References
Bailey, R. C., Norris, R. H., and Reynoldson, T. B. (2001). Taxonomic resolution of benthic macroinvertebrate communities in bioassessments.J. North Am. Benthol. Soc. 20, 280–286.
Barco, A., Raupach, M. J., Laakmann, S., Neumann, H., and Knebelsberger, T. (2016). Identification of North Sea molluscs with DNA barcoding.Mol. Ecol. Resour. 16, 288–297.
Breimann, L. (2001). Random Forests. Mach. Learn. 45, 5–32.
Calderaro, A., Arcangeletti, M.-C., Rodighiero, I., Buttrini, M., Gorrini, C., Motta, F., et al. (2014). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 4, 6803. doi: 10.1038/srep06803.
Chavy, A., Nabet, C., Normand, A. C., Kocher, A., Ginouves, M., Prévot, G., et al. (2019). Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library. PLoS Negl. Trop. Dis. 13, e0007031. doi: 10.1371/journal.pntd.0007031.
Dieme, C., Yssouf, A., Vega-Rúa, A., Berenger, J.-M., Failloux, A.-B., Raoult, D., et al. (2014). Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasit. Vectors 7, 544.
Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H., and von Bergen, M. (2010). Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol. Biol. 10, 1.
Fenselau, C., and Demirev, P. A. (2001). Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev.20, 157–171.
Flaudrops, C., Armstrong, N., Raoult, D., and Chabrière, E. (2015). Determination of the animal origin of meat and gelatin by MALDI-TOF-MS.J. Food Compos. Anal. 41, 104–112.
Gebhardt, K., and Knebelsberger, T. (2015). Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences. Helgol. Mar. Res. 69, 259.
Gibb, S. (2015). MALDIquantForeign: Import/Export routines for MALDIquant. A package for R. HttpsCRANR-Proj.
Gibb, S., and Strimmer, K. (2012). MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270–2271.
Han, H., Guo, X., and Yu, H. (2016). Variable selection using mean decrease accuracy and mean decrease gini based on random forest. in2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS) (IEEE), 219–224.
Holst, S., Heins, A., and Laakmann, S. (2019). Morphological and molecular diagnostic species characters of Staurozoa (Cnidaria) collected on the coast of Helgoland (German Bight, North Sea).Mar. Biodivers. doi: 10.1007/s12526-019-00943-1.
Hynek, R., Kuckova, S., Cejnar, P., Junková, P., Přikryl, I., and Říhová Ambrožová, J. (2018). Identification of freshwater zooplankton species using protein profiling and principal component analysis. Limnol. Oceanogr. Methods 16, 199–204. doi: 10.1002/lom3.10238.
Jeverica, S., Nagy, E., Mueller-Premru, M., and Papst, L. (2018). Sample preparation method influences direct identification of anaerobic bacteria from positive blood culture bottles using MALDI-TOF MS.Anaerobe 54, 231–235.
Kaiser, P., Bode, M., Cornils, A., Hagen, W., Martínez Arbizu, P., Auel, H., et al. (2018). High-resolution community analysis of deep-sea copepods using MALDI-TOF protein fingerprinting. Deep-Sea Res. Part Oceanogr. Res. Pap. 138, 122–130.
Knebelsberger, T., Landi, M., Neumann, H., Kloppmann, M., Sell, A. F., Campbell, P. D., et al. (2014). A reliable DNA barcode reference library for the identification of the North European shelf fish fauna.Mol. Ecol. Resour. 14, 1060–1071.
Knebelsberger, T., and Thiel, R. (2014). Identification of gobies (Teleostei: Perciformes: Gobiidae) from the North and Baltic Seas combining morphological analysis and DNA barcoding. Zool. J. Linn. Soc. 172, 831–845.
Korfhage, S. A., Rossel, S., Brix, S., McFadden, C. S., Ólafsdóttir, S. H., and Martínez Arbizu, P. (2022). Species Delimitation of Hexacorallia and Octocorallia Around Iceland Using Nuclear and Mitochondrial DNA and Proteome Fingerprinting. Front. Mar. Sci. 9. Available at: https://www.frontiersin.org/article/10.3389/fmars.2022.838201.
Kürzel, K., Kaiser, S., Lörz, A.-N., Rossel, S., Paulus, E., Peters, J., et al. (2022). Correct Species Identification and Its Implications for Conservation Using Haploniscidae (Crustacea, Isopoda) in Icelandic Waters as a Proxy. Front. Mar. Sci. 8. doi: doi: 10.3389/fmars.2021.795196.
Laakmann, S., Boos, K., Knebelsberger, T., Raupach, M. J., and Neumann, H. (2016). Species identification of echinoderms from the North Sea by combining morphology and molecular data. Helgol. Mar. Res. 70.
Laakmann, S., Gerdts, G., Erler, R., Knebelsberger, T., Martínez Arbizu, P., and Raupach, M. J. (2013). Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol. Ecol. Resour. 13, 862–76. doi: 10.1111/1755-0998.12139.
Loaiza, J. R., Almanza, A., Rojas, J. C., Mejia, L., Cervantes, N. D., Sanchez-Galan, J. E., et al. (2019). Application of matrix-assisted laser desorption/ionization mass spectrometry to identify species of Neotropical Anopheles vectors of malaria. Malar. J. 18, 95.
Lohman, D. J., Prawiradilaga, D. M., and Meier, R. (2009). Improved COI barcoding primers for Southeast Asian perching birds (Aves: Passeriformes). Mol. Ecol. Resour. 9, 37–40.
Maász, G., Takács, P., Boda, P., Várbiró, G., and Pirger, Z. (2017). Mayfly and fish species identification and sex determination in bleak (Alburnus alburnus) by MALDI-TOF mass spectrometry. Sci. Total Environ. 601, 317–325.
Markert, A., Raupach, M. J., Segelken-Voigt, A., and Wehrmann, A. (2014). Molecular identification and morphological characteristics of native and invasive Asian brush-clawed crabs (Crustacea: Brachyura) from Japanese and German coasts: Hemigrapsus penicillatus (De Haan, 1835) versus Hemigrapsus takanoi Asakura & Watanabe 2005. Org. Divers. Evol. 14, 369–382.
Martínez Arbizu, P., and Rossel, S. (2018). RFtools: Miscellaneous Tools For Random Forest Models. doi: https://zenodo.org/record/118843.
Mazzeo, M. F., Giulio, B. D., Guerriero, G., Ciarcia, G., Malorni, A., Russo, G. L., et al. (2008). Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 56, 11071–11076.
Mazzeo, M. F., and Siciliano, R. A. (2016). Proteomics for the authentication of fish species. J. Proteomics 147, 119–124.
Müller, P., Pflüger, V., Wittwer, M., Ziegler, D., Chandre, F., Simard, F., et al. (2013). Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLOS ONE 8, e57486. doi: 10.1371/journal.pone.0057486.
Nabet, C., Kone, A. K., Dia, A. K., Sylla, M., Gautier, M., Yattara, M., et al. (2021). New assessment of Anopheles vector species identification using MALDI-TOF MS. Malar. J. 20, 1–16.
Palarea-Albaladejo, J., Mclean, K., Wright, F., and Smith, D. G. (2017). MALDIrppa: quality control and robust analysis for mass spectrometry data. Bioinformatics 34, 522–523.
Park, N., Yeom, J., Jeong, R., and Lee, W. (2021). Novel attempt at discrimination of a bullet-shaped siphonophore (Family Diphyidae) using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF MS). Sci. Rep. 11, 19077. doi: 10.1038/s41598-021-98724-z.
Paulus, E., Brix, S., Siebert, A., Martínez Arbizu, P., Rossel, S., Peters, J., et al. (2022). Recent speciation and hybridization in Icelandic deep-sea isopods: An integrative approach using genomics and proteomics. Mol. Ecol. 31, 313–330. doi: 10.1111/mec.16234.
Peters, J., Laakmann, S., Rossel, S., Martínez Arbizu, P., and Renz, J. (2023). Perspectives of species identification by MALDI-TOF MS in monitoring-Stability of proteomic fingerprints in marine epipelagic copepods. Mol. Ecol. Resour. doi: 10.1111/1755-0998.13779.
Rakotonirina, A., Pol, M., Kainiu, M., Barsac, E., Tutagata, J., Kilama, S., et al. (2020). MALDI-TOF MS: optimization for future uses in entomological surveillance and identification of mosquitoes from New Caledonia. Parasit. Vectors 13, 1–12.
Rakotonirina, A., Pol, M., Raharimalala, F. N., Ballan, V., Kainiu, M., Boyer, S., et al. (2022). MALDI-TOF MS: An effective tool for a global surveillance of dengue vector species. PLOS ONE 17, e0276488. doi: 10.1371/journal.pone.0276488.
Raupach, M. J., Barco, A., Steinke, D., Beermann, J., Laakmann, S., Mohrbeck, I., et al. (2015). The application of DNA barcodes for the identification of marine crustaceans from the North Sea and adjacent regions. PLOS ONE 10, e0139421.
R-Core-Team (2022). R: A language and environment for statistical computing. Available at: https://www.R-project.org/.
Renz, J., Markhaseva, E. L., Laakmann, S., Rossel, S., Martínez Arbizu, P., and Peters, J. (2021). Proteomic fingerprinting facilitates biodiversity assessments in understudied ecosystems: A case study on integrated taxonomy of deep sea copepods. Mol. Ecol. Resour.
Ressom, H. W., Varghese, R. S., Drake, S. K., Hortin, G. L., Abdel-Hamid, M., Loffredo, C. A., et al. (2007). Peak selection from MALDI-TOF mass spectra using ant colony optimization.Bioinformatics 23, 619–626.
Rossel, S., Barco, A., Kloppmann, M., Martínez Arbizu, P., Huwer, B., and Knebelsberger, T. (2020a). Rapid species level identification of fish eggs by proteome fingerprinting using MALDI-TOF MS. J. Proteomics , 103993.
Rossel, S., Deli, T., and Raupach, M. J. (2020b). First insights into the phylogeography and demographic history of the common hermit crab Pagurus bernhardus (Linnaeus, 1758)(Decapoda: Anomura: Paguridae) across the Eastern Atlantic and North Sea. J. Crustac. Biol. 40, 435–449.
Rossel, S., Kaiser, P., Bode-Dalby, M., Renz, J., Laakmann, S., Auel, H., et al. (2022). Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean. Mol. Ecol. Resour. n/a. doi: 10.1111/1755-0998.13714.
Rossel, S., Khodami, S., and Martínez Arbizu, P. (2019). Comparison of rapid biodiversity assessment of meiobenthos using MALDI-TOF MS and Metabarcoding. Front. Mar. Sci. 6, 659. doi: 10.3389/fmars.2019.00659.
Rossel, S., and Martínez Arbizu, P. (2018a). Automatic specimen identification of Harpacticoids (Crustacea:Copepoda) using Random Forest and MALDI-TOF mass spectra, including a post hoc test for false positive discovery. Methods Ecol. Evol. 9, 1421–1434. doi: 10.1111/2041-210X.13000.
Rossel, S., and Martínez Arbizu, P. (2018b). Effects of Sample Fixation on Specimen Identification in Biodiversity Assemblies based on Proteomic Data (MALDI-TOF). Front. Mar. Sci. 5, 149. doi: 10.3389/fmars.2018.00149.
Rossel, S., and Martínez Arbizu, P. (2019). Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 9182. doi: 10.1038/s41598-019-45718-7.
Ryan, C., Clayton, E., Griffin, W., Sie, S., and Cousens, D. (1988). SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 34, 396–402.
Sandrin, T. R., Goldstein, J. E., and Schumaker, S. (2013). MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom. Rev. 32, 188–217.
Sassi, M., Arena, S., and Scaloni, A. (2015). MALDI-TOF-MS platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J. Agric. Food Chem. 63, 6157–6171.
Savitzky, A., and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639.
Shin, H., Sampat, M. P., Koomen, J. M., and Markey, M. K. (2010). Wavelet-based adaptive denoising and baseline correction for MALDI TOF MS. Omics J. Integr. Biol. 14, 283–295.
Singhal, N., Kumar, M., Kanaujia, P. K., and Virdi, J. S. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00791.
Timms, L. L., Bowden, J. J., Summerville, K. S., and Buddle, C. M. (2013). Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Divers. 6, 453–462.
Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A., Nicol, J. M., Ogbonnaya, F., et al. (2013). Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjevi. Eur. J. Plant Pathol. 136, 613–624.
Tran, A., Alby, K., Kerr, A., Jones, M., and Gilligan, P. H. (2015). Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 53, 2473–2479. doi: 10.1128/JCM.00833-15.
Vega-Rúa, A., Pagès, N., Fontaine, A., Nuccio, C., Hery, L., Goindin, D., et al. (2018). Improvement of mosquito identification by MALDI-TOF MS biotyping using protein signatures from two body parts.Parasit. Vectors 11, 574.
Volta, P., Riccardi, N., Lauceri, R., and Tonolla, M. (2012). Discrimination of freshwater fish species by Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS): a pilot study. J. Limnol. 71, e17.
Wang, J., Wang, H., Cai, K., Yu, P., Liu, Y., Zhao, G., et al. (2021). Evaluation of three sample preparation methods for the identification of clinical strains by using two MALDI-TOF MS systems. J. Mass Spectrom. 56, e4696.
Wickham, H., Francois, R., Henry, L., and Müller, K. (2022). dplyr: A Grammar of Data Manipulation. Available at: https://CRAN.R-project.org/package=dplyr.
Wilke, T., Renz, J., Hauffe, T., Delicado, D., and Peters, J. (2020). Proteomic Fingerprinting Discriminates Cryptic Gastropod Species.Malacologia 63, 131–137.
Yeom, J., Park, N., Jeong, R., and Lee, W. (2021). Integrative Description of Cryptic Tigriopus Species From Korea Using MALDI-TOF MS and DNA Barcoding. Front. Mar. Sci. 8, 495.
Yssouf, A., Flaudrops, C., Drali, R., Kernif, T., Socolovschi, C., Berenger, J.-M., et al. (2013). Matrix-assisted laser desorption ionization–time of flight mass spectrometry for rapid identification of tick vectors. J. Clin. Microbiol. 51, 522–528.
Yssouf, A., Socolovschi, C., Leulmi, H., Kernif, T., Bitam, I., Audoly, G., et al. (2014). Identification of flea species using MALDI-TOF/MS.Comp. Immunol. Microbiol. Infect. Dis. 37, 153–157.
Supplementary Fig. 1: Out of box error of the random forest model (OOB error on y-axis) for the different combinations of baseline subtraction iterations, signal to noise ratio (SNR) and half window size (HWS) during peak picking. Each box represents the number of baseline iteration steps ranging from 5 to 30. The x-axis displays the SNR value ranging from 3 to 20. Colors indicate different HWS ranging from 5 to 30. The results are shown for all 12,186 variable combinations.