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Summary

In this paper, we address the global asymptotic synchronization (GAS) problem
of the Master-Slave fractional order multi-linked memristive neural networks
(FOMMNNs). Firstly, we propose the FOMMNNs which incorporate the fractional
calculus into multi-linked memristive neural networks (MMNNs) for the rst time.
Then, by utilizing the fractional dierential inclusions and set-valued mapping theo-
ries, the addressed FOMMNNs with discontinuous state switching at the right-hand
side and time-varying delays are converted into the continuous FOMMNNs. Under
the frameworks of fractional Caputo derivative and fractional Fillipov solution, by
the way of building up appropriate Lyapunov functionals and utilizing some syn-
chronous analysis technology, several sucient criteria ensuring that the Master-Slave
FOMMNNs can realize global asymptotic synchronization (GAS) under two dierent
state-feedback controllers are obtained.
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1 INTRODUCTION

Memristor, which was put forward theoretically by Chua in 19711, is considered to be one of the four basic elements along
with resistors, capacitors and inductors. Its resistance relies on the amount of electricity passed through. If the power is cut off,
the resistance will remain unchanged until it receives the reverse current, thus it could act as a memory element. And in 2008,
Strukov et al. fabricated the first memristor based on TiO2 model2. Since then, many kinds of memristor models are proposed
by the scholars. Compared with the resistors, the memristors exibit many advantageous characteristics, such as extremely low
energy consumption, excellent scalabilities, fast-speed operation, etc. Particularly, the memristor exhibits excellent memory
and pinched hysteresis characteristics and has variable resistance, which bears striking resemblance to biological synapses3.
Thus, the memristor is one of the most promising condidates for artificial synapses emulating memory and brain functions. The
researchers proposed the memristive neural networks (MNNs) by rebuilding the traditional artificial NNs by utilizing the mem-
ristors rather than the common resistors. Besides, since the conductance of memristor will change owning to the change of the

†This is an example for title footnote.
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voltage pulse parameter value of the high-speed voltage flow. Therefore, the connection weights of the MNNs are discontinuous,
and the MNNs system is a discontinuous system.

MNNs have attracted increasing attention from researchers in various fields because of their excellent application prospects,
their dynamical behaviors, such as synchronization and stabilization, can be applied in pattern recognition4, image process-
ing5,6,7, optimization8,9, and so forth. Therefore, more and more scholars focus on investigating the synchronization and
stabilization of MNNs. Many excellent results have been reported, please refer to the works10,11,12,13,14,15,16,17,18,19 and references
therein.

Fractional calculus20 studies the integration and differentiation of arbitrary real order or even complex order, is a mathemati-
cal tool extended from ordinary calculus. Fractional differential systems can be applied widely in both science and engineering
applications due to its excellent memory and hereditary characteristics. Compared with ordinary differential system, FDEs rep-
resent a more reasonable mathematical modeling framework, which can more effectively and accurately describe the memory
and genetic characteristics of processes and materials, and etc. By introducing fractional order calculus into MNNs21,22,23, the
scholars constructed the fractional order memristive neural networks (FOMNNs), which not only contain the characteristics of
the fractional differentital systems (FDEs), but also the characteristics of the MNNs. It is an evolutionary version of fractional
order neural networks (FONNs). FOMNNs can provide an effective instrument to model some irregular dynamics simply and
accurately by adopting fractional derivatives and the characteristics of the memristor. Therefore, using fractional order memris-
tive neural networks (FOMNNs) can solve more complex problems that fractional order neural networks (FONNs) and MNNs
cannot solve.

The application of various FOMNNs are mainly based on their dynamical behaviors, such as stabilization and synchro-
nization, which have been extensively studied by the scholars recently, please refer to24,25,26,13,27 and references therein. The
researchers have proposed many kinds of control strategies28,26,29,30,25,31,25 and various FOMNNs models. For example, complex-
valued FOMNNs were studied in32,33,34,16,35,36. FOMNNs with reaction-diffusion terms were studied in30,37. Quaternion-valued
FOMNNs were investigated in38,13,39,40.

As we know, one neuron can transmit information with the next one through multiple synapses. In other words, there are
many connections between two neurons in the real biological neural network s. Here, we regard one connection between two
neurons as an edge and there exist mutiple edges between two neruons of biological neural networks of the brain. Multi-linked
memristive neural network (MMNNs) mentioned in41 are comprised of several single-linked MNNs, each edge indicating a kind
of transmission delay. We can naturally introduce fractional derivatives into multi-linked memristive neural networks to form
fractional order multi-linked memristive neural networks (FOMMNNs). Although there are many significant results concern-
ing about the synchronization and stabilization for memristive neural network (MNNs), there are few researches concerning on
FOMMNNs. For example, in28, the synchronization of the delayed fractional order memristive BAM neural networks involving
switching jumps mismatch were obtained in a finite time by adopting impulsive controller and utilizaing comparison principle.
What’s more, the delayed complex-valued FOMBAMNNs were investigated in27,35. To our best knowledge, there exist no lit-
erature concerning about the synchronization and stabilization of the FOMMNNs. Few results about the synchronization and
stabilization issue of FOMNNs involving time-varying delays are obtained, most of the published reports are discussing con-
stant delay(s) or without delay terms. For example, FOMNNs with constant delay(s) were investigated in42,43,24,44. FOMNNs
with time-varying delay was studied in27,14,16,28. The global synchronization of the delayed FOMNNs involving constant delay
were studied in42. In13, Pratap et al. addressed the finite time stability of the impulsive quaternion-valued FOMNNs in the
Mittag-Leffler sense by employing Mittage-Leffler function and Laplace transform.

Sparked by the discussions mentioned above, this article firstly incoporates fractional calculus into MMNNs and obtain the
FOMMNNs, then addresses the asymptotic synchronization and stabilization of the FOMMNNs involving time-varying delays
by designing state-feedback controllers under the frameworks of Caputo fractional derivative and fractional Fillipov solution.

Contributions are stated as follows
(1) We propose fractional order multi-linked memristive neural networks (FOMMNNs) with time varying delays for the first

time.
(2) Two different control strategies are adopted. One is the linear control strategy, the other is the adaptive control strategy.

Our proof procedure is simple to be implemented in the real applications.
(3) We design two different Lyapunov-Krasovskii functionals. Sufficient criteria guaranteeing the GAS of the Master-Slave

FOMMNNs are obtained under the Filippov-framework by utilizing the theory of set-valued mapping.
The remaining of this paper is given as follows. Section 2 gives the description of the mathematical model of the Master-Slave

FOMMNNs, including some necessary preliminaries, relative tools and notations. Section 3 analyzes the sufficient criteria of
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GAS the Master-Slave FOMMNNs with time-varying delays, and two corollaries are obtained for the FOMMNNs involving
constant delays and no-delayed terms, respectively. Section 4 gives the conclusions.
Notation. , 𝔑1×𝔑2 and 𝔑 represent the space of real numbers, the set of matrices with dimensions 𝔑1 × 𝔑2 and 𝔑-
dimensional vector, respectively. 𝔔𝑇 denotes the transpose of matrix 𝔔. ℂ([−𝜍𝑀 , 0],𝑛) indicates the functions set Ψ ∶
[−𝜍𝑀 , 0] → 𝑛 and Ψ is bounded and differential. 𝑐𝑜[̆, ̂] indicates the closure of convex hull generated by the real numbers
set or real matrices set including ̆ and ̂.

2 NETWORK MODEL AND PRELIMINARIES

Throuhout the paper, we consider the GAS between the Master-Slave FOMMNNs with time-varying delays in Caputo sense
with fractional order 𝛽 ∈ (0, 1), denoted as 𝐶

𝑡0
𝛽
𝑡 , where 𝑡0 is the initial time. For convinience in this paper, we denote 𝐶

𝑡0
𝛽
𝑡 as

𝛽
𝑡 for short.

Definition 1. (Podlubny20) For a continuous function 𝜗(𝑡), its Caputo derivative with fractional order 𝛽 ∈ (𝑝−1, 𝑝) is defined as

𝐶
𝑡0
𝛽
𝑡 𝜗(𝑡) =

1
Γ(𝑝 − 𝛽)

𝑡

∫
𝑡0

(𝑡 − 𝜆)𝑝−𝛽−1𝜗(𝑚)(𝜆)𝑑𝜆, 𝑡 ≥ 𝑡0,

where 𝑝 ∈ ℝ+ and 𝑝 ∈ (𝛽, 𝛽 + 1).

Definition 2. (Podlubny20) For a differential and continuous function 𝜗( ), its Caputo fractional integral of order 𝛽 is given as

𝐶0𝛽 𝜗( ) = 1
Γ(𝛽)



∫
0

( − 𝜆)𝛽−1𝜗(𝜆)𝑑𝜆,  ≥ 0,

where Γ(𝛽) = ∫ +∞
0 𝜆𝛽−1𝑒−𝜆𝑑𝜆.

2.1 Description of the Master-Slave FOMMNNs
2.1.1 The Master FOMMNNs
Consider the master FOMMNNs with time-varying delays

𝛽
𝑡𝔛𝑚(𝑡) = −𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡) +

Π∑
𝑛=1

𝜐𝑚𝑛(𝔛𝑚(𝑡))ℏ𝑛(𝔛𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1
𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡))𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝑚(𝑡), 𝑡 ≥ 0,

(1)

where 𝑚 = 1, 2,… ,Π, 0 < 𝛽 < 1,  represents Caputo fractional operator, 𝛽
𝑡 denotes Caputo fractional derivative with order

𝛽 (0 < 𝛽 < 1) between time (𝑡0, 𝑡), 𝔛𝑚(𝑡) stands for the state of the 𝑚-th neuron. 𝓁𝑚(⋅) indicates the neuron self-inhibition
satisfying 𝓁𝑚(⋅) > 0. denotes the number of edges (links) between any two neurons of the FOMMNNs. ℏ𝑛(⋅) and 𝑔𝑛(⋅) represent
the activation functions without and with time delays, 𝜍𝜄(𝑡) denotes the delay of the 𝜄-th edge which is bounded and satisfies
0 < 𝜍𝜄(𝑡) ≤ 𝜍𝑀 . The initial value of FOMMNNs (1) is 𝜋(𝑠) = (𝜋1(𝑠), 𝜋2(𝑠),… , 𝜋𝑛(𝑠))𝑇 ∈ ℂ([−𝜍𝑀 , 0],𝑛). 𝑚(𝑡) represents the
external input. 𝜐𝑚𝑛(𝔛𝑚(𝑡)) and 𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡)) are memristive connection weights, given by

𝓁𝑚(𝔛𝑚(𝑡)) =
1𝑚

[ Π∑
𝑛=1

(𝑀𝑚𝑛 +
∑
𝜄=1
𝑀(𝜄)𝑚𝑛) × 𝜀𝑚𝑛 +

1
ℜ𝑚

]
,

𝜐𝑚𝑛(𝔛𝑚(𝑡)) =
𝑀𝑚𝑛𝑚 × 𝜀𝑚𝑛, 𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡)) =

𝑀(𝜄)𝑚𝑛

𝑚 × 𝜀𝑚𝑛,

𝜀𝑚𝑛 =

{
1, 𝑚 ≠ 𝑛,
− 1, 𝑚 = 𝑛,
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where 𝑀𝑚𝑛,𝑀(𝜄)𝑚𝑛 indicate the memductances associated with memristors ℜ̃𝑚𝑛, ℜ̂(𝜄)𝑚𝑛, respectively. Besides, ℜ̃𝑚𝑛 indicate the
memristor between 𝔛𝑚(𝑡) and ℏ𝑛(𝔛𝑛(𝑡)), and ℜ̂(𝜄)𝑚𝑛 denotes the memristor between 𝔛𝑚(𝑡) and 𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))). ℜ𝑚 indicates
the parallel-resistor related to 𝑚. According to the properties of the memristors, we set

𝓁𝑚(𝔛𝑚(𝑡)) =

{
𝓁∗
𝑚,|𝔛𝑚(𝑡)| ≤ ℧𝑚,

𝓁∗∗
𝑚 ,|𝔛𝑚(𝑡)| > ℧𝑚,

𝜐𝑚𝑛(𝔛𝑚(𝑡)) =

{
𝜐∗𝑚𝑛,|𝔛𝑚(𝑡)| ≤ ℧𝑚,
𝜐∗∗𝑚𝑛,|𝔛𝑚(𝑡)| > ℧𝑚,

and

𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡)) =

{
𝜚∗(𝜄)𝑚𝑛,|𝔛𝑚(𝑡)| ≤ ℧𝑚,

𝜚∗∗(𝜄)𝑚𝑛,|𝔛𝑚(𝑡)| > ℧𝑚,
for 𝑚, 𝑛 = 1, 2,… ,Π, 𝜄 = 1,… ,, and 𝓁∗

𝑚, 𝓁∗∗
𝑚 , 𝜐∗𝑚𝑛, 𝜐

∗∗
𝑚𝑛, 𝜚

∗
(𝜄)𝑚𝑛, 𝜚

∗∗
(𝜄)𝑚𝑛 are the known parameters which are related to the

memristors. ℧𝑚 represents the thresholds of the switching jumps.
For convenience, let

𝓁𝑢𝑚 = max{|𝓁∗
𝑚|, |𝓁∗∗

𝑚 |}, 𝓁𝑚 = min{𝓁∗
𝑚,𝓁

∗∗
𝑚 }, 𝓁𝑚 = max{𝓁∗

𝑚, 𝓁
∗∗
𝑚 },

𝜐̂𝑚𝑛 = max{𝑣∗𝑚𝑛, 𝑣
∗∗
𝑚𝑛}, 𝜐̆𝑚𝑛 = min{𝑣∗𝑚𝑛, 𝑣

∗∗
𝑚𝑛},

𝜐̃𝑢𝑚𝑛 = max{|𝑣∗𝑚𝑛|, |𝑣∗∗𝑚𝑛|}, 𝜚̂(𝜄)𝑚𝑛 = max{𝜚∗(𝜄)𝑚𝑛, 𝜚
∗∗
(𝜄)𝑚𝑛},

𝜚̆(𝜄)𝑚𝑛 = 𝑚𝑖𝑛{𝜚∗(𝜄)𝑚𝑛, 𝜚
∗∗
(𝜄)𝑚𝑛}, 𝜚

𝑢
(𝜄)𝑚𝑛 = max{|𝜚∗(𝜄)𝑚𝑛|, |𝜚∗∗(𝜄)𝑚𝑛|}.

for 𝑚, 𝑛 = 1, 2,… ,Π, 𝜄 = 1, 2,… ,.
Utilizing the theories of set-valued mapping and fractional Fillipov inclusions45, it arrives that

𝛽
𝑡𝔛𝑚(𝑡) ∈ −𝑐𝑜[𝓁𝑚(𝔛𝑚(𝑡))](𝔛𝑚(𝑡))

+
Π∑
𝑛=1

𝑐𝑜[𝜐𝑚𝑛(𝔛𝑚(𝑡))]ℏ𝑛(𝔛𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1
𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡))]𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝑚(𝑡),

(2)

for 𝑡 ≥ 0, 𝑚 = 1, 2,… ,Π, where

𝑐𝑜[𝓁𝑚(𝔛𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝓁∗
𝑚, |𝔛𝑚(𝑡)| < ℧𝑚,

[𝓁𝑚,𝓁𝑚], |𝔛𝑚(𝑡)| = ℧𝑚,
𝓁∗∗
𝑚 , |𝔛𝑚(𝑡)| > ℧𝑚,

𝑐𝑜[𝜐𝑚𝑛(𝔛𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝜐∗𝑚𝑛, |𝔛𝑚(𝑡)| < ℧𝑚,
[𝜐̆𝑚𝑛, 𝜐̂𝑚𝑛], |𝔛𝑚(𝑡)| = ℧𝑚,
𝜐∗∗𝑚𝑛, |𝔛𝑚(𝑡)| > ℧𝑚,

and

𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝜚∗(𝜄)𝑚𝑛, |𝔛𝑚(𝑡)| < ℧𝑚,

[𝜚̆(𝜄)𝑚𝑛, 𝜚̂(𝜄)𝑚𝑛], |𝔛𝑚(𝑡)| = ℧𝑚,
𝜚∗∗(𝜄)𝑚𝑛, |𝔛𝑚(𝑡)| > ℧𝑚,

where 𝑚, 𝑛 = 1, 2,… ,Π. Based on the measurable selection theorem46, there exist appropriate measurable functions 𝓁𝑚(𝑡) ∈
𝑐𝑜[𝓁𝑚(𝔛𝑚(𝑡))], 𝜐́𝑚𝑛(𝑡) ∈ 𝑐𝑜[𝜐𝑚𝑛(𝔛𝑚(𝑡))] and 𝜚́(𝜄)𝑚𝑛(𝑡) ∈ 𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡))] such that

𝛽
𝑡𝔛𝑚(𝑡) = −𝓁𝑚(𝑡)𝔛𝑚(𝑡) +

Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔛𝑛(𝑡))

+
𝑛∑
𝑠=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝑚(𝑡),

(3)

for a.e. 𝑡 ≥ 0, 𝑚 = 1, 2,… ,Π.

Remark 1. When 𝛽 = 1, the FOMMNNs (1) degenerates into common MMNNs, which had be discussed in47,48,49. In other
words, the FOMMNNs generalizes the usual MMNNs. The FOMMNNs (1) is different from the switched systems investigated



WANG ET AL 5

in Refs.50,51. The switching systems usually switches between two different states. However, the switching of memristor-based
nerual network model changes with the change of variable states, and this switching is more complicated. Besides, we consider
time-varying delays while Ref.50,51 considered constant delay, therefore, our model is more general.

2.1.2 The Slave FOMMNNs

To study the synchronization, the slave delayed FOMMNNs is given by

𝛽
𝑡𝔜𝑚(𝑡) = −𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) +

Π∑
𝑛=1

𝜐𝑚𝑛(𝔜𝑚(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

+
𝑛∑
𝑠=1

∑
𝜄=1
𝜚(𝜄)𝑚𝑛(𝔜𝑚(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝑚(𝑡) + 𝜇𝑚(𝑡), 𝑡 ≥ 0,

(4)

for𝑚 = 1, 2,… ,Π. Here, 𝔜𝑚(𝑡) represents the state of the𝑚-th neuron of the FOMMNNs (4), 𝜇𝑚(𝑡) is an appropriately-designed
controller to be determined. The initial value of FOMMNNs (4) is , 𝜐𝑚𝑛(𝔜𝑚(𝑡)) and 𝜚(𝜄)𝑚𝑛(𝔜𝑚(𝑡)) memristive connection weights,
which are expressed by

𝓁𝑚(𝔜𝑚(𝑡)) =

{
𝓁∗
𝑚,|𝔜𝑚(𝑡)| ≤ Ω𝑚,

𝓁∗∗
𝑚 ,|𝔜𝑚(𝑡)| > Ω𝑚,

𝜐𝑚𝑛(𝔜𝑚(𝑡)) =

{
𝜐∗𝑚𝑛,|𝔜𝑚(𝑡)| ≤ Ω𝑚,
𝜐∗∗𝑚𝑛,|𝔜𝑚(𝑡)| > Ω𝑚,

and

𝜚(𝜄)𝑚𝑛(𝔜𝑚(𝑡)) =

{
𝜚∗(𝜄)𝑚𝑛,|𝔜𝑚(𝑡)| ≤ Ω𝑚,

𝜚∗∗(𝜄)𝑚𝑛,|𝔜𝑚(𝑡)| > Ω𝑚,
where 𝑚, 𝑛 = 1, 2,… ,Π, 𝜄 = 1, 2,… ,, Ω𝑚 indicates the threshold of the switching jumps of the memristors. The other
parameters have the same meaning as those defined in FOMMNNs (1).

Similarly, it follows from (4) that

𝛽
𝑡𝔜𝑚(𝑡) ∈ −𝑐𝑜[𝓁𝑚(𝔜𝑚(𝑡))](𝔜𝑚(𝑡)) + 𝑐𝑜[𝜐𝑚𝑛(𝔜𝑚(𝑡))]ℏ𝑛(𝔜𝑛(𝑡))

+
Π∑
𝑛=1

𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔜𝑚(𝑡))]𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝑚(𝑡) + 𝜇𝑚(𝑡), (5)

for 𝑡 ≥ 0, 𝑚 = 1, 2,… ,Π, where

𝑐𝑜[𝓁𝑚(𝔜𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝓁∗
𝑚, |𝔜𝑚(𝑡)| < Ω𝑚,

[𝓁𝑚,𝓁𝑚], |𝔜𝑚(𝑡)| = Ω𝑚,
𝓁∗∗
𝑚 , |𝔜𝑚(𝑡)| > Ω𝑚,

𝑐𝑜[𝜐𝑚𝑛(𝔜𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝜐∗𝑚𝑛, |𝔜𝑚(𝑡)| < Ω𝑚,
[𝜐̆𝑚𝑛, 𝜐̂𝑚𝑛], |𝔜𝑚(𝑡)| = Ω𝑚,
𝜐∗∗𝑚𝑛, |𝔜𝑚(𝑡)| > Ω𝑚,

and

𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔛𝑚(𝑡))] =

⎧⎪⎨⎪⎩
𝜚∗(𝜄)𝑚𝑛, |𝔜𝑚(𝑡)| < Ω𝑚,

[𝜚̆(𝜄)𝑚𝑛, 𝜚̂(𝜄)𝑚𝑛], |𝔜𝑚(𝑡)| = Ω𝑚,
𝜚∗∗(𝜄)𝑚𝑛, |𝔜𝑚(𝑡)| > Ω𝑚,

where 𝑛 = 1, 2,… ,Π, 𝜄 = 1, 2,… , 𝐾 .
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Hence, we choose the measurable functions as 𝓁𝑚(𝑡) ∈ 𝑐𝑜[𝓁𝑚(𝔜𝑚(𝑡))], 𝜐̀𝑚𝑛(𝑡) ∈ 𝑐𝑜[𝜐𝑚𝑛(𝔜𝑚(𝑡))] and 𝜚̀(𝜄)𝑚𝑛(𝑡) ∈
𝑐𝑜[𝜚(𝜄)𝑚𝑛(𝔜𝑚(𝑡))] such that

𝛽
𝑡𝔜𝑚(𝑡) = −𝓁𝑚(𝑡)𝔜𝑚(𝑡) +

Π∑
𝑛=1

𝜐̀𝑚𝑛(𝑡)ℏ𝑛(𝔜𝑛(𝑡)) +
Π∑
𝑛=1

∑
𝜄=1
𝜚̀(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

+ 𝑚(𝑡) + 𝜇𝑚(𝑡), 𝑡 ≥ 0,

(6)

The synchronization error 𝔈𝑚(𝑡) = 𝔜𝑚(𝑡) −𝔛𝑚(𝑡), (𝑚 = 1, 2,… ,Π). Subtracting (3) from (6), we obtain

𝛽
𝑡 𝔈𝑚(𝑡) = −𝓁𝑚(𝑡)𝔜𝑚(𝑡) + 𝓁𝑚(𝑡)𝔛𝑚(𝑡) +

Π∑
𝑛=1

𝜐̀𝑚𝑛(𝑡)ℏ𝑛(𝔜𝑛(𝑡))

−
Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔛𝑛(𝑡)) +
𝑛∑
𝑠=1

∑
𝜄=1
𝜚̀(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

−
𝑛∑
𝑠=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝜇𝑚(𝑡)

= −𝓁𝑚(𝑡)𝔈𝑚(𝑡) + (𝓁𝑚(𝑡) − 𝓁𝑚(𝑡))𝔜𝑚(𝑡) +
Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔈𝑛(𝑡))

+
Π∑
𝑛=1

(𝜐̀𝑚𝑛(𝑡) − 𝜐́𝑚𝑛(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1

(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍(𝑡)))

+
Π∑
𝑛=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)𝐺𝑛(𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝜇𝑚(𝑡),

(7)

for a.e. 𝑡 ≥ 0, 𝑚 = 1, 2,… ,Π, where ℏ𝑛(𝔈𝑛(𝑡)) = ℏ𝑛(𝔜𝑛(𝑡))−ℏ𝑛(𝔛𝑛(𝑡)) and𝐺𝑛(𝔈𝑛(𝑡−𝜍𝜄(𝑡))) = 𝑔𝑛(𝔜𝑛(𝑡−𝜍𝜄(𝑡)))−𝑔𝑛(𝔛𝑛(𝑡−𝜍𝜄(𝑡))).
The initial condition of the error FOMMNNs system (7) is 𝜙(𝑠) = 𝜓(𝑠) − 𝜋(𝑠) ∈ ℂ([−𝜍𝑀 , 0],𝑛).

Some useful definitions, lemmas and assumptions are given as follows to derive the main theoretical criteria.

Assumption H1. The functions ℏ𝑛(⋅), 𝑔𝑛(⋅) (𝑛 = 1, 2,… ,Π) are assumed to be Lipschitz-continuous. Hence, their exist the
known constants 𝐿ℏ𝑛 > 0, 𝐿𝑔𝑛 > 0 which satisfy |ℏ𝑛(𝑧2) − ℏ𝑛(𝑧1)| ≤ 𝐿ℏ𝑛 |𝑧2 − 𝑧1|, |𝑔𝑛(𝑧2) − 𝑔𝑛(𝑧1)| ≤ 𝐿𝑔𝑛|𝑔𝑛(𝑧2) − 𝑔𝑛(𝑧1)|,
(𝑛 = 1, 2,… ,Π), ∀𝑧1, 𝑧2 ∈ 𝑛. Let 𝐿ℏ = max

1≤𝑛≤Π
{
𝐿ℏ𝑛

}
, 𝐿𝑔 = max

1≤𝑛≤Π
{
𝐿𝑔𝑛

}
.

Assumption H2. ℏ𝑛(⋅), 𝑔𝑛(⋅)(𝑛 = 1, 2,… ,Π) are assumed to be bounded. Then, there exist known constants 𝜉ℏ𝑛 > 0 and 𝜉𝑔𝑛 > 0|ℏ𝑚(⋅)| ≤ 𝜉ℏ𝑚, |𝑔𝑚(⋅)| ≤ 𝜉𝑔𝑚, 𝑚 = 1, 2,… ,Π.

Let 𝜉ℏ = max
1≤𝑛≤Π

{
𝜉ℏ𝑛
}

, 𝜉𝑔 = max
1≤𝑛≤Π

{
𝜉𝑔𝑛
}

for convenience.

Assumption 3. 𝜍𝜄(𝑡) (𝜄 = 1, 2,… , 𝐾) are bounded differential functions. Let, 0 < 𝜍̇𝜄(𝑡) < 𝜍𝐷 and 0 < 𝜍𝜄(𝑡) < 𝜍𝑀 hold.

Lemma 1. (Li et al52) . If 0 < 𝛽 < 1 and 𝑄(𝑡) ∈ 𝐶1[𝑡0,∞), then
𝐶
𝑡0
𝛽
𝑡0,𝑡
|𝑄(𝑡)| ≤ 𝑠𝑖𝑔𝑛(𝑄(𝑡))𝛽

𝑡0,𝑡
𝑄(𝑡), 𝑡 ≥ 𝑡0.

Lemma 2. Let 𝑚 = −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡)), then we can conclude that 𝑚 ≤ −𝓁𝑚|𝔈𝑚(𝑡)|+ |𝓁∗∗
𝑚 −

𝓁∗
𝑚|𝑀𝑚(𝑚 = 1, 2,… ,Π), where 𝑀𝑚 = max

{
Ω𝑚,℧𝑚

}
.

Proof. According to the characteristics of the memristor, we obtain that
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(1) When 𝔛𝑚(𝑡) > ℧𝑚 and 𝔜𝑚(𝑡) > Ω𝑚, we conclude that

𝑚 = −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡))
= 𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁∗∗

𝑚 )(𝔜𝑚(𝑡) −𝔛𝑚(𝑡))
= −𝓁∗∗

𝑚 |𝔈𝑚(𝑡)|
≤ −𝓁𝑚|𝔈𝑚(𝑡)| ≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗

𝑚 − 𝓁∗
𝑚|𝑀𝑚.

(2) When 𝔛𝑚(𝑡) ≤ ℧𝑚 and 𝔜𝑚(𝑡) ≤ Ω𝑚, we conclude that

𝑚 = −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡))
= 𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝓁∗

𝑚(𝔜𝑚(𝑡) −𝔛𝑚(𝑡))
= −𝓁∗

𝑚|𝔈𝑚(𝑡)|
≤ −𝓁𝑚|𝔈𝑚(𝑡)| ≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗

𝑚 − 𝓁∗
𝑚|𝑀𝑚.

(3) When 𝔛𝑚(𝑡) > ℧𝑚 and 𝔜𝑚(𝑡) ≤ Ω𝑚, we conclude that

𝑚 = −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡))
= −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔛𝑚(𝑡)))(𝔜𝑚(𝑡) −𝔛𝑚(𝑡))
+ (𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔜𝑚(𝑡))
= −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁∗∗

𝑚 𝔈𝑚(𝑡) + (𝓁∗∗
𝑚 − 𝓁∗

𝑚)𝔜𝑚(𝑡))
≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗

𝑚 − 𝓁∗
𝑚|Ω𝑚 ≤ −𝓁𝑚|𝔈𝑚(𝑡)|

≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚.

(4) When 𝔛𝑚(𝑡) ≤ ℧𝑚 and 𝔜𝑚(𝑡) > Ω𝑚, we conclude that

𝑚 − 𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡))𝔜𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡))
= 𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁𝑚(𝔜𝑚(𝑡)))(𝔜𝑚(𝑡) −𝔛𝑚(𝑡))
+ (𝓁𝑚(𝔜𝑚(𝑡))𝔛𝑚(𝑡) − 𝓁𝑚(𝔛𝑚(𝑡))𝔛𝑚(𝑡))
= −𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝓁∗∗

𝑚 𝔈𝑚(𝑡) + (𝓁∗∗
𝑚 − 𝓁∗

𝑚)𝔛𝑚(𝑡))
≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗

𝑚 − 𝓁∗
𝑚|℧𝑚

≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚.

Hence, we can easily conclude that 𝑚 ≤ −𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚. This complete the proof.

Definition 3. The FOMMNNs (1) and (4) are deemed to realize the GAS, if under a suitable designed controller, for any initial
value 𝜙(𝑠) of 𝔈(𝑡), one always has lim

𝑡→∞
‖𝔈(𝑡)‖1 = 0, where 𝔈(𝑡) = (𝔈1(𝑡),𝔈2(𝑡),… ,𝔈Π(𝑡))𝑇 . Let ‖𝜙(𝑠)‖1 = sup−𝜍≤𝜃≤0 ‖𝜓(𝑠) −

𝜋(𝑠)‖1.
Lemma 3. (Wang and Yang53) Fractional Barbalat’s lemma under the framework of Caputo derivative. If ∫ 𝑡

𝑡0
𝔅(𝑠)𝑑𝑠 = 𝔄 < +∞

when 𝑡 → +∞. Besides, if it holds true that 𝐶𝑡0𝛽
𝑡𝔅(𝑡) is bounded, where 𝜔 ∶ [0,+∞) → , then 𝔅(𝑡) → 0 as 𝑡 → +∞, where

𝛽 ∈ (0, 1).

3 MAIN RESULTS

In this section, the GAS of the master-slave FOMMNNs are investigated by Adoption two control strategies.
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3.1 Linear discontinuous state-feedback controller

Theorem 1. In this section, we adopt the following linear discontinuous state-feedback controller

𝜇𝑚(𝑡) = −𝜁𝑚𝔈𝑚(𝑡) − 𝜂𝑚𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡)), 𝑚 = 1, 2,… ,Π, (8)

where 𝜁𝑚, 𝜂𝑚(𝑚 = 1, 2,… ,Π) are appropriately chosen constants. If 𝜁𝑚 and 𝜂𝑚 satisfy

𝜁𝑚 > −𝓁𝑚 + 𝜉ℏ
Π∑
𝑛=1

𝜐𝑢𝑛𝑚 + 𝐿𝑔

1 − 𝜍𝐷

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑗𝑖,

𝜂𝑚 > |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛| + 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|,
(9)

where 𝑚 = 1, 2,… ,Π. Then under Assumptions H1-H3, the error FOMMNNs (7) can realize the GAS from Definition 3. Or
in other words, the FOMMNNs (4) and (1) can obtain the GAS.

Proof of Theorem 1. Build the Lyapunov functional as follows

𝕍 (𝑡,𝔈(𝑡)) = 𝕍1(𝑡,𝔈(𝑡)) + 𝕍2(𝑡,𝔈(𝑡)), (10)

where 𝕍1(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

−(1−𝛽)
𝑡 |𝔈𝑚(𝑡)|, and

𝕍2(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

𝑛∑
𝑙=1

𝑚∑
𝑗=1

𝜚𝑢(𝜄)𝑚𝑛𝜉
𝑔

1 − 𝜍𝐷

𝑡

∫
𝑡−𝜍𝜄(𝑡)

|𝔈𝑛(𝑠)|𝑑𝑠.
Doing the derivative of 𝕍 (𝑡,𝔈(𝑡)) along the trajectory of FOMMNNs (7) yields

𝕍̇ = 𝕍̇1(𝑡,𝔈(𝑡)) + 𝕍̇2(𝑡) =
𝑑
𝑑𝑡

𝛽−1
𝑡

[ Π∑
𝑚=1

|𝔈𝑚(𝑡)|] + 𝕍̇2(𝑡,𝔈(𝑡)).

Under Lemma 1, we conclude that

𝕍̇1(𝑡,𝔈(𝑡)) ≤
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝛽
𝑡 𝔈𝑚(𝑡) =

Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(−𝓁𝑚(𝑡)𝔜𝑚(𝑡)

+ 𝓁𝑚(𝑡)𝔛𝑚(𝑡) +
Π∑
𝑛=1

𝜐̀𝑚𝑛(𝑡)ℏ𝑛(𝔜𝑛(𝑡)) −
Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔛𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1
𝜚̀(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡))) −

Π∑
𝑛=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))) + 𝜇𝑚(𝑡))

=
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(−𝓁𝑚(𝑡)𝔈𝑚(𝑡) + (𝓁𝑚(𝑡) − 𝓁𝑚(𝑡))𝔜𝑚(𝑡)

+
Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔈𝑛(𝑡)) +
Π∑
𝑛=1

(𝜐̀𝑚𝑛(𝑡) − 𝜐́𝑚𝑛(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1

(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

+
Π∑
𝑛=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)(𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡))) − 𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡))))

+ 𝜇𝑚(𝑡)).

(11)



WANG ET AL 9

We can conclude that
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜇𝑚(𝑡) = −
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜁𝑚𝔈𝑚(𝑡) + 𝜂𝑚𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡)))

= −
Π∑
𝑚=1

𝜁𝑚|𝔈𝑚(𝑡)| − Π∑
𝑚=1

𝜂𝑚𝜒𝑚,

(12)

where 𝜒𝑚 = |𝔈𝑚(𝑡)| = |𝔈𝑚(𝑡)|2.
From Lemma 2, we can conclude that

Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(−𝓁𝑚(𝑡)𝔜𝑚(𝑡) + 𝓁𝑚(𝑡)𝔛𝑚(𝑡))

≤ Π∑
𝑚=1

−𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚𝜒𝑚.

(13)

Similarly, we conclude that
Π∑
𝑚=1

Π∑
𝑛=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜐́𝑚𝑛(𝑡)(ℏ𝑛(𝔜𝑛(𝑡) − ℏ𝑛(𝔛𝑛(𝑡)))

≤ Π∑
𝑚=1

Π∑
𝑛=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))|𝜐𝑢𝑚𝑛𝜉ℏ𝑛 |𝔈𝑛(𝑡)|
≤ Π∑

𝑚=1

Π∑
𝑛=1

𝜐𝑢𝑚𝑛𝜉
ℏ|𝔈𝑛(𝑡)| = 𝜉ℏ

Π∑
𝑚=1

Π∑
𝑛=1

𝜐𝑢𝑛𝑚|𝔈𝑚(𝑡)|.
(14)

Similarly, we get
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜚́(𝜄)𝑚𝑛(𝑡)(𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)) − 𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡)))))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))|𝜚𝑢(𝜄)𝑚𝑛𝐿𝑔𝑛|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|
≤ 𝐿𝑔

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑚𝑛|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|.

(15)

And
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))||𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜉𝑔𝑛
≤ 𝜉𝑔

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜒𝑚,
(16)

Similarly, we get
Π∑
𝑚=1

Π∑
𝑛=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜐̀𝑚𝑛(𝑡) − 𝜐́𝑚𝑛(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

≤ Π∑
𝑚=1

Π∑
𝑛=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))||𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|𝜉ℏ𝑛 ≤ 𝜉ℏ
Π∑
𝑚=1

Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|𝜒𝑚.
(17)
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And similarly,
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))||𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜉𝑔𝑛
≤ 𝜉𝑔

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜒𝑚.
(18)

Reckoning the derivatives of 𝕍2(𝑡,𝔈(𝑡)) yields

𝕍̇2(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑚𝑛𝐿
𝑔

1 − 𝜍𝐷
(|𝔈𝑛(𝑡)| − |𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|(1 − 𝜍̇𝜄(𝑡)))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝐿
𝑔

1 − 𝜍𝐷
|𝔈𝑚(𝑡)| − Π∑

𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑚𝑛𝜉

𝑔|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|,
(19)

From (12) -(19), we obtain that
𝕍̇ (𝑡,𝔈(𝑡)) = 𝕍̇1(𝑡,𝔈(𝑡)) + 𝕍̇2(𝑡,𝔈(𝑡))

≤ Π∑
𝑚=1

(−𝜁𝑚 − 𝓁𝑚 + 𝜉ℏ
Π∑
𝑛=1

𝜐𝑢𝑛𝑚 +
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝐿
𝑔

1 − 𝜍𝐷
)|𝔈𝑚(𝑡)|

+
Π∑
𝑚=1

(−𝜂𝑚 + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|℧𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛| + 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|)𝜒𝑚
≤ −

Π∑
𝑚=1

ℏ𝑚|𝔈𝑚(𝑡)| − Π∑
𝑚=1

Θ𝑚𝜒𝑚,

(20)

where ℏ𝑚 = 𝜁𝑚 + 𝓁𝑚 − 𝜉ℏ
Π∑
𝑛=1

𝜐𝑢𝑛𝑚 −
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝜉
𝑔

1−𝜍𝐷
, and Θ𝑚 = 𝜂𝑚 − |𝓁∗∗

𝑚 − 𝓁∗
𝑚|𝑀𝑚 + 𝜉ℏ

Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛| − 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|
for all 𝑚 = 1, 2,… ,Π. From (9) and (20), we can conclude that ℏ𝑚 > 0, ℧𝑚 > 0. Hence, we can easily get that

𝕍̇ (𝑡,𝔈(𝑡)) ≤ −ℏ
Π∑
𝑚=1

|𝔈𝑚(𝑡)| = −ℏ𝜔(𝑡), (21)

where ℏ = min
1≤𝑖≤𝑛

{
ℏ𝑚

}
, 𝜔(𝑡) =

Π∑
𝑚=1

|𝔈𝑚(𝑡)|. Then we can conclude that 𝕍 (𝑡) ≤ −ℏ ∫ 𝑡
𝑡0
𝜔(𝑠)𝑑𝑠 + 𝕍 (𝑡0). From (10), we can easily

conclude that 𝜔(𝑡) is non-negatively bounded and ∫ 𝑡
𝑡0
𝜔(𝑠)𝑑𝑠 has a finite limit. Therefore, there exists a positive constant 

which satisfies |𝛽
𝑡 𝜔(𝑡)| ≤  when 𝑡 ≥ 𝑡0, According to Lemma 3, we will further prove that 𝜔(𝑡) is uniformly continuous.

For 𝑡0 ≤ 𝑡1 < 𝑡2, when |𝑡2 − 𝑡1| = 𝜃(𝜖) ≤ ( 𝜖Γ(1+𝛽)
2 )

1
𝛽 , we can get

|𝜔2(𝑡) − 𝜔1(𝑡)| = −𝛽[𝛽𝜔2(𝑡) −𝛽𝜔1(𝑡)]

= 1
Γ(𝛽)

| 𝑡2

∫
𝑡0

(𝑡2 − 𝑠)1−𝛽[𝛽𝜔(𝑠)]𝑑𝑠 −

𝑡1

∫
𝑡0

(𝑡1 − 𝑠)1−𝛽[𝛽𝜔(𝑠)]𝑑𝑠|
= 1

Γ(𝛽)
| 𝑡2

∫
𝑡1

(𝑡2 − 𝑠)1−𝛽[𝛽𝜔(𝑠)]𝑑𝑠| + 1
Γ(𝛽)

| 𝑡1

∫
𝑡0

((𝑡1 − 𝑠)1−𝛽)[𝛽𝜔(𝑠)]𝑑𝑠|
≤ 

Γ(𝛽)
[(𝑡1 − 𝜔2)𝛽 − (𝑡2 − 𝑡0)𝛽 + 2(𝑡2 − 𝑡1)𝛽]

≤ 2
Γ(𝛽)

(𝑡2 − 𝑡1)𝛽 ≤ 𝜖.
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From Lemma 3, we conclude that 𝜔(𝑡) is uniformly continuous, and lim
𝑡→∞

𝜔(𝑡) = 0. Since 𝜔(𝑡) =
Π∑
𝑚=1

|𝔈𝑚(𝑡)|, it means that

lim
𝑡→∞

|𝔈𝑚(𝑡)| = 0 (𝑚 = 1, 2,⋯ ,Π). Therefore, The FOMMNNs (4) and (1) can realize the GAS under Definition 3. This completes
the proof.

Corollary 1. For the Master-Slave FOMMNNs (1) and (4), if 𝜍1(𝑡) = 𝜍1, 𝜍2(𝑡) = 𝜍2,…, 𝜍𝐾 (𝑡) = 𝜍, where 𝜍𝜄 (𝜄 = 1, 2,… ,)
are chosen canstants which satisfy 0 < 𝜍𝜄 ≤ 𝜍, and means that the time delays are time-invariant. Under controller (8), if 𝜁𝑚 and
𝜂𝑚 satisfy the following requirements

𝜁𝑚 > −𝓁𝑚 + 𝜉ℏ
Π∑
𝑛=1

𝜐𝑢𝑛𝑚 +
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝐿
𝑔

1 − 𝜍𝐷
,

𝜂𝑚 > |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛| + 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|,
for 𝑚 = 1, 2,… ,Π, then the FOMMNNs (4) are asymptotical synchronized with FOMMNNs (1).

Proof. The proof process is quite similar to the one of the Theorem 3.1. Hence, it is ignored here.

Remark 2. If 𝜄 = 1 and 𝜍1(𝑡) = 𝜍 (positive constant), the FOMMNNs are reduced to regular FOMNNs involving constant time
delay, which had been discussed in24,42,54.

3.2 Adaptive discontinuous state-feedback controller

Usually, the theoretical value of synchronization time is much larger than the required actual time. This is because the ampli-
fication technology is used in the theoretical proof process. If we adopt the adaptive strategy, the control strength can adjust
itself accordingly, which greatly reduce the control. Hence, in this section, an adaptive discontinuos state-feedback controller is
adopted.

The controller is expressed by
𝑢𝑚(𝑡) = −

⌢

𝜁𝑚(𝑡)𝔈𝑚(𝑡) −
⌢𝜂𝑚(𝑡)𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡)), (22)

where 𝑚 = 1, 2,… ,Π. And the adaptive control law given by⎧⎪⎨⎪⎩
⌢̇

𝜁𝑚(𝑡) = 𝑘𝑚|𝔈𝑚(𝑡)|, ⌢

𝜁𝑚(0) = 0,
⌢̇𝜂𝑚(𝑡) = 𝑙𝑚|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))|, ⌢𝜂𝑚(0) = 0,

where 𝑘 = (𝑘1, 𝑘2,… , 𝑘Π) and 𝑙 = (𝑙1, 𝑙2,… , 𝑙Π) are two positive vectors,
⌢

𝜁𝑚 and ⌢𝜂𝑚 (𝑚 = 1, 2,… ,Π) are appropriately chosen
control gains.

Theorem 2 (Theorem subhead). Let 0 < 𝛽 < 1 and Assumptions H1-H2 hold, the FOMMNNs (1) will be globally
asymptotically synchronized with the FOMMNNs (4) under the adaptive controller (22), if

⌢

𝜁𝑚, ⌢𝜂𝑚(𝑚 = 1, 2,… ,Π) satisfy

⌢

𝜁𝑚 > −𝓁𝑚 + 𝐿ℏ
Π∑
𝑛=1

𝜐̃𝑢𝑛𝑚 +
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝐿
𝑔

1 − 𝜍𝐷
,

⌢𝜂𝑚 ≥ |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛| + 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|.
(23)

Proof of Theorem 2. Bulid up the following Lyapunov functional

𝕍 (𝑡,𝔈(𝑡)) = 𝕍1(𝑡,𝔈(𝑡)) + 𝕍2(𝑡,𝔈(𝑡)) + 𝕍3(𝑡,𝔈(𝑡)), (24)
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where

𝕍1(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

−(1−𝛽)
𝑡 |𝔈𝑚(𝑡)|,

𝕍2(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

𝑛∑
𝑙=1

𝐾∑
𝑗=1

𝜚𝑢(𝜄)𝑚𝑛𝐿
𝑔

1 − 𝜍𝐷

𝑡

∫
𝑡−𝜍𝜄(𝑡)

|𝔈𝑛(𝑠)|𝑑𝑠
𝕍3(𝑡,𝔈(𝑡)) =

Π∑
𝑚=1

[
1

2𝑘𝑚
(𝜁𝑚(𝑡) − 𝜁𝑚)2 +

1
2𝑙𝑚

(𝜂𝑚(𝑡) − 𝜂𝑚)2
]
,

Under Lemma 1, Finding the derivation of 𝕍1(𝑡) along the trajectory of FOMMNNs (7) yields

𝕍̇1(𝑡) =
Π∑
𝑚=1

𝛽
𝑡 |𝔈𝑚(𝑡)| ≤ Π∑

𝑚=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝛽

𝑡 𝔈𝑚(𝑡)

=
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))[−𝓁𝑚(𝑡)𝔜𝑚(𝑡) + 𝓁𝑚(𝑡)𝔛𝑚(𝑡) +
Π∑
𝑛=1

𝜐́𝑚𝑛(𝑡)(ℏ𝑛(𝔜𝑛(𝑡) − ℏ𝑛(𝔛𝑛(𝑡))))

+
Π∑
𝑛=1

(𝜐̀𝑚𝑛(𝑡) − 𝜐́𝑚𝑛(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

+
Π∑
𝑛=1

∑
𝜄=1

(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

+
Π∑
𝑛=1

∑
𝜄=1
𝜚́(𝜄)𝑚𝑛(𝑡)(ℏ𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)) − ℏ𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡)

)))) + 𝜇𝑚(𝑡)].

(25)

We conclude that
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜇𝑚(𝑡) = −
Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜁𝑚(𝑡)𝔈𝑚(𝑡) − 𝜂𝑚(𝑡)𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡)))

= −
Π∑
𝑚=1

𝜁𝑚(𝑡)|𝔈𝑚(𝑡)| − Π∑
𝑚=1

𝜂𝑚(𝑡)𝜒𝑚,

(26)

where we denote that 𝜒𝑚 = |𝔈𝑚(𝑡)|.
By Lemma 2, it can be derived that

Π∑
𝑚=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(−𝓁𝑚(𝑡)𝔜𝑚(𝑡) + 𝓁𝑚(𝑡)𝔛𝑚(𝑡))

≤ Π∑
𝑚=1

−𝓁𝑚|𝔈𝑚(𝑡)| + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚𝜒𝑚.

(27)

Under Assumption H1, we can conclude that

=
Π∑
𝑚=1

Π∑
𝑛=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜐́𝑚𝑛(𝑡)ℏ𝑛(𝔈𝑛(𝑡)) ≤
Π∑
𝑚=1

Π∑
𝑛=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))|𝜐̃𝑢𝑚𝑛𝐿ℏ𝑛 |𝔈𝑛(𝑡)|
≤ Π∑

𝑚=1

Π∑
𝑛=1

𝜐̃𝑢𝐿ℏ|𝔈𝑛(𝑡)| = 𝐿ℏ
Π∑
𝑚=1

Π∑
𝑛=1

𝜐̃𝑢|𝔈𝑚(𝑡)|.
(28)
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Similarly, we can conclude that
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))𝜚́(𝜄)𝑚𝑛(𝑡)(𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)) − 𝑔𝑛(𝔛𝑛(𝑡 − 𝜍𝜄(𝑡)))))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))|𝜚𝑢(𝜄)𝑚𝑛𝐿𝑔𝑛|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|
≤ 𝐿𝑔

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑚𝑛|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|.

(29)

From Assumption H2, we obtain that
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜚̀(𝜄)𝑚𝑛(𝑡) − 𝜚́(𝜄)𝑚𝑛(𝑡))𝑔𝑛(𝔜𝑛(𝑡 − 𝜍𝜄(𝑡)))

≤ Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))||𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜉𝑔𝑛
≤ 𝜉𝑔

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|𝜒𝑚.
(30)

And we have

Π∑
𝑚=1

Π∑
𝑛=1

𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))(𝜐̀𝑚𝑛(𝑡) − 𝜐́𝑚𝑛(𝑡))ℏ𝑛(𝔜𝑛(𝑡))

≤ Π∑
𝑚=1

Π∑
𝑛=1

|𝑠𝑖𝑔𝑛(𝔈𝑚(𝑡))||𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|𝜉ℏ𝑛 ≤ 𝜉ℏ
Π∑
𝑚=1

Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|𝜒𝑚,
(31)

Furthermore, we conclude that

𝕍̇2(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑚𝑛𝐿
𝑔

1 − 𝜍𝐷
(|𝔈𝑛(𝑡)| − |𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|(1 − 𝜍̇𝜄(𝑡)))

≤ 𝐿𝑔

1 − 𝜍𝐷

Π∑
𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑗𝑖|𝔈𝑚(𝑡)| − 𝐿𝑔 Π∑

𝑚=1

Π∑
𝑛=1

∑
𝜄=1
𝜚𝑢(𝜄)𝑚𝑛|𝔈𝑛(𝑡 − 𝜍𝜄(𝑡))|.

(32)

Finally, we have

𝕍̇3(𝑡,𝔈(𝑡)) =
Π∑
𝑚=1

[ 1
2𝑘𝑚

(
⌢

𝜁𝑚(𝑡) −
⌢

𝜁𝑚)
̇⌢
𝜁𝑚(𝑡) +

1
2𝑙𝑚

(
⌢

𝜁𝑚(𝑡) −
⌢

𝜁𝑚)
⌢̇

𝜁𝑚(𝑡)]

=
Π∑
𝑚=1

[(
⌢

𝜁𝑚(𝑡) −
⌢

𝜁𝑚)|𝔈𝑚(𝑡)| + (⌢𝜂𝑚(𝑡) −
⌢𝜂𝑚)𝜒𝑚].

(33)
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From (25) to (33), we obtain
𝕍̇ (𝑡,𝔈(𝑡)) = 𝕍̇1(𝑡,𝔈(𝑡)) + 𝕍̇2(𝑡,𝔈(𝑡)) + 𝕍̇3(𝑡,𝔈(𝑡))

≤ Π∑
𝑚=1

(−
⌢

𝜁𝑚 − 𝓁𝑚 + 𝐿ℏ
Π∑
𝑛=1

𝜐̃𝑢𝑛𝑚 +
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜄)𝑗𝑖𝐿
𝑔

1 − 𝜍𝐷
)|𝔈𝑚(𝑡)|

+
Π∑
𝑚=1

(−⌢𝜂𝑚 + |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|
+ 𝜉𝑔

Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|)𝜒𝑚
≤ −

⌢

ℏ𝑚
Π∑
𝑚=1

|𝔈𝑚(𝑡)| − Π∑
𝑚=1

⌢

Θ𝑚𝜒𝑚,

(34)

where
⌢

ℏ𝑚 =
⌢

𝜁𝑚 + 𝓁𝑚 −𝐿ℏ
Π∑
𝑛=1

𝜐̃𝑢𝑛𝑚 −
Π∑
𝑛=1

∑
𝜄=1

𝜚𝑢(𝜍)𝑗𝑖𝐿
𝑔

1−𝜍𝐷
, and

⌢

Θ𝑚 = ⌢𝜂𝑚 − |𝓁∗∗
𝑚 − 𝓁∗

𝑚|𝑀𝑚 + 𝜉ℏ
Π∑
𝑛=1

|𝜐∗𝑚𝑛 − 𝜐∗∗𝑚𝑛|− 𝜉𝑔 Π∑
𝑛=1

∑
𝜄=1

|𝜚∗(𝜄)𝑚𝑛 − 𝜚∗∗(𝜄)𝑚𝑛|,
( 𝑚 = 1, 2,… ,Π), From (23) and (34), we conclude that

⌢

ℏ𝑚 > 0,
⌢

Θ𝑚 > 0. Therefore, it holds true that

𝕍̇ (𝑡,𝔈(𝑡)) ≤ −
⌢

ℏ
Π∑
𝑚=1

|𝔈𝑚(𝑡)|, (35)

where
⌢

ℏ = min
1≤𝑖≤𝑛

{⌢

ℏ𝑚
}

, and ⌢𝜔(𝑡) =
Π∑
𝑚=1

|𝔈𝑚(𝑡)| ≥ 0. Then, it can be derived that 𝕍 (𝑡,𝔈(𝑡)) ≤ −
⌢

ℏ ∫ 𝑡
𝑡0

⌢𝜔(𝑠)𝑑𝑠+𝕍 (𝑡0) and ∫ 𝑡
𝑡0

⌢𝜔(𝑠)𝑑𝑠

has a finite limitation. Hence, ⌢𝜔(𝑡) is bounded. Therefore, there exists a given constant ̃1 > 0 satisfying |𝛽
𝑡
⌢𝜔(𝑡)| ≤ ̃1 when

𝑡 ≥ 𝑡0, from Lemma 3, we will further derive that ⌢𝜔(𝑡) is uniformly continuous. For 𝑡0 ≤ 𝑡1 < 𝑡2, and when |𝑡2 − 𝑡1| = 𝜃(𝜖) ≤
( 𝜖Γ(1+𝛽)

2̃ )
1
𝛽 , one can get

|⌢𝜔2(𝑡) −
⌢𝜔1(𝑡)| = −𝛽[𝛽 ⌢𝜔2(𝑡) −𝛽 ⌢𝜔1(𝑡)]

= 1
Γ(𝛽)

| 𝑡2

∫
𝑡0

(𝑡2 − 𝑥)1−𝛽[𝛽 ⌢𝜔(𝑥)]𝑑𝑥 −

𝑡1

∫
𝑡0

(𝑡1 − 𝑥)1−𝛽[𝛽 ⌢𝜔(𝑥)]𝑑𝑥|
= 1

Γ(𝛽)
| 𝑡2

∫
𝑡1

(𝑡2 − 𝑥)1−𝛽[𝛽 ⌢𝜔(𝑥)]𝑑𝑥| + 1
Γ(𝛽)

| 𝑡1

∫
𝑡0

((𝑡1 − 𝑥)1−𝛽)[𝛽 ⌢𝜔(𝑥)]𝑑𝑥|
≤ ̃1

Γ(𝛽)
[(𝑡1 − 𝑡0)𝛽 − (𝑡2 − 𝑡0)𝛽 + 2(𝑡2 − 𝑡1)𝛽]

≤ 2̃1

Γ(𝛽)
(𝑡2 − 𝑡1)𝛽 ≤ 𝜖.

Hence, we can obtain that ⌢𝜔(𝑡) is uniformly continuous. Under Lemma 3, we have

lim
𝑡→∞

⌢𝜔(𝑡) = 0.

Since ⌢𝜔(𝑡) =
Π∑
𝑚=1

|𝔈𝑚(𝑡)|, it means that lim
𝑡→∞

|𝔈𝑚(𝑡)| = 0 (𝑚 = 1, 2,⋯ ,Π). Therefore, from Definition 3, we conclude that

FOMMNNs systems (4) and (1) can realize the GAS. This complestes the proof.



WANG ET AL 15

4 CONCLUSIONS

In this paper, we incoporate the fractional calculus into MMNNs, and propose the FOMMNNs for the first time. Based on
the Master-Slave concept, this paper investigates the GAS of the Master-Slave FOMMNNs involving time-varying delays. By
utilizing the the theories of the set-valued mapping and fractional Filippov inclusions, the discontinuous FOMMNNs are trans-
formed into continuous FOMMNNs. Then, two different strategies are adopted to design the state-feedback controllers. One is
a linear and the other one is adaptive. Based on Lyapunov direct functional method, fractional Barbalats lemma and some anal-
ysis techniques, several suffient criteria are obtained for ensureing the GAS of delayed FOMMNNs. In this paper, all the proofs
procedures are illustrated in numerical forms, thus we will investigate the synchronization and stabilization issue for fractional
order memristive BAM neural networks (FOMBAMNNs) by utilizaing the toolbox of LMI later.
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