REFERENCES
Anders S., Pyl P.T. & Huber W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics31 , 166–169.
Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., Heijne G. von, Elofsson A. & Nielsen H. (2019) Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance2 .
Arriola M.B., Velmurugan N., Zhang Y., Plunkett M.H., Hondzo H. & Barney B.M. (2018) Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. The Plant Journal 93 , 566–586.
Barati B., Lim P.-E., Gan S.-Y., Poong S.-W. & Phang S.-M. (2018) Gene expression profile of marine Chlorella strains from different latitudes: stress and recovery under elevated temperatures. Journal of Applied Phycology 30 , 3121–3130.
Blanc G., Agarkova I., Grimwood J., Kuo A., Brueggeman A., Dunigan D.D., … Van Etten J.L. (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation.Genome Biology 13 , R39.
Boo S.Y., Wong C.M.V.L., Rodrigues K.F., Najimudin N., Murad A.M.A. & Mahadi N.M. (2013) Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR.Polar Biology 36 , 381–389.
Borowitzka M.A. (2018) The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. Journal of Applied Phycology 30 , 2815–2825.
Caspeta L., Chen Y., Ghiaci P., Feizi A., Buskov S., Hallström B.M., … Nielsen J. (2014) Altered sterol composition renders yeast thermotolerant. Science 346 , 75–78.
Chang C.Y.-Y., Bräutigam K., Hüner N.P.A. & Ensminger I. (2021) Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist229 , 675–691.
Chapman W.L. & Walsh J.E. (2007) A Synthesis of Antarctic Temperatures.Journal of Climate 20 , 4096–4117.
Chen D., Shao Q., Yin L., Younis A. & Zheng B. (2019) Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Frontiers in Plant Science 9 .
Chong G.-L., Chu W.-L., Othman R.Y. & Phang S.-M. (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biology 34 , 637–645.
Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., … Xia J. (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research 46 , W486–W494.
Chrismas N.A.M., Anesio A.M. & Sánchez-Baracaldo P. (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Frontiers in Microbiology6 .
Cook G., Teufel A., Kalra I., Li W., Wang X., Priscu J. & Morgan-Kiss R. (2019) The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynthesis Research 141 , 209–228.
Cvetkovska M., Hüner N.P.A. & Smith D.R. (2017) Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology 40 , 1169–1184.
Cvetkovska M., Szyszka-Mroz B., Possmayer M., Pittock P., Lajoie G., Smith D.R. & Hüner N.P.A. (2018) Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation. New Phytologist219 , 588–604.
De Maayer P., Anderson D., Cary C. & Cowan D.A. (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports 15 , 508–517.
Debolt S., Melino V. & Ford C.M. (2007) Ascorbate as a Biosynthetic Precursor in Plants. Annals of Botany 99 , 3–8.
Demmig-Adams B., Garab G., Adams III W., & Govindjee eds. (2014)Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria . Springer Netherlands, Dordrecht.
Dolhi J.M., Maxwell D.P. & Morgan-Kiss R.M. (2013) Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 17 , 711–722.
Dreyer A. & Dietz K.-J. (2018) Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants7 .
Feller G. (2013) Psychrophilic Enzymes: From Folding to Function and Biotechnology. Scientifica 2013 , 1–28.
Fiehn O., Wohlgemuth G. & Scholz M. (2005) Setup and Annotation of Metabolomic Experiments by Integrating Biological and Mass Spectrometric Metadata. In Data Integration in the Life Sciences . Lecture Notes in Computer Science, pp. 224–239. Springer, Berlin, Heidelberg.
Fiehn O., Wohlgemuth G., Scholz M., Kind T., Lee D.Y., Lu Y., … Nikolau B. (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. The Plant Journal 53 , 691–704.
Fragkostefanakis S., Röth S., Schleiff E. & Scharf K.-D. (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.Plant, Cell & Environment 38 , 1881–1895.
Fürtauer L., Weiszmann J., Weckwerth W. & Nägele T. (2019) Dynamics of Plant Metabolism during Cold Acclimation. International Journal of Molecular Sciences 20 .
Ghahremani M., Ghanati F., Bernard F., Azad T., Gholami M. & Safari M. Ornithine-induced increase of proline and polyamines contents in tobacco cells under salinity conditions. 6.
Gill S.S. & Tuteja N. (2010) Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior 5 , 26–33.
Godinho C.P., Prata C.S., Pinto S.N., Cardoso C., Bandarra N.M., Fernandes F. & Sá-Correia I. (2018) Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Scientific Reports 8 , 1–13.
Gray G.R. & Heath D. (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum 124 , 236–248.
Gupta S.C., Sharma A., Mishra M., Mishra R.K. & Chowdhuri D.K. (2010) Heat shock proteins in toxicology: how close and how far? Life Sciences 86 , 377–384.
Guy C., Kaplan F., Kopka J., Selbig J. & Hincha D.K. (2007) Metabolomics of temperature stress. Physiologia Plantarum0 , 071124124159002-???
Hanschen E.R., Marriage T.N., Ferris P.J., Hamaji T., Toyoda A., Fujiyama A., … Olson B.J.S.C. (2016) The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nature Communications 7 , 11370.
Hasanuzzaman M., Bhuyan M.H.M.B., Anee T.I., Parvin K., Nahar K., Mahmud J.A. & Fujita M. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress.Antioxidants 8 .
Hebraud M., Dubois E., Potier P. & Labadie J. (1994) Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. Journal of Bacteriology 176 , 4017–4024.
Hemme D., Veyel D., Mühlhaus T., Sommer F., Jüppner J., Unger A.-K., … Schroda M. (2014) Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii . The Plant Cell26 , 4270–4297.
Hirooka S., Hirose Y., Kanesaki Y., Higuchi S., Fujiwara T., Onuma R., … Miyagishima S. (2017) Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proceedings of the National Academy of Sciences .
Horton P., Park K.-J., Obayashi T., Fujita N., Harada H., Adams-Collier C.J. & Nakai K. (2007) WoLF PSORT: protein localization predictor.Nucleic Acids Research 35 , W585–W587.
Hüner N.P.A., Bode R., Dahal K., Busch F.A., Possmayer M., Szyszka B., … Maxwell D.P. (2012) Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 91 , 127–136.
Huner N.P.A., Öquist G. & Sarhan F. (1998) Energy balance and acclimation to light and cold. Trends in Plant Science3 , 224–230.
Hwang Y., Jung G. & Jin E. (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochemical and Biophysical Research Communications 367 , 635–641.
Janská A., Maršík P., Zelenková S. & Ovesná J. (2010) Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology 12 , 395–405.
Jeffrey S.W. & Humphrey G.F. (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen167 , 191–194.
Kalamaki M.S., Alexandrou D., Lazari D., Merkouropoulos G., Fotopoulos V., Pateraki I., … Kanellis A.K. (2009a) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. Journal of Experimental Botany60 , 1859–1871.
Kalamaki M.S., Merkouropoulos G. & Kanellis A.K. (2009b) Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis?Plant Signaling & Behavior 4 , 1099–1101.
Kalra I., Wang X., Cvetkovska M., Jeong J., McHargue W., Zhang R., … Morgan-Kiss R.M. (2020) Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity.Plant Physiology , pp.01280.2019.
Kaplan F., Kopka J., Sung D.Y., Zhao W., Popp M., Porat R. & Guy C.L. (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal 50 , 967–981.
Kennicutt M.C., Bromwich D., Liggett D., Njåstad B., Peck L., Rintoul S.R., … Chown S.L. (2019) Sustained Antarctic Research: A 21st Century Imperative. One Earth 1 , 95–113.
Kim D., Langmead B. & Salzberg S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 , 357–360.
Kind T., Wohlgemuth G., Lee D.Y., Lu Y., Palazoglu M., Shahbaz S. & Fiehn O. (2009) FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Analytical Chemistry81 , 10038–10048.
Kobayashi Y., Harada N., Nishimura Y., Saito T., Nakamura M., Fujiwara T., … Misumi O. (2014) Algae Sense Exact Temperatures: Small Heat Shock Proteins Are Expressed at the Survival Threshold Temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biology and Evolution 6 , 2731–2740.
Kondrashov F.A. (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings of the Royal Society B: Biological Sciences 279 , 5048–5057.
Légeret B., Schulz‐Raffelt M., Nguyen H.M., Auroy P., Beisson F., Peltier G., … Li‐Beisson Y. (2016) Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids.Plant, Cell & Environment 39 , 834–847.
Leya T. (2013) Snow Algae: Adaptation Strategies to Survive on Snow and Ice. In Polyextremophiles: Life Under Multiple Forms of Stress . Cellular Origin, Life in Extreme Habitats and Astrobiology, (eds J. Seckbach, A. Oren & H. Stan-Lotter), pp. 401–423. Springer Netherlands, Dordrecht.
Liang M.-H., Jiang J.-G., Wang L. & Zhu J. (2020) Transcriptomic insights into the heat stress response of Dunaliella bardawil.Enzyme and Microbial Technology 132 , 109436.
Lindquist S. & Craig E. (1988) The heat-shock proteins.undefined .
Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., … Marchler-Bauer A. (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48 , D265–D268.
Luo W., Friedman M.S., Shedden K., Hankenson K.D. & Woolf P.J. (2009) GAGE: generally applicable gene set enrichment for pathway analysis.BMC Bioinformatics 10 , 161.
Lyon B. & Mock T. (2014) Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment.Biology 3 , 56–80.
Maikova A., Zalutskaya Z., Lapina T. & Ermilova E. (2016) The HSP70 chaperone machines of Chlamydomonas are induced by cold stress.Journal of Plant Physiology 204 , 85–91.
Margesin R. ed. (2008) Psychrophiles: from biodiversity to biotechnology . Springer, Berlin.
Minocha R., Majumdar R. & Minocha S.C. (2014) Polyamines and abiotic stress in plants: a complex relationship1. Frontiers in Plant Science 5 .
Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., … Bateman A. (2021) Pfam: The protein families database in 2021. Nucleic Acids Research 49 , D412–D419.
Morgan-Kiss R.M., Priscu J.C., Pocock T., Gudynaite-Savitch L. & Huner N.P.A. (2006) Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold Environments. Microbiology and Molecular Biology Reviews 70 , 222–252.
Morita R.Y. (1975) Psychrophilic bacteria. Bacteriological Reviews 39 , 144–167.
Mühlhaus T., Weiss J., Hemme D., Sommer F. & Schroda M. (2011) Quantitative Shotgun Proteomics Using a Uniform 15N-Labeled Standard to Monitor Proteome Dynamics in Time Course Experiments Reveals New Insights into the Heat Stress Response of Chlamydomonas reinhardtii.Molecular & Cellular Proteomics : MCP 10 .
Neale P.J. & Priscu J.C. (1995) The Photosynthetic Apparatus of Phytoplankton from a Perennially Ice-Covered Antarctic Lake: Acclimation to an Extreme Shade Environment. Plant and Cell Physiology36 , 253–263.
Nordhues A., Miller S.M., Mühlhaus T. & Schroda M. (2010) Chapter two - New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. In International Review of Cell and Molecular Biology . (ed K.W. Jeon), pp. 75–113. Academic Press.
Nowicka B. & Kruk J. (2012) Plastoquinol is more active than α-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817 , 389–394.
Obryk M.K., Doran P.T., Hicks J.A., McKAY C.P. & Priscu J.C. (2016) Modeling the thickness of perennial ice covers on stratified lakes of the Taylor Valley, Antarctica. Journal of Glaciology 62 , 825–834.
Öquist G. & Huner N.P.A. (2003) Photosynthesis of Overwintering Evergreen Plants. Annual Review of Plant Biology 54 , 329–355.
Park C.-J. & Seo Y.-S. (2015) Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal 31 , 323–333.
Pertea M., Kim D., Pertea G.M., Leek J.T. & Salzberg S.L. (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11 , 1650–1667.
Phadtare S. (2004) Recent developments in bacterial cold-shock response.Current Issues in Molecular Biology 6 , 125–136.
Piette F., Struvay C. & Feller G. (2011) The protein folding challenge in psychrophiles: facts and current issues. Environmental Microbiology 13 , 1924–1933.
Pocock T., Vetterli A. & Falk S. (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. Journal of Experimental Botany 62 , 1169–1177.
Polle J.E.W., Barry K., Cushman J., Schmutz J., Tran D., Hathwaik L.T., … Magnuson J. (2017) Draft Nuclear Genome Sequence of the Halophilic and Beta-Carotene-Accumulating Green Alga Dunaliella salina Strain CCAP19/18. Genome Announcements 5 .
Poong S.-W., Lee K.-K., Lim P.-E., Pai T.-W., Wong C.-Y., Phang S.-M., … Liu C.-C. (2018) RNA-Seq-mediated transcriptomic analysis of heat stress response in a polar Chlorella sp. (Trebouxiophyceae, Chlorophyta). Journal of Applied Phycology 30 , 3103–3119.
Possmayer M., Berardi G., Beall B.F.N., Trick C.G., Hüner N.P.A. & Maxwell D.P. (2011) PLASTICITY OF THE PSYCHROPHILIC GREEN ALGA CHLAMYDOMONAS RAUDENSIS (UWO 241) (CHLOROPHYTA) TO SUPRAOPTIMAL TEMPERATURE STRESS1: HEAT STRESS IN A PSYCHROPHILIC GREEN ALGA.Journal of Phycology 47 , 1098–1109.
Possmayer M., Gupta R.K., Szyszka‐Mroz B., Maxwell D.P., Lachance M., Hüner N.P.A. & Smith D.R. (2016) Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 andChlamydomonas raudensis sag 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. Journal of Phycology52 , 305–310.
Price M.N., Dehal P.S. & Arkin A.P. (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLOS ONE5 , e9490.
Prochnik S.E., Umen J., Nedelcu A.M., Hallmann A., Miller S.M., Nishii I., … Rokhsar D.S. (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science (New York, N.Y.) 329 , 223–226.
Qian W. & Zhang J. (2014) Genomic evidence for adaptation by gene duplication. Genome Research 24 , 1356–1362.
Renaut J., Hausman J.-F. & Wisniewski M.E. (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum 126 , 97–109.
Ritossa F. (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18 , 571–573.
Robinson M.D., McCarthy D.J. & Smyth G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 , 139–140.
Rosa M., Roberts C.J. & Rodrigues M.A. (2017) Connecting high-temperature and low-temperature protein stability and aggregation.PLOS ONE 12 , e0176748.
Roser D.J., Melick D.R., Ling H.U. & Seppelt R.D. (1992) Polyol and sugar content of terrestrial plants from continental Antarctica.Antarctic Science 4 , 413–420.
Santhanagopalan I., Basha E., Ballard K.N., Bopp N.E. & Vierling E. (2015) Model Chaperones: Small Heat Shock Proteins from Plants. InThe Big Book on Small Heat Shock Proteins . Heat Shock Proteins, (eds R.M. Tanguay & L.E. Hightower), pp. 119–153. Springer International Publishing, Cham.
Schmollinger S., Schulz-Raffelt M., Strenkert D., Veyel D., Vallon O. & Schroda M. (2013) Dissecting the Heat Stress Response in Chlamydomonas by Pharmaceutical and RNAi Approaches Reveals Conserved and Novel Aspects. Molecular Plant 6 , 1795–1813.
Schroda M., Hemme D. & Mühlhaus T. (2015) The Chlamydomonas heat stress response. The Plant Journal 82 , 466–480.
Schroda M. & Vallon O. (2009) Chapter 19 - Chaperones and Proteases. InThe Chlamydomonas Sourcebook (Second Edition) . (eds E.H. Harris, D.B. Stern & G.B. Witman), pp. 671–729. Academic Press, London.
Siddiqui K.S., Williams T.J., Wilkins D., Yau S., Allen M.A., Brown M.V., … Cavicchioli R. (2013) Psychrophiles. Annual Review of Earth and Planetary Sciences 41 , 87–115.
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., … Higgins D.G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7 , 539.
Sirikhachornkit A., Shin J.W., Baroli I. & Niyogi K.K. (2009) Replacement of α-Tocopherol by β-Tocopherol Enhances Resistance to Photooxidative Stress in a Xanthophyll-Deficient Strain of Chlamydomonas reinhardtii. Eukaryotic Cell 8 , 1648–1657.
Small I., Peeters N., Legeai F. & Lurin C. (2004) Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences.PROTEOMICS 4 , 1581–1590.
Sperschneider J., Catanzariti A.-M., DeBoer K., Petre B., Gardiner D.M., Singh K.B., … Taylor J.M. (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports 7 , 44598.
Spigel R.H., Priscu J.C., Obryk M.K., Stone W. & Doran P.T. (2018) The physical limnology of a permanently ice-covered and chemically stratified Antarctic lake using high resolution spatial data from an autonomous underwater vehicle. Limnology and Oceanography63 , 1234–1252.
Su Y., Jiang X., Wu W., Wang M., Hamid M.I., Xiang M. & Liu X. (2016) Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic FungusMrakia psychrophila . G3: Genes|Genomes|Genetics 6 , 3603–3613.
Swan T.M. & Watson K. (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose.FEMS Microbiology Letters 169 , 191–197.
Szarka A., Tomasskovics B. & Bánhegyi G. (2012) The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response.International Journal of Molecular Sciences 13 , 4458–4483.
Szyszka B., Ivanov A.G. & Hüner N.P.A. (2007) Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics1767 , 789–800.
Szyszka-Mroz B., Cvetkovska M., Ivanov A.G., Smith D.R., Possmayer M., Maxwell D.P. & Hüner N.P.A. (2019) Cold-Adapted Protein Kinases and Thylakoid Remodeling Impact Energy Distribution in an Antarctic Psychrophile. Plant Physiology 180 , 1291–1309.
Szyszka-Mroz B., Pittock P., Ivanov A.G., Lajoie G. & Hüner N.P.A. (2015) The Antarctic Psychrophile Chlamydomonas sp. UWO 241 Preferentially Phosphorylates a Photosystem I-Cytochrome b6/f Supercomplex. Plant Physiology 169 , 717–736.
Taïbi K., Del Campo A.D., Vilagrosa A., Bellés J.M., López-Gresa M.P., López-Nicolás J.M. & Mulet J.M. (2018) Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology18 , 236.
Tang E.P.Y. & Vincent W.F. (1999) Strategies of thermal adaptation by high-latitude cyanobacteria. New Phytologist 142 , 315–323.
Timperio A.M., Egidi M.G. & Zolla L. (2008) Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). Journal of Proteomics 71 , 391–411.
Trebst A., Depka B. & Holländer-Czytko H. (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii.FEBS Letters 516 , 156–160.
Tulha J., Lima A., Lucas C. & Ferreira C. (2010) Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microbial Cell Factories 9 , 82.
Uji T., Gondaira Y., Fukuda S., Mizuta H. & Saga N. (2019) Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress & Chaperones24 , 223–233.
Valledor L., Furuhashi T., Hanak A.-M. & Weckwerth W. (2013) Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii. Molecular & Cellular Proteomics : MCP 12 , 2032–2047.
Vanegas J.M., Contreras M.F., Faller R. & Longo M.L. (2012) Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes. Biophysical Journal 102 , 507–516.
Vierling E. (2003) The Roles of Heat Shock Proteins in Plants.Annual Review of Plant Physiology 42 , 579–620.
Wang W., Vinocur B., Shoseyov O. & Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9 , 244–252.
Wanner L.A. & Junttila O. (1999) Cold-Induced Freezing Tolerance in Arabidopsis. Plant Physiology 120 , 391–400.
Waters E.R. & Vierling E. (2020) Plant small heat shock proteins – evolutionary and functional diversity. New Phytologist227 , 24–37.
Xavier J.C., Brandt A., Ropert-Coudert Y., Badhe R., Gutt J., Havermans C., … Sutherland W.J. (2016) Future Challenges in Southern Ocean Ecology Research. Frontiers in Marine Science 3 .
Yamori W., Hikosaka K. & Way D.A. (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research 119 , 101–117.
Zhang X., Cvetkovska M., Morgan-Kiss R., Hüner N.P.A. & Smith D.R. (2021a) Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 24 , 102084.
Zhang X., Hu Y. & Smith D.R. (2021b) Protocol for HSDFinder: Identifying, annotating, categorizing, and visualizing duplicated genes in eukaryotic genomes. STAR Protocols 2 , 100619.
Zhang Z., Qu C., Zhang K., He Y., Zhao X., Yang L., … Miao J. (2020) Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga. Current Biology 30 , 3330-3341.e7.