (i.e. removal based on reads present across taxa, rather than across samples),

with neither sufficiently mitigating artefacts within samples. Artefacts persisting in

blanks,  following  application  of  total  read  count  thresholds,  were  removed  by

combining this method with removal of maximum taxon contamination; however, this

combination  may  introduce  biases  by  not  accounting  for  read  depth  variation

between samples, thus providing overly conservative filtering to some samples and

insufficient  filtering  to  others.  Taxon-based  thresholds  were  complementary  to

sample-based thresholds, with one removing artefacts identified through blanks and

abundant taxa and the other removing artefacts within samples, including erroneous

taxa.  Combining  sample-based  thresholds  with  removal  of  maximum  taxon

contamination  performed  better  than  combinations  with  proportional  taxon

thresholds, as a greater proportion of artefacts were removed with a lower total read

loss,  reducing  the  likelihood of  false  negatives.  Due to  its  consistently  improved

performance over other MSCTs across all four metabarcoding datasets, we conclude

that  combining  a  sample-based  threshold  with  removal  of  maximum  taxon

contamination is  the optimal  method for  stringent  filtering  of  metabarcoding data

whilst retaining target data. 

Choosing an appropriate threshold 
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In metabarcoding studies, removal of false positives tends to be prioritised over false

negatives due to the assumption that reads prove taxon presence whilst a lack of

reads  does  not  prove  absence  because  false  negatives  can  occur  due  to

experimental biases (e.g. sampling or primer bias; Oehm et al. 2011; Pinol et al.

2015). A trade-off exists whereby removal of false positives leads to an increase in

false negatives (Zepeda-Mendosa et al. 2016; Alberdi et al. 2019), observed here

when  utilising  high  thresholds  which  removed  many  artefacts  but  also  removed

target reads, biasing results to taxa with high read abundance. Ultimately though, not

all  false  positives  are  identifiable,  meaning  some  artefacts  may  persist  despite

appropriate filtering removing all  known artefacts.  A balance can be achieved by

which a high proportion of false positives are removed whilst retaining only very few

false negatives that are easily disregarded (Clare et al. 2016; Hanfling et al. 2016;

Zizka  et  al.  2019),  thus  better  reflecting  the  true  diversity  within  samples.  The

threshold at which this balance is achieved varies between studies depending on the

sequencing depth and breadth of  taxa.  Appropriate thresholds should be chosen

based  on  artefact  removal  from  control  samples.  The  aim  of  the  study  should,

however,  also  be  considered.  Studies  concerning  commonly-detected  taxa  can

employ more stringent filters that remove more artefacts at the expense of losing

rare  taxa  that  may  not  be  of  interest  anyway  (e.g.  studies  of  major  sources  of

nutrition  to  a  predator).  However,  studies  concerning  rare  taxa  should  consider

refining their thresholds to optimally remove artefacts whilst retaining the greatest

amount of sequencing data (e.g. surveys of species richness).

In this study, we chose to assess the effectiveness of different thresholds using taxa

read counts as well as occurrences (count data converted to presence or absence).

Occurrence  data  is  often  assumed  to  be  a  conservative  method  of  assessing

34

9

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633



metabarcoding data, as recovery biases (e.g. primer bias, starting amount of DNA)

have a lower impact on such data (Deagle et al. 2019). Although occurrence data

can inflate the importance of taxa that occur at low read counts (e.g. rare taxa or

taxa consumed in small amounts; Deagle et al. 2019), and therefore also artefacts,

we found it provided a simple and concise method for assessing artefact prevalence.

Other methods, such as relative read abundance (RRA), may provide an alternative

method for assessing abundance of artefacts and their  impact on metabarcoding

datasets by considering the proportion of reads each taxon contributes to a sample’s

total read count (this is analogous to the ‘Sample %’ MSCT). However, conversion of

reads to  RRA can produce misleading results  due to  biases such as differential

digestion rates or primer amplifications (Pompanon et al. 2012; Clare 2014; Piñol et

al. 2014; Thomas et al. 2014; Elbrecht and Leese 2015; Elbrecht et al. 2017; Alberdi

et al. 2018), whilst the loss of read count data can potentially obscure interpretations

of overall data loss. For these reasons we chose not to convert read count data into

RRA in this study but instead use raw read counts to assess the use of different

MSCTs,  thus  allowing  both  artefact  abundance  and  overall  loss  of  reads  to  be

assessed and directly compared. Future developments may make RRA a useful tool

for artefact detection and removal though, allowing identification of artefacts that are

having a proportionally large impact on metabarcoding data.

Previous studies

A  review  of  the  relevant  literature  (154  DNA  metabarcoding  papers;  Table  S1)

revealed a large proportion of eDNA studies did not employ MSCTs (29%) and those

which did often used entirely distinct methodologies and thresholds, with no optimal
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method  apparent.  Studies  utilising  one  threshold  across  all  read  counts  were

commonly used (18% of studies;  Table S1),  but  often employed largely arbitrary

thresholds (e.g. removal of reads with an abundance of less than 10) that did not

consider the variation in artefact prevalence that can occur through differences in

sequencing depth (De Barba et al. 2014; Elbrecht and Leese 2015). Whilst some

studies  circumvent  this  issue  by  using  relative  thresholds  (2%  of  studies  used

thresholds based on total read abundance, 18% sample read abundance and 9%

taxon  abundance;  Table  S1),  each  of  these  methods  is  likely  to  have  removed

artefacts to  a different  extent,  introducing inconsistencies between datasets as a

consequence. This study shows how using different MSCTs can drastically affect

metabarcoding data, and in turn ecological interpretations of such data, therefore

highlighting the need for more stringent removal of artefact across metabarcoding

studies. Furthermore, the disparity in terminology and methodological descriptions

between  studies  identified  in  the  literature  search  obviates  confident  inter-study

comparison and undermines an overall requirement for scientific transparency. By

comparing existing filtering methodologies, this study thus also provides effective

descriptions for such methods which can be applied to mitigate this disparity.

Conclusions

Here we have shown that  artefacts persist  in metabarcoding data even following

stringent  lab and bioinformatic  procedures.  Although artefacts  often  occur  in  low

abundances, they can create a disproportionate representation of biodiversity and

produce  misleading  results,  highlighting  the  need  for  read  count  filters.  MSCTs

removed artefacts to differing extents, but combining sample-based thresholds with
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removal of maximum taxon contamination provided an optimal outcome. Whilst the

optimal method was the same for all four datasets, thresholds applied differed due to

variation  in  sequencing  depth  and  differential  taxon  amplification.  The  choice  of

thresholds must thus depend on the individual study, taking into consideration the

sequencing  depth,  breadth  of  taxa  amplified,  artefact  abundance  and  the

fundamental question under investigation. Control samples were crucial in assessing

filters and selecting appropriate thresholds, providing a means for assessing removal

of  artefacts  and target  reads.  We recommend that  future  metabarcoding studies

include mock communities and blanks, and, if  possible,  use taxa detected within

eDNA samples that can be used to identify artefacts in the resultant metabarcoding

data (e.g.  marine taxa in inland samples) to facilitate identification of appropriate

thresholds. Given the broad variation in MSCTs applied to metabarcoding studies,

inconsistent  results  between  these  studies  are  inevitable.  To  mitigate  erroneous

reporting of results and inconsistencies, effective guidance for best-practice filtering

of  metabarcoding  data  for  the  ascertainment  of  conservative  and  accurate  data

should be followed.
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