
Received ; Revised ; Accepted
DOI: xxx/xxxx

ARTICLE TYPE

Analyzing the Dual Space of the Saturated Ideal of a Regular Set
and the Local Multiplicities of its Zeros†

Xiaoliang Li1 | Wei Niu*2,3

1School of Finance and Trade, City College
of Dongguan University of Technology,
Dongguan, China

2Beijing Advanced Innovation Center for
Big Data and Brain Computing, Beihang
University, Beijing, China

3Ecole Centrale de Pékin, Beihang
University, Beijing, China
Correspondence
*Wei Niu Email: Wei.Niu@buaa.edu.cn
Present Address
Ecole Centrale de Pékin, Beihang
University, Beijing, 100191, China

Summary

In this paper, we are concerned with the problem of counting the multiplicities of
a zero-dimensional regular set’s zeros. We generalize the squarefree decomposition
of univariate polynomials to the so-called pseudo squarefree decomposition of mul-
tivariate polynomials, and then propose an algorithm for decomposing a regular set
into a finite number of simple sets. From the output of this algorithm, the mul-
tiplicities of zeros could be directly read out, and the real solution isolation with
multiplicity can also be easily produced. As a main theoretical result of this paper,
we analyze the structure of dual space of the saturated ideal generated by a simple
set as well as a regular set. Experiments with a preliminary implementation show the
efficiency of our method.
KEYWORDS:
multiplicity, regular set, simple set, squarefree decomposition, triangular decomposition

1 INTRODUCTION

Polynomial equations are widely used in science and engineering to describe various problems. Themultiplicities of the solutions
are crucial characteristics, which help us to intensively understand the algebraic structure behind equations.
The study of multiplicities at solutions of polynomial equations may be traced back to the foundation of algebraic geometry.

After that, researchers did remarkable work on this topic. Based on the dual space theory, Marinari and others1 proposed an
algorithm for computing the multiplicity. Furthermore, the computation of multiplicity structure could be reduced to solving
eigenvalues of the so-called multiplicity matrix, which is studied by Möller, Stetter2,3 and others4,5.
Example 1. Consider the univariate polynomial F = x5 − x3 for example. It is easy to verify that 0 is a zero of F and

F ′(0) = 0, F ′′(0) = 0, F (3)(0) ≠ 0.

It follows that the multiplicity of 0 at F is 3. This is the fundamental idea of counting the multiplicities of zeros using the dual
space theory.
Triangular decomposition is one of main elimination approaches for solving systems of multivariate polynomial equations.

The first well-known method of triangular decomposition is called the characteristic set method, which was proposed by Wu6,7
based on Ritt’s work on differential ideals8. But the zero set of a characteristic set may be empty. To remedy this shortcoming,
Kalkbrener9, Yang and Zhang10 introduced the notation of regular set. The properties of regular sets and relative algorithms
have been intensively studied by many researchers such as Wang11, Hubert12, Lazard13 and Moreno Maza14. The reader may
refer to other literature15,16,17,11,14,18,19,20,21,22,23 on triangular decomposition of polynomial systems.

†This is an example for title footnote.

2 Xiaoliang Li ET AL

Li24 gave a method to count the multiplicities of a zero-dimensional polynomial system’s zeros after decomposing the system
into triangular sets. Motivated by his work, we consider a relative yet different problem: efficiently counting the multiplicities
of a regular set’s zeros. Our main idea is based on the observation that in Example 1, F can be rewritten as F = x3(x2 −1) with
gcd(x, x2 − 1) = 1 and x, x2 − 1 to be squarefree. Then the multiplicity of 0 can be directly read from the exponent of the factor
x − 0 in F .
In this paper, we extend the above philosophy to themultivariate case. To be exact, we generalize the squarefree decomposition

of univariate polynomials to the so-called pseudo squarefree decomposition of multivariate polynomials, and then propose an
algorithm for computing the multiplicities of a regular set’s zeros. The method proposed in this paper can also be used to produce
the real solution isolation with multiplicity25. As a main theoretical result of this paper, we analyze the structure of dual space
of the saturated ideal generated by a simple set as well as a regular set.
The rest of this paper is structured as follows. In section 2, basic notations and relative properties of multiplicity and triangular

decomposition are revisited. In section 3, we introduce the pseudo squarefree decomposition of a multivariate polynomial and
give a feasible algorithm to compute it. Based on the pseudo squarefree decomposition, in section 4 we propose the algorithm
Reg2Sim with a regular set as its input, and the multiplicities of zeros can be easily obtained from the output. Section 5 shows
the efficiency of our approach with extensive experiments.

2 PRELIMINARIES

In what follows, we use x to denote variables x1,… , xn. ℂ[x1,… , xn] or simply ℂ[x] represents the polynomial ring with a
fixed variable ordering x1 <⋯ < xn.

2.1 Multiplicity
Dayton and others4,5 proposed methods for computing the multiplicity structure of zeros of a zero-dimensional polynomial
system. Their approach is based on the theory of dual space. In this section, we revisit relative notations and theorems.
Let ℕ = {0, 1, 2,…}. For any index array j = [j1,… , jr] ∈ ℕr, we define the differential operator

)j ≡)j1⋯jr ≡
1

j1!⋯ jr!
)j1+⋯+jr

)xj11 ⋯)xjrs
.

Let a be a zero of the zero-dimensional ideal  ⊆ ℂ[x]. For any)j , we can define a functional)j[a] ∶ ℂ[x] → ℂ, where
)j[a](F) = ()jF)(a) for F ∈ ℂ[x]. Any element of the vector space over ℂ spanned by)j[a] is called a differential functional
at a. All differential functionals at a that vanish on  form a subspace

Da() ≡

{

∑

j∈ℕr
cj)j[a] ∶ cj ∈ ℂ, and ∑

j∈ℕr
cj)j[a](F) = 0 for all F ∈ 

}

,

which is called the dual space of  at a.
Definition 1 (Local Multiplicity). Suppose that  ia a zero-dimensional ideal in ℂ[x], i.e.  has a finite number of complex
zeros. Let a be a zero of . The dimension of the vector space Da() is called the local multiplicity or multiplicity for short of
a in .
Let  be a multiplicatively closed subset of ℂ[x]. We use −1 to denote the localization of the polynomial ideal  at  , i.e.

−1 ≡ {F∕G ∶ F ∈ , G ∈ }.
Theorem 1. 5 Under the assumption of Definition 1, the local multiplicity of a in  equals to the dimension of the quotient ring
−1ℂ[x]∕−1 as a vector space over ℂ, where  = ℂ[x] ⧵a anda is the maximal ideal of a.

2.2 Triangular Decomposition
Let F and G be two polynomials in ℂ[x]. The variable of biggest index appearing in F is called the leading variable of F
and denoted by lv(F). The leading coefficient of F , viewed as a univariate polynomial in lv(F), is called the initial of F and
denoted by ini(F). Moreover, pquo(F ,G) and prem(F ,G) are used to denote the pseudo-quotient and pseudo-remainder of F
with respect to G in lv(G) respectively.

Xiaoliang Li ET AL 3

Definition 2. An ordered set  = [T1,… , Tr] of non-constant polynomials in ℂ[x] is called a triangular set if lv(Ti) < lv(Tj)
for all i < j.
Suppose that  = [T1,… , Tr] is a triangular set. We use yi as an alias of lv(Ti) for each i = 1,… , r. Moreover, yi stands for

y1,… , yi with y = yr. The triangular set  is said to be zero-dimensional if x = y. We denote u the variables in x but not in y.
Let ℂ̃ represent the transcendental extension field ℂ(u). To avoid ambiguity, for any ideal  ⊆ ℂ[u, yi], ℂ̃ denotes the ideal

generated by  in ℂ̃[yi]. The saturated ideal of  is defined as
sat() ≡ ⟨ ⟩ ∶ H∞ ≡ {F ∶ there exits an integer s such that FHs ∈ ⟨ ⟩},

whereH is the product of the initials of all polynomials in  . Moreover, we define sati() ≡ sat([T1,… , Ti]).
Definition 3. Let  = [T1,… , Tr] ⊆ ℂ[x] be a triangular set.  is called a regular set in ℂ[x] if for each i = 1,… , r, ini(Ti) is
neither zero nor a zero divisor in quotient ring ℂ[x]∕ sati−1().
The notation of regular set was introduced first by Kalkbrener9, Yang and Zhang10 simultaneously. In the following, we list

two main properties of regular sets9,10,12,26,11.
Proposition 1. 12 Let  be a regular set in ℂ[x]. Then

1. sat() ≠ ℂ[x];
2.  is zero-dimensional if and only if sat() is a zero-dimensional ideal;
3. sat() is an unmixed-dimensional ideal.

Proposition 2. 12 For any regular set  ⊆ ℂ[x], sat()ℂ̃ = ⟨ ⟩ℂ̃. Furthermore, ⟨ ⟩ℂ̃ ∩ ℂ[x] = sat().
Proposition 2 plays a key role in this paper. By this property, we know that if the regular set  is zero-dimensional, then

sat() = ⟨ ⟩.
Let F be a polynomial in ℂ[u, yi]. Then F can also be viewed as an element in ℂ̃[yi]. For any prime ideal  ⊆ ℂ̃[yi−1],

F
 denotes the image of F in (ℂ̃[yi−1]∕)[yi] under the natural homomorphism. For any polynomial set  ∈ ℂ̃[yi], define



≡ {S


∶ S ∈ }.

Definition 4. A regular set  = [T1,… , Tr] in ℂ[x] is called a simple set or said to be simple if for each i = 1,… , r and
associated prime  of sati−1()ℂ̃, T 

i is a squarefree polynomial in (ℂ̃[yi−1]∕)[yi].
Simple set27,17 is also called squarefree regular chain12. The following proposition reveals the most important property of

simple sets.
Proposition 3. 28 Let  be a regular set in ℂ[x]. Then the following statements are equivalent:

1.  is simple;
2. sat() is a radical ideal;
3. sat()ℂ̃ is a radical ideal.

3 PSEUDO SQUAREFREE DECOMPOSITION MODULO A REGULAR SET

Let  and 1,… ,s be ideals in ℂ[x] with
 = 1 ∩⋯ ∩ s. (1)

We say (1) is an irredundant decomposition if, for any associated prime  of , there exists a unique i such that√i ⊆  .
Theorem 2. 12,9,14,29 There exists an algorithm (named by pgcd) with a polynomial set  in ℂ[x][z] and a regular set  in
ℂ[x] as its input, where ℂ[x][z] represents the polynomial ring with all variables in x smaller than z, such that the output
{(G1,1),… , (Gs,s)} satisfies the following conditions:

1. each i is a regular set in ℂ[x] and sat() ⊆ sat(i);
2. √sat() =

√

sat(1) ∩⋯ ∩
√

sat(s) is an irredundant decomposition;

4 Xiaoliang Li ET AL

3. The ideal in f r(ℂ[x]∕ sat(i))[z] generated by  equals to that generated by the polynomial Gi, where f r(ℂ[x]∕ sat(i))
is the total quotient ring of ℂ[x]∕ sat(i), i.e. the localization of ℂ[x]∕ sat(i) at the multiplicatively closed set of all its
non-zerodivisors;

4. Gi ∈ ⟨⟩ + sat(i);
5. Gi = 0, or lc(Gi, z) is neither zero nor a zero divisor in quotient ring f r(ℂ[x]∕ sat(i)).

Remark 1. It is pointed out12 that if  is a simple set, then alli in the output of pgcd( , ) are also simple sets. Furthermore,
the ideal relation in 2 can be replaced with sat() = sat(1) ∩⋯ ∩ sat(s) in this case.
It is known that f r(ℂ[x]∕ sat(i)) = ℂ̃[y]∕ sat(i)ℂ̃. Then by 3, for any associated prime  of sat(i)ℂ̃, we have that

⟨

⟩ = ⟨G


i ⟩, i.e. gcd(


) = G


i . Therefore, the set {(G1,1),… , (Gs,s)} satisfying the above five conditions is called the

pseudo gcd of  modulo  .
For any univariate polynomialsA andB, the expressionA ∼ B means that there exists a nonzero constant c such thatA = cB.

Let F ,A1,… , As be non-constant polynomial in ℂ[x] and a1,… , as be positive integers. We call {[A1, a1],… , [As, as]} the
squarefree decomposition of F if the following conditions are satisfied:

• F ∼ Aa11 ⋯Aass ,
• gcd(Ai, Aj) = 1 for all i ≠ j,
• Ai is squarefree for all i = 1,… , s.
The following example illustrates the philosophy of computing the squarefree decomposition of a univariate polynomial30.

Example 2. Consider the univariate polynomial F = 3 x5 − 3 x3 ∈ ℂ[x]. First compute gcd(F , dF∕dx) and store the result in
P . It is easy to see that P = x2, which is a factor of F . Let Q = F∕P = 3 x3 − 3 x. Further computing gcd(P ,Q), one obtains
x, which is also a factor of Q. Since Q∕x = 3 x2 − 3 ∼ x2 − 1, we have F ∼ x3(x2 − 1), where x and x2 − 1 are coprime and
squarefree. As a result, the squarefree decomposition of F is {[x, 3], [x2 − 1, 1]}.
The first author of this paper and the coworkers28 generalized the squarefree decomposition of a univariate polynomial to the

so-called pseudo squarefree decomposition of a multivariate polynomial modulo a simple set. We slightly modify the definition
of pseudo squarefree decomposition as follows.
Definition 5. For any regular set  ⊆ ℂ[x] and polynomial F ∈ ℂ[x][z] ⧵ ℂ[x], the set

{({[Pi1, ai1],… , [Piki , aiki]},i) ∶ i = 1,… , s}

is called the pseudo squarefree decomposition of F modulo  if
1. each i is a regular set in ℂ[x] and sat() ⊆ sat(i);
2. √sat() =

√

sat(1) ∩⋯ ∩
√

sat(s) is an irredundant decomposition;
3. each {[P


i1, ai1],… , [P


iki
, aiki]} is the squarefree decomposition of F  for any associated prime  of sat(i)ℂ̃.

Moreover, for any F ∈ Fq[x][z] and any zero-dimensional simple set  in Fq[x], where Fq is a finite field, an effective
algorithm for computing the pseudo squarefree decomposition of F modulo  was designed by the first author28. In the sequel,
we propose a new algorithm (Algorithm 1), obtained by modifying the original algorithm, for computing the pseudo squarefree
decomposition of polynomials in ℂ[x][z].

Xiaoliang Li ET AL 5

Algorithm 1: Pseudo Squarefree Decomposition S ∶= psqf (F , )
Input: a polynomial F in ℂ[x][z] ⧵ ℂ[x]; a regular set  in ℂ[x].
Output: the pseudo squarefree decomposition S of F modulo  .
S ∶= ∅; D ∶= ∅;
for (C1,) ∈ pgcd({F ,)F∕)z}, ) do

B1 ∶= pquo(F , C1);
D ∶= D ∪ {[B1, C1,, ∅, 1]};

end
while D ≠ ∅ do

[B1, C1,,ℙ, d] ∶= pop(D);
if deg(B1, z) > 0 then

for (B2,) ∈ pgcd({B1, C1},) do
C2 ∶= pquo(C1, B2);
P ∶= pquo(B1, B2);
if deg(P , z) > 0 then ℙ ∶= ℙ ∪ {[P , d]};
D ∶= D ∪ {[B2, C2,,ℙ, d + 1]};

end
else

S ∶= S ∪ {(ℙ,)};
end

end
return(S);
We use pop(D) to represent the operation of taking one element randomly and then delete it from D. In Algorithm 1, D stores

what to be processed. For each element [B,C,,ℙ, d] ∈ D, one may see that  is a regular set over which later computation is
to be performed, and ℙ stores the squarefree components already obtained with exponent smaller than d.
It can be observed that the while loop is essentially a splitting procedure. Thus we may regard the running of Algorithm 1

as building trees with elements in D as their nodes. The roots of these trees are constructed in the first for loop. For each node
[B1, C1,,ℙ, d], its child [B2, C2,,ℙ, d + 1] is built when the statement “D ∶= D ∪ {[B2, C2,,ℙ, d + 1]}” is executed. For
any fixed path of one of the trees, we denote the node of depth i in the path by [B(i), C(i),(i),ℙ(i), i].
Correctness. The conditions 1 and 2 of Definition 5 follow from 1 and 2 of Theorem 2 respectively.
To prove 3 of Theorem 2, the tool of localization may be helpful. Suppose that [B(s), C(s),(s),ℙ(s), t] is a leaf node of

the tree. For any associated prime  of sat((t))ℂ̃, F  is a univariate polynomial over the field ℂ̃[y]∕ . We can assume that
F


=
∏t

i=1 P
i
i , where Pi are squarefree polynomial in z and gcd(Pj , Pk) = 1 for any j ≠ k. It can be proved that

B(i)

∼ PiPi+1⋯Pt and C(i)


∼ Pi+1P

2
i+2⋯P t−i

t . (2)
Thus B(i)∕B(i − 1)


= Pi. Therefore ℙ stores the squarefree decomposition of F  . □

Termination. It suffices to prove that every path in the tree is finite, which is obvious by (2). □

4 ANALYZING MULTIPLICITY

In this section, we propose algorithms for analyzingmultiplicity of a regular set’s zeros. As a preparation, the following algorithm
is given first, which can be used to decompose any given regular set over ℂ into a finite number of simple sets.

6 Xiaoliang Li ET AL

Algorithm 2: S ∶= Reg2Sim()
Input: a regular set  in ℂ[x].
Output: a finite set S with elements of the form (, P), where  = [B1,… , Br] is a simple set in ℂ[x] and

P = [p1,… , pr] is an array of integers. We use P to denote [Bp11 ,… , Bprr] and call P the multiplicity array of
P . Furthermore, we have that

sat() =
⋂

(,P)∈S
sat(P), (3)

which is an irredundant decomposition.
S ∶= ∅; D ∶= {( , [], [])};
while D ≠ ∅ do

(,, P) ∶= pop(D);
if  = ∅ then

S ∶= S ∪ {(, P)};
else

A ∶= the first polynomial in ;
for ({[C1, c1],… , [Cs, cs]},) ∈ psqf (A,) do

D ∶=
⋃s
i=1{( ⧵ {A}, append(, Ci), append(P , ci))} ∪ D;

end
end

end
return(S);
In Algorithm 2, append(L, a) returns the array obtained by appending the element a to the end of L. The termination is

obvious. In order to prove the correctness, the following lemma is needed.
Lemma 1. Suppose that  is a simple set inℂ[x] andF is a polynomial inℂ[x][z]⧵ℂ[x]. Let {({[Pi1, ai1],… , [Piki , aiki]},i) ∶
i = 1,… , s} be the output of Reg2Sim(F , ). Then alli are simple sets. Furthermore, sat() = sat(1) ∩⋯ ∩ sat(s).
Proof. It directly follows from Remark 1.
Correctness(Algorithm 2). For any element (, P) in the output of Reg2Sim(), one can easily know that  is a simple set by
Lemma 1 and Definition 4.
The ideal relation (3) could be proved as follows. For each (,, P) ∈ D which satisfies that  ≠ ∅, the statement

“({[C1, c1],… , [Cs, cs]},) ∈ psqf (A,)” in the for loop is then executed. It can be observed that
⟨⟩ℂ̃ + ⟨P

⟩ℂ̃ =
⋂

({[C1,c1],…,[Cs,cs]},)∈psqf (A,)
⟨⟩ℂ̃ + ⟨P

⟩ℂ̃.

Furthermore, for each ({[C1, c1],… , [Cs, cs]},) ∈ psqf (A,), we have that
⟨⟩ℂ̃ + ⟨P

⟩ℂ̃ = ⟨ ⧵ {A}⟩ℂ̃ + ⟨P ∪ {A}⟩ℂ̃

= ⟨ ⧵ {A}⟩ℂ̃ + ⟨P ∪ {
s
∏

i=1
Cci
i }⟩ℂ̃

= ⟨ ⧵ {A}⟩ℂ̃ +
s
⋂

i=1
⟨P ∪ {Cci

i }⟩ℂ̃

=
s
⋂

i=1
⟨ ⧵ {A}⟩ℂ̃ + ⟨P ∪ {Cci

i }⟩ℂ̃.

Thus in the while loop, we have the following invariant:
⟨ ⟩ℂ̃ =

⋂

(,,P)∈D
⟨ ∪ P

⟩ℂ̃ ∩
⋂

(,P)∈S
⟨P

⟩ℂ̃.

When the while loop terminates, ⟨ ⟩ℂ̃ =
⋂

(,P)∈S⟨P
⟩ℂ̃. Intersecting the left and right sides of this equation with ℂ[x], we

obtain (3).
The irredundant property of the ideal decomposition in (3) follows from Definition 5 and the property of Algorithm 1. □

Xiaoliang Li ET AL 7

In what follows, we show how the multiplicity arrays in the output of Reg2Sim() are used to count the multiplicities at zeros
of  .
Lemma 2. Suppose that [B1,… , Br] is a zero-dimensional simple set in ℂ[x], and [p1,… , pr] is a list of integers. Let a =
(a1,… , ar) be a zero of  = sat([B1,… , Br]) and)j1⋯jr be a differential functional with ji ≥ pi for some i’s. Then there exists
a polynomial Fj1⋯jr in  such that)j1⋯jr[a](Fj1⋯jr) ≠ 0.
Proof. Suppose that � is the smallest integer among i’s such that ji ≥ pi. Let

Fj1⋯jr =
(

∏

k≠�
(xk − ak)jk

)

(x� − a�)j�−p�B
p�
� .

It is obvious that Fj1⋯jr ∈ . For any polynomial P ∈ ℂ[x],
)j1⋯jr[a](P) =)j�

(

)j1⋯j�−1j�+1⋯jr(P)|(a1,…,a�−1,a�+1,…,ar)

)

|x�=a� . (4)
Denote)j1⋯j�−1j�+1⋯jr(Fj1⋯jr)|(a1,…,a�−1,a�+1,…,ar) by G. Since

)j1⋯j�−1j�+1⋯jr
(

∏

k≠�
(xk − ak)jk

)

= 1,

we have
G = (x� − a�)j�−p�

(

B�|(a1,…,a�−1,a�+1,…,ar)

)p�
,

where B�|(a1,…,a�−1,a�+1,…,ar) is a squarefree polynomial in ℂ[x�]. It is known that (a1,… , ar) is a zero of  and B� ∈ , thus one
can assume that

B�|(a1,…,a�−1,a�+1,…,ar) = (x� − a�) ⋅ A,
where A ∈ ℂ[x�] and gcd(x� − a�, A) = 1. Therefore G = (x� − a�)j�Ap� . By (4),

)j1⋯jr[a](Fj1⋯jr) =)j� (G)|x�=a� = Ap� |x�=a� ≠ 0,

which completes the proof.
Proposition 4. Let  = [B1,… , Br] be a zero-dimensional simple set in ℂ[x], and P = [p1,… , pr] be a list of integers. Then
for any zero a = (a1,… , ar) of  = sat(P), the dual space Da() is spanned by

S =
{

)j1⋯jr[a] ∶ 0 ≤ ji < pi for all i = 1,… , r
}

.

Proof. Suppose that)j1⋯jr satisfies that 0 ≤ ji < pi for all i = 1,… , r. It is easy to verify that Bi |)j1⋯jr(Bpii), i.e. there exists apolynomial Ai ∈ ℂ[x] such that)j1⋯jr(Bpii) = AiBi. Since P is a zero-dimensional regular set, we know that
sat(P) = ⟨Bp11 ,… , Bprr ⟩.

For any F ∈ sat(P), there exist C1,… , Cr ∈ ℂ[x] such that F =
∑r
i=1 CiB

pi
i . Thus

)j1⋯jr(F) =
r
∑

i=1
Bi[)j1⋯jr(Ci)B

pi−1
i + AiCi].

Since Bi(a) = 0, it follows that)j1⋯jr[a](F) = 0. Hence)j1⋯jr[a] ∈ Da().
On the other hand, suppose that ∑l

i=1 cji)ji[a] (cji ∈ ℂ) is a differential functional in Da(). Without loss of generality, one
may assume that)ji[a] ∉ S for i = 1,… , m and)ji[a] ∈ S for i = m+1,… , l. For each)jk[a], k = 1,… , m, construct Fjk ∈ 
such that)jk[a](Fjk) ≠ 0 in the same way as we did in the proof of Lemma 2. For any i = m + 1,… , l, it can be proved that
)ji[a](Fjk) = 0. Furthermore,)ji[a](Fjk) = 0 if i = 1,… , m and i ≠ k. It follows that

l
∑

i=1
cji)ji[a](Fjk) = cjk)jk[a](Fjk) = 0, for k = 1,… , m.

Since)jk[a](Fjk) ≠ 0, we know that cj1 =⋯ = cjm = 0, which means that Da() is spanned by S. The proof is complete.
Corollary 1. Let  = [B1,… , Br] be a zero-dimensional simple set in ℂ[x], and P = [p1,… , pr] be a list of integers. Then the
local multiplicity of any zero in sat(P) is∏r

i=1 pi.
Proof. This is obvious by Definition 1 and Proposition 4.

8 Xiaoliang Li ET AL

The following lemma states a classical result in commutative algebra.
Lemma 3. 31 Suppose that  is a multiplicatively closed subset of ℂ[x], and , 1, 2 are polynomials in ℂ[x].

1. −1(1 ∩ 2) = −11 ∩ −12.
2. If  ∩  ≠ ∅ for every prime ideal  ⊇ , then −1 = −1ℂ[x].

Theorem 3 (Main Theorem). Suppose that a zero-dimensional regular set  ⊆ ℂ[x] is given. Let S = {(1, P1),… , (k, Pk)}
be the output of Reg2Sim(). For any zero a = (a1,… , ar) of ⟨ ⟩, there exists one and only one element
([B1,… , Br], [p1,… , pr]) ∈ S such that B1(a) = 0,… , Br(a) = 0. Furthermore, the local multiplicity of a in ⟨ ⟩ is∏r

i=1 pi.
Proof. The existence of such ([B1,… , Br], [p1,… , pr]) ∈ S is from (3). While the uniqueness is because the decomposition in
(3) is irredundant.
Without loss of generality, we assume that

{(1, P1),… , (k, Pk)} = Reg2Sim()

with (1, P1) = ([B1,… , Br], [p1,… , pr]). By Theorem 1 and Corollary 1, it suffices to prove −1
⟨ ⟩ = −1 sat(P1

1), where
 = ℂ[x] ⧵a anda = ⟨x1 − a1,… , xr − ar⟩.
We know that ⟨ ⟩ = sat(). By Lemma 3 and (3),

−1
⟨ ⟩ = −1 sat() =

k
⋂

i=1
−1 sat(Pi

i).

As B1(a) = 0,… , Br(a) = 0, we have that sat(P1
1) = ⟨P1

1 ⟩ ⊆ a. Moreover, (3) is an irredundant decomposition, thus
sat(Pi

i) ⊈ a for any i ≠ 1. Then it can be proved that  ∩  ≠ ∅ for every prime ideal  ⊇ sat(Pi
i), i ≠ 1. By Lemma 3,

−1 sat(Pi
i) = −1ℂ[x] for any i ≠ 1. Hence −1

⟨ ⟩ = −1 sat(P1
1).

By the above theorem, one can easily count the multiplicities at zeros of any given zero-dimensional regular set  from the
output of Reg2Sim(). The following example illustrates the idea.
Example 3. Consider the following regular set in ℂ[x, y]:

 = [x3 − x2 + 2, (x5 + x)y3 − x3y2].

Applying Reg2Sim to  , we obtain the output of 4 branches:
(1, P1) = ([x2 − 2 x + 2, y], [1, 2]),
(2, P2) = ([x + 1, 2 y − 1,], [1, 1]),
(3, P3) = ([x + 1, y], [1, 2]),
(4, P4) = ([x2 − 2 x + 2, (3 x − 3)y − 2], [1, 1]).

To count the multiplicity at, e.g., the complex zero a = (1 + i, 0) of  , one just check that a is a zero of 1. Then from P1, we
know that the multiplicity of a is 2.
We give a description of the input and output of the function for computing the multiplicity as follows without entering the

details.
Algorithm 3:M ∶= RegMult( ,a)
Input: a zero-dimensional regular set  in ℂ[x]; a zero a of  .
Output: the local multiplicity of a in sat().
It should be noted that Reg2Sim computes not the multiplicity of just one zero of a regular set, but essentially the multiplicities

of all its zeros.
Remark 2. The multiplicity array produced by Reg2Sim may be more appropriate than the local multiplicity in Definition 1 for
characterizing the multiplicity. For example, consider ideals ⟨x2, y3⟩ and ⟨x3, y2⟩ in ℂ[x, y]. It is easy to see that (0, 0) is their
unique zero, and the local multiplicities of (0, 0) in these two ideal both equal to 6. But it is obvious that ⟨x2, y3⟩ ≠ ⟨x3, y2⟩, and
their Gröbner bases are different under a same term order.
It is well known that the Gröbner basis is one of elimination methods that preserve the multiplicity. From the above example,

we know that the multiplicity in the Gröbner sense differs from the local multiplicity, but is closer to the multiplicity array. For

Xiaoliang Li ET AL 9

the above example, the multiplicity array [2, 3] of ⟨x2, y3⟩ is distinct from the multiplicity array [3, 2] of ⟨x3, y2⟩. It never occurs
that ideals of zero-dimensional regular sets are different but with same zeros and same multiplicity arrays.
Remark 3. Zhang and others25 proposed an approach for isolating real solutions of a zero-dimensional triangular set as well as
counting their multiplicities. It should be noted that the real solution isolation with multiplicity of any given zero-dimensional
regular set  can also be easily obtained from the output of Reg2Sim().
The first step is to compute the real solution isolation of  , i.e. “boxes" of the form [

[a1, b1],… , [an, bn]
] with rational ai

and bi such that each box contains exact one real zero of  32. Let [1, P1],… , [k, Pk] be the output of Reg2Sim(). For each
box [

[a1, b1],… , [an, bn]
] that covers one zero (say a) of  , we just need to find the unique i with a as its zero33. Then the

multiplicity of a can be directly read from Pi.
The approach by Zhang and others25 computes the simple decomposition of a zero-dimensional generic triangular set with

respect to its real solutions and multiplicities. On the other hand, ours can produce the simple decomposition of a zero-
dimensional regular set with respect to all its solutions and multiplicities. However, the former method needs not to split
triangular sets in the squarefree decomposition over algebraic extension fields, thus may be more efficient.

5 EXPERIMENTAL RESULTS

Based on the RegularChains library in Maple 13, we have implemented the algorithms proposed in this paper. The Maple
package Apatools34 also provides us with a function for computing the multiplicity of a zero at any zero-dimensional ideal:

MultiplicityStructure(idealBases, variables, zero, threshold),
which is built on the dual space theory and can be executed symbolically or approximately. In order to be fair, we compare our
implementation with the symbolic version of MultiplicityStructure by setting the parameter “threshold” to be 0.
All the experiments were running on a laptop with Intel Core i3-2350TM CPU 2.30 GHz, 2G RAM and Windows 7 OS.

Table 1 records the timings of selected examples, which are listed in the appendix.

TABLE 1 Timings of MultiplicityStructure and RegMult (in seconds)

No. Variables Zero Multiplicity MultiplicityStructure RegMult

1 [x, y] (1,1) 1 .109 .093
2 [x, y] (1,1) 20 41.840 .047
3 [x, y] (2,1) 50 10.593 240.990
4 [x, y] (2,1) 105 120.932 3.057
5 [u, s] (0,0) 6 0.187 .078
6 [u, s, t, x, y, z] (0,0,0,0,0,0) 6 out of memory .266
7 [x, y, z] (0,0,0) 18 2.606 .046
8 [u, s, t, x, y, z] (0,0,0,0,0,0) 18 out of memory .172
9 [u, s, t, x, y, z] (0,0,0,0,0,0) 4 34.383 1.263
10 [u, s, t, x, y, z] (0,0,0,0,0,0) 24 out of memory 1.076

From Table 1, we can observe that RegMult is much more efficient than MultiplicityStructure in most cases except 3. One
possible reason of the low efficiency of our method on 3 is that the computation of psqf(F , )may be quite heavy if the regular
set  is complex and the factors of F have high exponents.
One can also see that the efficiency of MultiplicityStructure decreases rapidly with the multiplicity going up. More-

over, if the number of variables is big, the multiplicity matrix (the most important intermediate object in the execution of
MultiplicityStructure) may become huge even though the involved regular set has simple structure. In this case, the computa-
tion of MultiplicityStructure could be fairly time-consuming and the needed memory space would be unimaginable. However,
our new algorithms do not suffer from these problems.

10 Xiaoliang Li ET AL

ACKNOWLEDGMENTS

The authors wish to thank Dongming Wang and Bican Xia for beneficial discussions.

Financial disclosure
This work has been supported by National Natural Science Foundation of China (No. 11601023).

Conflict of interest
The authors declare no potential conflict of interests.

APPENDIX

A EXAMPLES IN TIMINGS

1 = [x(x − 1), y20(y − 1)].
2 = [x(x − 1)20, y(y − 1)].
3 = [1235556(x − 2)5(234156 x4 + 3456 x + 23677134)2, 23566234(x3 + 23 x)(y − 1)10(x2y3 +

2346234 y)].
4 = [1235556(x − 2)21(234156 x4 + 3456 x + 23677134)2, 23566234(x3 + 23 x)(y − 1)5(x2y3 +

2346234 y)].
5 = [u2(u − 1)(u2 + u + 1), ((u + 1)s3 − u)(s4 + 1)].
6 = [u2(u − 1)(u2 + u + 1), ((u + 1)s3 − u)(s4 + 1), t, x, y, z].
7 = [1275467 x3(23564882 x − 60289123), 2892349145(y − x)2(912318912759 y + 29375 x −

12366), (7987326611 z2 − 9712375656 xy2)z].
8 = [u, s, t, 1275467 x3(23564882 x − 60289123), 2892349145(y − x)2(912318912759 y +

29375 x − 12366), (7987326611 z2 − 9712375656 xy2)z].
9 = [u(u − 1), (s − u)(s + u − 1), (t − s)(t + u + s − 1), (x − t)(x + u + s + t − 1), (y −

x)(y + u + s + t + x − 1), (z − y)4(z + u + s + t + x + y − 1)].
10 = [u2(u − 1), (s − u)(s + u − 1), (t − s)2(t + u + s − 1), (x − t)3(x + u + s + t − 1), (y −

x)2(y + u + s + t + x − 1), (z − y)(z + u + s + t + x + y − 1)].

References

1. M. G. Marinari, T. Mora, H. M.Möller, Gröbner duality and multiplicities in polynomial system solving, in: A. H. M. Levelt
(Ed.), Proceedings of the 1995 International Symposium on Symbolic and Algebraic Aomputation, ACM, New York, 1995,
pp. 167–179.

2. H. M. Möller, H. J. Stetter, Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems,
Numerische Mathematik 70 (3) (1995) 311–329.

3. H. J. Stetter, Matrix eigenproblems are at the heart of polynomial system solving, ACM SIGSAM Bulletin 30 (4) (1996)
22–25.

4. B. H. Dayton, T.-Y. Li, Z. Zeng, Multiple zeros of nonlinear systems, Mathematics of Computation 80 (276) (2011) 2143–
2168.

Xiaoliang Li ET AL 11

5. B. H. Dayton, Z. Zeng, Computing themultiplicity structure in solving polynomial systems, in:M.Kauers (Ed.), Proceedings
of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2005, pp. 116–123.

6. W.-T. Wu, On zeros of algebraic equations: an application of Ritt principle, Kexue Tongbao 31 (1) (1986) 1–5.
7. W.-T.Wu, Basic principles of mechanical theorem proving in elementary geometries, Journal of Automated Reasoning 2 (3)

(1986) 221–252.
8. J. F. Ritt, Differential Algebra, American Mathematical Society, Providence, 1950.
9. M. Kalkbrener, A generalized Euclidean algorithm for computing triangular representations of algebraic varieties, Journal

of Symbolic Computation 15 (2) (1993) 143–167.
10. L. Yang, J.-Z. Zhang, Searching dependency between algebraic equations: an algorithm applied to automated reasoning, in:

J. Johnson, S. McKee, A. Vella (Eds.), Artificial Intelligence in Mathematics, Oxford University Press, Oxford, 1994, pp.
147–156.

11. D. Wang, Computing triangular systems and regular systems, Journal of Symbolic Computation 30 (2) (2000) 221–236.
12. E. Hubert, Notes on triangular sets and triangulation-decomposition algorithms I: Polynomial systems, in: F. Winkler,

U. Langer (Eds.), Symbolic and Numerical Scientific Computation, Vol. 2630 of Lecture Note in Computer Science,
Springer, Berlin, 2003, pp. 143–158.

13. D. Lazard, A new method for solving algebraic systems of positive dimension, Discrete Applied Mathematics 33 (1–3)
(1991) 147–160.

14. M. Moreno Maza, On triangular decompositions of algebraic varieties, Technical Report 4/99, NAG, UK, Presented at the
MEGA-2000 Conference, Bath, UK.

15. C. Chen, M. Moreno Maza, Algorithms for computing triangular decompositions of polynomial systems, in: A. Leykin
(Ed.), Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2011,
pp. 83–90.

16. D. Wang, An elimination method for polynomial systems, Journal of Symbolic Computation 16 (2) (1993) 83–114.
17. D.Wang, Decomposing polynomial systems into simple systems, Journal of Symbolic Computation 25 (3) (1998) 295–314.
18. G. Gallo, B. Mishra, Wu-Ritt characteristic sets and their complexity, in: J. E. Goodman, R. D. Pollack, W. Steiger (Eds.),

Discrete and Computational Geometry: Papers from the DIMACS Special Year, Vol. 6 of Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, Providence, 1991, pp. 111–136.

19. G. Gallo, B. Mishra, Efficient algorithms and bounds for Wu-Ritt characteristic sets, in: T. Mora, C. Traverso (Eds.),
Effective Methods in Algebraic Geometry, Vol. 94 of Progress in Mathematics, Birkhauser, Berlin, 1991, pp. 119–142.

20. X.-S. Gao, S.-C. Chou, On the dimension of an arbitrary ascending chain, Chinese Science Bulletin 38 (5) (1993) 396–399.
21. Z. Huang, Y. Sun, D. Lin, On the efficiency of solving boolean polynomial systems with the characteristic set method,

Journal of Symbolic Computation 103 (2021) 66–94.
22. C. Mou, Y. B, J. Lai, Chordal graphs in triangular decomposition in top-down style, Journal of Symbolic Computation 102

(2021) 108–131.
23. D. Wang, R. Dong, C. Mou, Decomposition of polynomial sets into characteristic pairs, Mathematics of Computation 89

(2020) 1993–2015.
24. B. Li, Amethod to solve algebraic equations up to multiplicities via Ritt-Wu’s characteristic sets, Acta Analysis Functionalis

Applicata 5 (3) (2005) 98–109.
25. Z. Zhang, T. Fang, B. Xia, Real solution isolation with multiplicity of zero-dimensional triangular systems, Science China

Information Sciences 54 (1) (2011) 60–69.

12 Xiaoliang Li ET AL

26. P. Aubry, D. Lazard, M.MorenoMaza, On the theories of triangular sets, Journal of Symbolic Computation 28 (1–2) (1999)
105–124.

27. J. M. Thomas, Differential Systems, American Mathematical Society, New York, 1937.
28. X. Li, C. Mou, D. Wang, Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case,

Computers and Mathematics with Applications 60 (11) (2010) 2983–2997.
29. D. Kapur, D. Lu, M. B. Monagan, Y. Sun, D. Wang, Algorithms for computing greatest common divisors of parametric

multivariate polynomials, Journal of Symbolic Computation 102 (2021) 3–20.
30. T. Mora, Solving Polynomial Equation Systems I: the Kronecker-Duval Philosophy, Encyclopedia of Mathematics and its

Applications, Cambridge University Press, Cambridge, 2003.
31. M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Series in Mathematics, Addison-

Wesley, Reading, Mass., 1969.
32. B. Xia, L. Yang, An algorithm for isolating the real solutions of semi-algebraic systems, Journal of Symbolic Computation

34 (5) (2002) 461–477.
33. B. Xia, X. Hou, A complete algorithm for counting real solutions of polynomial systems of equations and inequalities,

Computers and Mathematics with Applications 44 (5–6) (2002) 633–642.
34. Z. Zeng, ApaTools: a software toolbox for approximate polynomial algebra, in: M. E. Stillman, N. Takayama, J. Verschelde

(Eds.), Software for Algebraic Geometry, Springer, Berlin, 2008, pp. 149–167.

	Analyzing the Dual Space of the Saturated Ideal of a Regular Set and the Local Multiplicities of its Zeros
	Abstract
	Introduction
	Preliminaries
	Multiplicity
	Triangular Decomposition

	Pseudo Squarefree Decomposition Modulo a Regular Set
	Analyzing Multiplicity
	Experimental Results
	Acknowledgments
	Appendix
	Examples in Timings
	References

