References
Bailey, R. C., Norris, R. H., and Reynoldson, T. B. (2001). Taxonomic
resolution of benthic macroinvertebrate communities in bioassessments.J. North Am. Benthol. Soc. 20, 280–286.
Barco, A., Raupach, M. J., Laakmann, S., Neumann, H., and Knebelsberger,
T. (2016). Identification of North Sea molluscs with DNA barcoding.Mol. Ecol. Resour. 16, 288–297.
Breimann, L. (2001). Random Forests. Mach. Learn. 45, 5–32.
Calderaro, A., Arcangeletti, M.-C., Rodighiero, I., Buttrini, M.,
Gorrini, C., Motta, F., et al. (2014). Matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry
applied to virus identification. Sci. Rep. 4, 6803. doi:
10.1038/srep06803.
Chavy, A., Nabet, C., Normand, A. C., Kocher, A., Ginouves, M., Prévot,
G., et al. (2019). Identification of French Guiana sand flies using
MALDI-TOF mass spectrometry with a new mass spectra library. PLoS
Negl. Trop. Dis. 13, e0007031. doi: 10.1371/journal.pntd.0007031.
Dieme, C., Yssouf, A., Vega-Rúa, A., Berenger, J.-M., Failloux, A.-B.,
Raoult, D., et al. (2014). Accurate identification of Culicidae at
aquatic developmental stages by MALDI-TOF MS profiling. Parasit.
Vectors 7, 544.
Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H., and von Bergen,
M. (2010). Discrimination of different species from the genus Drosophila
by intact protein profiling using matrix-assisted laser desorption
ionization mass spectrometry. BMC Evol. Biol. 10, 1.
Fenselau, C., and Demirev, P. A. (2001). Characterization of intact
microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev.20, 157–171.
Flaudrops, C., Armstrong, N., Raoult, D., and Chabrière, E. (2015).
Determination of the animal origin of meat and gelatin by MALDI-TOF-MS.J. Food Compos. Anal. 41, 104–112.
Gebhardt, K., and Knebelsberger, T. (2015). Identification of cephalopod
species from the North and Baltic Seas using morphology, COI and 18S
rDNA sequences. Helgol. Mar. Res. 69, 259.
Gibb, S. (2015). MALDIquantForeign: Import/Export routines for
MALDIquant. A package for R. HttpsCRANR-Proj.
Gibb, S., and Strimmer, K. (2012). MALDIquant: a versatile R package for
the analysis of mass spectrometry data. Bioinformatics 28,
2270–2271.
Han, H., Guo, X., and Yu, H. (2016). Variable selection using mean
decrease accuracy and mean decrease gini based on random forest. in2016 7th IEEE International Conference on Software Engineering and
Service Science (ICSESS) (IEEE), 219–224.
Holst, S., Heins, A., and Laakmann, S. (2019). Morphological and
molecular diagnostic species characters of Staurozoa (Cnidaria)
collected on the coast of Helgoland (German Bight, North Sea).Mar. Biodivers. doi: 10.1007/s12526-019-00943-1.
Hynek, R., Kuckova, S., Cejnar, P., Junková, P., Přikryl, I., and Říhová
Ambrožová, J. (2018). Identification of freshwater zooplankton species
using protein profiling and principal component analysis. Limnol.
Oceanogr. Methods 16, 199–204. doi: 10.1002/lom3.10238.
Jeverica, S., Nagy, E., Mueller-Premru, M., and Papst, L. (2018). Sample
preparation method influences direct identification of anaerobic
bacteria from positive blood culture bottles using MALDI-TOF MS.Anaerobe 54, 231–235.
Kaiser, P., Bode, M., Cornils, A., Hagen, W., Martínez Arbizu, P., Auel,
H., et al. (2018). High-resolution community analysis of deep-sea
copepods using MALDI-TOF protein fingerprinting. Deep-Sea Res.
Part Oceanogr. Res. Pap. 138, 122–130.
Knebelsberger, T., Landi, M., Neumann, H., Kloppmann, M., Sell, A. F.,
Campbell, P. D., et al. (2014). A reliable DNA barcode reference library
for the identification of the North European shelf fish fauna.Mol. Ecol. Resour. 14, 1060–1071.
Knebelsberger, T., and Thiel, R. (2014). Identification of gobies
(Teleostei: Perciformes: Gobiidae) from the North and Baltic Seas
combining morphological analysis and DNA barcoding. Zool. J. Linn.
Soc. 172, 831–845.
Korfhage, S. A., Rossel, S., Brix, S., McFadden, C. S., Ólafsdóttir, S.
H., and Martínez Arbizu, P. (2022). Species Delimitation of Hexacorallia
and Octocorallia Around Iceland Using Nuclear and Mitochondrial DNA and
Proteome Fingerprinting. Front. Mar. Sci. 9. Available at:
https://www.frontiersin.org/article/10.3389/fmars.2022.838201.
Kürzel, K., Kaiser, S., Lörz, A.-N., Rossel, S., Paulus, E., Peters, J.,
et al. (2022). Correct Species Identification and Its Implications for
Conservation Using Haploniscidae (Crustacea, Isopoda) in Icelandic
Waters as a Proxy. Front. Mar. Sci. 8. doi: doi:
10.3389/fmars.2021.795196.
Laakmann, S., Boos, K., Knebelsberger, T., Raupach, M. J., and Neumann,
H. (2016). Species identification of echinoderms from the North Sea by
combining morphology and molecular data. Helgol. Mar. Res. 70.
Laakmann, S., Gerdts, G., Erler, R., Knebelsberger, T., Martínez Arbizu,
P., and Raupach, M. J. (2013). Comparison of molecular species
identification for North Sea calanoid copepods (Crustacea) using
proteome fingerprints and DNA sequences. Mol. Ecol. Resour. 13,
862–76. doi: 10.1111/1755-0998.12139.
Loaiza, J. R., Almanza, A., Rojas, J. C., Mejia, L., Cervantes, N. D.,
Sanchez-Galan, J. E., et al. (2019). Application of matrix-assisted
laser desorption/ionization mass spectrometry to identify species of
Neotropical Anopheles vectors of malaria. Malar. J. 18, 95.
Lohman, D. J., Prawiradilaga, D. M., and Meier, R. (2009). Improved COI
barcoding primers for Southeast Asian perching birds (Aves:
Passeriformes). Mol. Ecol. Resour. 9, 37–40.
Maász, G., Takács, P., Boda, P., Várbiró, G., and Pirger, Z. (2017).
Mayfly and fish species identification and sex determination in bleak
(Alburnus alburnus) by MALDI-TOF mass spectrometry. Sci. Total
Environ. 601, 317–325.
Markert, A., Raupach, M. J., Segelken-Voigt, A., and Wehrmann, A.
(2014). Molecular identification and morphological characteristics of
native and invasive Asian brush-clawed crabs (Crustacea: Brachyura) from
Japanese and German coasts: Hemigrapsus penicillatus (De Haan, 1835)
versus Hemigrapsus takanoi Asakura & Watanabe 2005. Org. Divers.
Evol. 14, 369–382.
Martínez Arbizu, P., and Rossel, S. (2018). RFtools: Miscellaneous Tools
For Random Forest Models. doi: https://zenodo.org/record/118843.
Mazzeo, M. F., Giulio, B. D., Guerriero, G., Ciarcia, G., Malorni, A.,
Russo, G. L., et al. (2008). Fish authentication by MALDI-TOF mass
spectrometry. J. Agric. Food Chem. 56, 11071–11076.
Mazzeo, M. F., and Siciliano, R. A. (2016). Proteomics for the
authentication of fish species. J. Proteomics 147, 119–124.
Müller, P., Pflüger, V., Wittwer, M., Ziegler, D., Chandre, F., Simard,
F., et al. (2013). Identification of cryptic Anopheles mosquito species
by molecular protein profiling. PLOS ONE 8, e57486. doi:
10.1371/journal.pone.0057486.
Nabet, C., Kone, A. K., Dia, A. K., Sylla, M., Gautier, M., Yattara, M.,
et al. (2021). New assessment of Anopheles vector species identification
using MALDI-TOF MS. Malar. J. 20, 1–16.
Palarea-Albaladejo, J., Mclean, K., Wright, F., and Smith, D. G. (2017).
MALDIrppa: quality control and robust analysis for mass spectrometry
data. Bioinformatics 34, 522–523.
Park, N., Yeom, J., Jeong, R., and Lee, W. (2021). Novel attempt at
discrimination of a bullet-shaped siphonophore (Family Diphyidae) using
matrix-assisted laser desorption/ionization time of flight mass
spectrometry (MALDI-ToF MS). Sci. Rep. 11, 19077. doi:
10.1038/s41598-021-98724-z.
Paulus, E., Brix, S., Siebert, A., Martínez Arbizu, P., Rossel, S.,
Peters, J., et al. (2022). Recent speciation and hybridization in
Icelandic deep-sea isopods: An integrative approach using genomics and
proteomics. Mol. Ecol. 31, 313–330. doi: 10.1111/mec.16234.
Peters, J., Laakmann, S., Rossel, S., Martínez Arbizu, P., and Renz, J.
(2023). Perspectives of species identification by MALDI-TOF MS in
monitoring-Stability of proteomic fingerprints in marine epipelagic
copepods. Mol. Ecol. Resour. doi: 10.1111/1755-0998.13779.
Rakotonirina, A., Pol, M., Kainiu, M., Barsac, E., Tutagata, J., Kilama,
S., et al. (2020). MALDI-TOF MS: optimization for future uses in
entomological surveillance and identification of mosquitoes from New
Caledonia. Parasit. Vectors 13, 1–12.
Rakotonirina, A., Pol, M., Raharimalala, F. N., Ballan, V., Kainiu, M.,
Boyer, S., et al. (2022). MALDI-TOF MS: An effective tool for a global
surveillance of dengue vector species. PLOS ONE 17, e0276488.
doi: 10.1371/journal.pone.0276488.
Raupach, M. J., Barco, A., Steinke, D., Beermann, J., Laakmann, S.,
Mohrbeck, I., et al. (2015). The application of DNA barcodes for the
identification of marine crustaceans from the North Sea and adjacent
regions. PLOS ONE 10, e0139421.
R-Core-Team (2022). R: A language and environment for statistical
computing. Available at: https://www.R-project.org/.
Renz, J., Markhaseva, E. L., Laakmann, S., Rossel, S., Martínez Arbizu,
P., and Peters, J. (2021). Proteomic fingerprinting facilitates
biodiversity assessments in understudied ecosystems: A case study on
integrated taxonomy of deep sea copepods. Mol. Ecol. Resour.
Ressom, H. W., Varghese, R. S., Drake, S. K., Hortin, G. L.,
Abdel-Hamid, M., Loffredo, C. A., et al. (2007). Peak selection from
MALDI-TOF mass spectra using ant colony optimization.Bioinformatics 23, 619–626.
Rossel, S., Barco, A., Kloppmann, M., Martínez Arbizu, P., Huwer, B.,
and Knebelsberger, T. (2020a). Rapid species level identification of
fish eggs by proteome fingerprinting using MALDI-TOF MS. J.
Proteomics , 103993.
Rossel, S., Deli, T., and Raupach, M. J. (2020b). First insights into
the phylogeography and demographic history of the common hermit crab
Pagurus bernhardus (Linnaeus, 1758)(Decapoda: Anomura: Paguridae) across
the Eastern Atlantic and North Sea. J. Crustac. Biol. 40,
435–449.
Rossel, S., Kaiser, P., Bode-Dalby, M., Renz, J., Laakmann, S., Auel,
H., et al. (2022). Proteomic fingerprinting enables quantitative
biodiversity assessments of species and ontogenetic stages in Calanus
congeners (Copepoda, Crustacea) from the Arctic Ocean. Mol. Ecol.
Resour. n/a. doi: 10.1111/1755-0998.13714.
Rossel, S., Khodami, S., and Martínez Arbizu, P. (2019). Comparison of
rapid biodiversity assessment of meiobenthos using MALDI-TOF MS and
Metabarcoding. Front. Mar. Sci. 6, 659. doi:
10.3389/fmars.2019.00659.
Rossel, S., and Martínez Arbizu, P. (2018a). Automatic specimen
identification of Harpacticoids (Crustacea:Copepoda) using Random Forest
and MALDI-TOF mass spectra, including a post hoc test for false positive
discovery. Methods Ecol. Evol. 9, 1421–1434. doi:
10.1111/2041-210X.13000.
Rossel, S., and Martínez Arbizu, P. (2018b). Effects of Sample Fixation
on Specimen Identification in Biodiversity Assemblies based on Proteomic
Data (MALDI-TOF). Front. Mar. Sci. 5, 149. doi:
10.3389/fmars.2018.00149.
Rossel, S., and Martínez Arbizu, P. (2019). Revealing higher than
expected diversity of Harpacticoida (Crustacea: Copepoda) in the North
Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9,
9182. doi: 10.1038/s41598-019-45718-7.
Ryan, C., Clayton, E., Griffin, W., Sie, S., and Cousens, D. (1988).
SNIP, a statistics-sensitive background treatment for the quantitative
analysis of PIXE spectra in geoscience applications. Nucl.
Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 34,
396–402.
Sandrin, T. R., Goldstein, J. E., and Schumaker, S. (2013). MALDI TOF MS
profiling of bacteria at the strain level: a review. Mass
Spectrom. Rev. 32, 188–217.
Sassi, M., Arena, S., and Scaloni, A. (2015). MALDI-TOF-MS platform for
integrated proteomic and peptidomic profiling of milk samples allows
rapid detection of food adulterations. J. Agric. Food Chem. 63,
6157–6171.
Savitzky, A., and Golay, M. J. (1964). Smoothing and differentiation of
data by simplified least squares procedures. Anal. Chem. 36,
1627–1639.
Shin, H., Sampat, M. P., Koomen, J. M., and Markey, M. K. (2010).
Wavelet-based adaptive denoising and baseline correction for MALDI TOF
MS. Omics J. Integr. Biol. 14, 283–295.
Singhal, N., Kumar, M., Kanaujia, P. K., and Virdi, J. S. (2015).
MALDI-TOF mass spectrometry: an emerging technology for microbial
identification and diagnosis. Front. Microbiol. 6. doi:
10.3389/fmicb.2015.00791.
Timms, L. L., Bowden, J. J., Summerville, K. S., and Buddle, C. M.
(2013). Does species-level resolution matter? Taxonomic sufficiency in
terrestrial arthropod biodiversity studies. Insect Conserv.
Divers. 6, 453–462.
Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A., Nicol, J. M.,
Ogbonnaya, F., et al. (2013). Development of two species-specific primer
sets to detect the cereal cyst nematodes Heterodera avenae and
Heterodera filipjevi. Eur. J. Plant Pathol. 136, 613–624.
Tran, A., Alby, K., Kerr, A., Jones, M., and Gilligan, P. H. (2015).
Cost Savings Realized by Implementation of Routine Microbiological
Identification by Matrix-Assisted Laser Desorption Ionization–Time of
Flight Mass Spectrometry. J. Clin. Microbiol. 53, 2473–2479.
doi: 10.1128/JCM.00833-15.
Vega-Rúa, A., Pagès, N., Fontaine, A., Nuccio, C., Hery, L., Goindin,
D., et al. (2018). Improvement of mosquito identification by MALDI-TOF
MS biotyping using protein signatures from two body parts.Parasit. Vectors 11, 574.
Volta, P., Riccardi, N., Lauceri, R., and Tonolla, M. (2012).
Discrimination of freshwater fish species by Matrix-Assisted Laser
Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS): a
pilot study. J. Limnol. 71, e17.
Wang, J., Wang, H., Cai, K., Yu, P., Liu, Y., Zhao, G., et al. (2021).
Evaluation of three sample preparation methods for the identification of
clinical strains by using two MALDI-TOF MS systems. J. Mass
Spectrom. 56, e4696.
Wickham, H., Francois, R., Henry, L., and Müller, K. (2022). dplyr: A
Grammar of Data Manipulation. Available at:
https://CRAN.R-project.org/package=dplyr.
Wilke, T., Renz, J., Hauffe, T., Delicado, D., and Peters, J. (2020).
Proteomic Fingerprinting Discriminates Cryptic Gastropod Species.Malacologia 63, 131–137.
Yeom, J., Park, N., Jeong, R., and Lee, W. (2021). Integrative
Description of Cryptic Tigriopus Species From Korea Using MALDI-TOF MS
and DNA Barcoding. Front. Mar. Sci. 8, 495.
Yssouf, A., Flaudrops, C., Drali, R., Kernif, T., Socolovschi, C.,
Berenger, J.-M., et al. (2013). Matrix-assisted laser desorption
ionization–time of flight mass spectrometry for rapid identification of
tick vectors. J. Clin. Microbiol. 51, 522–528.
Yssouf, A., Socolovschi, C., Leulmi, H., Kernif, T., Bitam, I., Audoly,
G., et al. (2014). Identification of flea species using MALDI-TOF/MS.Comp. Immunol. Microbiol. Infect. Dis. 37, 153–157.
Supplementary Fig. 1: Out of box error of the random forest model (OOB
error on y-axis) for the different combinations of baseline subtraction
iterations, signal to noise ratio (SNR) and half window size (HWS)
during peak picking. Each box represents the number of baseline
iteration steps ranging from 5 to 30. The x-axis displays the SNR value
ranging from 3 to 20. Colors indicate different HWS ranging from 5 to
30. The results are shown for all 12,186 variable combinations.