REFERENCES
Ali, O. A., O’Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G.,
Jeffres, C., & Miller, M. R. (2016). RAD capture (Rapture): flexible
and efficient sequence-based genotyping. Genetics , 202 (2),
389–400.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of Molecular
Biology, 215 , 403–410.
Andermann, T., Cano, Á., Zizka, A., Bacon, C., & Antonelli, A. (2018).
SECAPR—a bioinformatics pipeline for the rapid and user-friendly
processing of targeted enriched Illumina sequences, from raw reads to
alignments. PeerJ , 6 , e5175.
Arbetman, M. P., & Premoli, A. C. (2011). Oldies (but goldies!):
extracting DNA from cryopreserved allozyme supernatants. Journal
of Heredity , 102 , 764–769.
Ávila-Arcos, M. C., Ho, S. Y., Ishida, Y., Nikolaidis, N., Tsangaras,
K., Hönig, K., … & Willerslev, E. (2012). One hundred twenty years of
koala retrovirus evolution determined from museum skins. Molecular
Biology and Evolution, 30 (2), 299-304.
Axelsson, E., Willerslev, E., Gilbert, M. T. P., & Nielsen, R. (2008).
The effect of ancient DNA damage on inferences of demographic histories.Molecular Biology and Evolution , 25 (10), 2181–2187.
Bakker, F. T., Bieker, V. C., & Martin, M. D. (2020). Herbarium
Collection-Based Plant Evolutionary Genetics and
Genomics. Frontiers in Ecology and Evolution , 8 ,
https://doi.org/10.3389/fevo.2020.603948
Bi, K., Linderoth, T., Vanderpool, D., Good, J. M., Nielsen, R., &
Moritz, C. (2013). Unlocking the vault: next‐generation museum
population genomics. Molecular Ecology , 22 (24),
6018–6032.
Bi, K., Linderoth, T., Singhal, S., Vanderpool, D., Patton, J. L.,
Nielsen, R., … & Good, J. M. (2019). Temporal genomic contrasts
reveal rapid evolutionary responses in an alpine mammal during recent
climate change. PLoS genetics , 15 , e1008119.
Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016).
Sequence capture and phylogenetic utility of genomic ultraconserved
elements obtained from pinned insect specimens. PloS
one , 11 , e0161531.
Burrell, A. S., Disotell, T. R., & Bergey, C. M. (2015). The use of
museum specimens with high-throughput DNA sequencers. Journal of
Human Evolution , 79, 35–44.
Campos, P. F., & Gilbert, T. M. (2012). DNA extraction from
formalin-fixed material. In Ancient DNA (pp. 81–85). Humana
Press.
Card, D. C., Perry, B. W., Adams, R. H., Schield, D. R., Young, A. S.,
Andrew, A. L., … & Rochford, M. R. (2018). Novel ecological and
climatic conditions drive rapid adaptation in invasive Florida Burmese
pythons. Molecular Ecology , 27 (23), 4744–4757.
Cariou, M., Duret, L., & Charlat, S. (2016). How and how much does
RAD-seq bias genetic diversity estimates? BMC Evolutionary
Biology , 16 , 1-8.
Caruso, N. M., Sears, M. W., Adams, D. C., & Lips, K. R. (2014).
Widespread rapid reductions in body size of adult salamanders in
response to climate change. Global Change Biology , 20 (6),
1751-1759.
Cook, S., Dodge, C., Morgan, R., & Sandusky, G. E. (2014). DNA/RNA
degradation rate in long term fixed museum specimens. Forensic
Medicine and Anatomy Research , 3 , 1.
Crates, R., Olah, G., Adamski, M., Aitken, N., Banks, S., Ingwersen, D.,
… & von Takach Dukai, B. (2019). Genomic impact of severe population
decline in a nomadic songbird. PloS one , 14 , e0223953.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E.,
DePristo, M. A., … & McVean, G. (2011). The variant call format and
VCFtools. Bioinformatics , 27 , 2156-2158.
Danecek, P., & McCarthy, S. A. (2017). BCFtools/csq: haplotype-aware
variant consequences. Bioinformatics , 33 (13), 2037–2039.
de Medeiros, B. A., & Farrell, B. D. (2018). Whole-genome amplification
in double-digest RADseq results in adequate libraries but fewer
sequenced loci. PeerJ , 6 , e5089.
Derkarabetian, S., Benavides, L. R., & Giribet, G. (2019). Sequence
capture phylogenomics of historical ethanol‐preserved museum specimens:
Unlocking the rest of the vault. Molecular Ecology
Resources , 19 , 1531–1544.
Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the
duality diagram for ecologists. Journal of Statistical
Software , 22 (4), 1–20.
Eaton, D. A., & Overcast, I. (2020). ipyrad: Interactive assembly and
analysis of RADseq datasets. Bioinformatics , 36 (8),
2592–2594.
Edwards, S. V., Potter, S., Schmitt, C. J., Bragg, J. G., & Moritz, C.
(2016). Reticulation, divergence, and the phylogeography–phylogenetics
continuum. Proceedings of the National Academy of
Sciences , 113 (29), 8025–8032.
Ewart, K. M., Johnson, R. N., Ogden, R., Joseph, L., Frankham, G. J., &
Lo, N. (2019). Museum specimens provide reliable SNP data for population
genomic analysis of a widely distributed but threatened cockatoo
species. Molecular Ecology Resources , 19 , 1578–1592.
Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis
of conserved genomic loci. Bioinformatics , 32 (5), 786-788.
Gautier, M., Gharbi, K., Cezard, T., Foucaud, J., Kerdelhué, C., Pudlo,
P., … & Estoup, A. (2013). The effect of RAD allele dropout on the
estimation of genetic variation within and between
populations. Molecular Ecology , 22 (11), 3165-3178.
Gauthier, J., Pajkovic, M., Neuenschwander, S., Kaila, L., Schmid, S.,
Orlando, L., & Alvarez, N. (2020). Museomics identifies genetic erosion
in two butterfly species across the 20th century in Finland.Molecular Ecology Resources , 20 , 1191–1205.
Heindler, F. M., Christiansen, H., Frédérich, B., Dettaï, A., Lepoint,
G., Maes, G. E., … & Volckaert, F. A. (2018). Historical DNA
metabarcoding of the prey and microbiome of trematomid fishes using
museum samples. Frontiers in Ecology and Evolution , 6 ,
151.
Hedin, M., Derkarabetian, S., Ramírez, M. J., Vink, C., & Bond, J. E.
(2018). Phylogenomic reclassification of the world’s most venomous
spiders (Mygalomorphae, Atracinae), with implications for venom
evolution. Scientific Reports , 8 (1), 1-7.
Heller, R., Nursyifa, C., Erill, G. G., Salmona, J., Chikhi, J.,
Meisner, J., Sand Korneliussen, T., Albrechtsen, A. (2021). A
reference‐free approach to analyze RADseq data using standard Next
Generation Sequencing toolkits. 10.1111/1755-0998.13324
Hime, P. M., Briggler, J. T., Reece, J. S., & Weisrock, D. W. (2019).
Genomic data reveal conserved female heterogamety in giant salamanders
with gigantic nuclear genomes. G3: Genes, Genomes,
Genetics , 9 (10), 3467-3476.
Hoffberg, S. L., Kieran, T. J., Catchen, J. M., Devault, A., Faircloth,
B. C., Mauricio, R., & Glenn, T. C. (2016). RAD cap: sequence capture
of dual‐digest RAD seq libraries with identifiable duplicates and
reduced missing data. Molecular Ecology Resources , 16 (5),
1264–1278.
Holmes, M. W., Hammond, T. T., Wogan, G. O., Walsh, R. E., LaBarbera,
K., Wommack, E. A., … & Nachman, M. W. (2016). Natural history
collections as windows on evolutionary processes. Molecular
Ecology , 25 (4), 864–881.
Hykin, S. M., Bi, K., & McGuire, J. A. (2015). Fixing formalin: a
method to recover genomic-scale DNA sequence data from formalin-fixed
museum specimens using high-throughput sequencing. PloS
One , 10 , e0141579.
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L., & Orlando, L.
(2013). mapDamage2. 0: fast approximate Bayesian estimates of ancient
DNA damage parameters. Bioinformatics , 29 (13), 1682–1684.
Katoh, K., Asimenos, G., & Toh, H. (2009). Multiple alignment of DNA
sequences with MAFFT. In Bioinformatics for DNA sequence
analysis (pp. 49-64). Humana Press.
Krueger, F. (2015). Trim galore. A wrapper tool around Cutadapt and
FastQC to consistently apply quality and adapter trimming to FastQ
files, 516, 517.
Lang, P. L., Weiß, C. L., Kersten, S., Latorre, S. M., Nagel, S.,
Nickel, B., … & Burbano, H. A. (2020). Hybridization
ddRADseq‐sequencing for population genomics of nonmodel plants using
highly degraded historical specimen DNA. Molecular Ecology
Resources, 20 , 1228–1247.
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with
Bowtie 2. Nature Methods , 9 (4), 357.
Lamichhaney, S., Card, D. C., Grayson, P., Tonini, J. F., Bravo, G. A.,
Näpflin, K., … & Sackton, T. B. (2019). Integrating natural history
collections and comparative genomics to study the genetic architecture
of convergent evolution. Philosophical Transactions of the Royal
Society B , 374 (1777), 20180248.
Leavitt, S. D., Keuler, R., Newberry, C. C., Rosentreter, R., & Clair,
L. L. S. (2019). Shotgun sequencing decades-old lichen specimens to
resolve phylogenomic placement of type material. Plant and Fungal
Systematics , 64 (2), 237-247.
Lopez, L., Turner, K. G., Bellis, E. S., & Lasky, J. R. (2020).
Genomics of natural history collections for understanding evolution in
the wild. Molecular Ecology Resources , 20 , 1153-1160.
Luca, F., Hudson, R. R., Witonsky, D. B., & Di Rienzo, A. (2011). A
reduced representation approach to population genetic analyses and
applications to human evolution. Genome Research , 21 (7),
1087-1098.
Lyra, M. L., Lourenço, A. C. C., Pinheiro, P. D., Pezzuti, T. L., Baêta,
D., Barlow, A., … & Faivovich, J. (2020). High-throughput DNA
sequencing of museum specimens sheds light on the long-missing species
of the Bokermannohyla claresignata group (Anura: Hylidae:
Cophomantini). Zoological Journal of the Linnean Society ,190 , 1–21.
Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N.,
… & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools
APIs in 2019. Nucleic Acids Research , 47 , W636-W641.
McCartney‐Melstad, E., Mount, G. G., & Shaffer, H. B. (2016). Exon
capture optimization in amphibians with large genomes. Molecular
Ecology Resources , 16 (5), 1084-1094.
McCormack, J. E., Tsai, W. L., & Faircloth, B. C. (2016). Sequence
capture of ultraconserved elements from bird museum
specimens. Molecular Ecology Resources , 16 (5), 1189–1203.
McGaughran, A. (2020). Effects of sample age on data quality from
targeted sequencing of museum specimens: what are we capturing in
time? BMC Genomics, 21 , 1–10.
McGuire, J. A., Cotoras, D. D., O’Connell, B., Lawalata, S. Z.,
Wang-Claypool, C. Y., Stubbs, A., … & Bi, K. (2018). Squeezing water
from a stone: high-throughput sequencing from a 145-year old holotype
resolves (barely) a cryptic species problem in flying
lizards. PeerJ , 6 , e4470.
Muletz, C., Caruso, N. M., Fleischer, R. C., McDiarmid, R. W., & Lips,
K. R. (2014). Unexpected rarity of the pathogen Batrachochytrium
dendrobatidis in Appalachian Plethodon salamanders:
1957–2011. PLoS one , 9 (8), e103728.
Muletz-Wolz, C. R., Fleischer, R. C., & Lips, K. R. (2019). Fungal
disease and temperature alter skin microbiome structure in an
experimental salamander system. Molecular Ecology, 28 , 2917-2931.
Newman, C. E., & Austin, C. C. (2016). Sequence capture and
next‐generation sequencing of ultraconserved elements in a large‐genome
salamander. Molecular Ecology , 25 (24), 6162–6174.
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015).
IQ-TREE: a fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Molecular Biology and
Evolution , 32 (1), 268–274.
Pääbo, S. (1989). Ancient DNA: extraction, characterization, molecular
cloning, and enzymatic amplification. Proceedings of the National
Academy of Sciences , 86 (6), 1939–1943.
Paireder, S., Werner, B., Bailer, J., Werther, W., Schmid, E., Patzak,
B., & Cichna-Markl, M. (2013). Comparison of protocols for DNA
extraction from long-term preserved formalin fixed
tissues. Analytical Biochemistry , 432 , 152–160.
Pierson, T. W., Kieran, T. J., Clause, A. G., & Castleberry, N. L.
(2020). Preservation-Induced Morphological Change in Salamanders and
Failed DNA Extraction from a Decades-Old Museum Specimen: Implications
for Plethodon ainsworthi . Journal of
Herpetology , 54 , 137–143.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra,
H. E. (2012). Double digest RADseq: an inexpensive method for de novo
SNP discovery and genotyping in model and non-model species. PloS
one , 7 (5), e37135.
Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I.,
& Bird, C. E. (2014). Demystifying the RAD fad. Molecular
Ecology , 23 (24), 5937-5942.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of
utilities for comparing genomic
features. Bioinformatics , 26 , 841-842.
Rowe, K. C., Singhal, S., Macmanes, M. D., Ayroles, J. F., Morelli, T.
L., Rubidge, E. M., … & Moritz, C. C. (2011). Museum genomics:
low‐cost and high‐accuracy genetic data from historical
specimens. Molecular Ecology Resources , 11 (6), 1082–1092.
Ruane, S., & Austin, C. C. (2017). Phylogenomics using formalin‐fixed
and 100+ year‐old intractable natural history specimens. Molecular
Ecology Resources , 17 , 1003–1008.
Sambrook, J., Russell, D. (2001) Molecular Cloning: A Laboratory Manual,
3rd Edition. Cold Spring Harbor, NY: Cold Spring
Harbor Laboratory Press.
Sánchez Barreiro, F., Vieira, F. G., Martin, M. D., Haile, J., Gilbert,
M. T. P., & Wales, N. (2017). Characterizing restriction
enzyme‐associated loci in historic ragweed (Ambrosia
artemisiifolia ) voucher specimens using custom‐designed RNA
probes. Molecular Ecology Resources , 17 (2), 209–220.
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V., & Pääbo, S.
(2012). Temporal patterns of nucleotide misincorporations and DNA
fragmentation in ancient DNA. PloS one , 7 (3), e34131.
Schlötterer, C. (2004). The evolution of molecular markers—just a
matter of fashion? Nature Reviews Genetics , 5 (1), 63–69.
Schmid, S., Neuenschwander, S., Pitteloud, C., Heckel, G., Pajkovic, M.,
Arlettaz, R., & Alvarez, N. (2018). Spatial and temporal genetic
dynamics of the grasshopper Oedaleus decorus revealed by museum
genomics. Ecology and Evolution , 8 (3), 1480-1495.
Schmitt, C. J., Cook, J. A., Zamudio, K. R., & Edwards, S. V. (2019).
Museum specimens of terrestrial vertebrates are sensitive indicators of
environmental change in the Anthropocene. Philosophical
Transactions of the Royal Society B , 374 , 20170387
Shultz, A. J., Adams, B. J., Bell, K. C., Ludt, W. B., Pauly, G. B., &
Vendetti, J. E. (2020). Natural history collections are critical
resources for contemporary and future studies of urban
evolution. Evolutionary Applications , 2020 , 1–15.
Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J.,
& Birol, I. (2009). ABySS: a parallel assembler for short read sequence
data. Genome Research , 19 (6), 1117-112.
Smith, B. T., Mauck III, W. M., Benz, B. W., & Andersen, M. J. (2020).
Uneven missing data skew phylogenomic relationships within the lories
and lorikeets. Genome Biology and Evolution , 12 (7),
1131-1147.
Splendiani, A., Fioravanti, T., Giovannotti, M., Olivieri, L., Ruggeri,
P., Nisi Cerioni, P., … & Caputo Barucchi, V. (2017). Museum samples
could help to reconstruct the original distribution of Salmo trutta
complex in Italy. Journal of Fish Biology , 90 , 2443–2451.
Sørensen, M., Rasmussen, A. R., & Simonsen, K. P. (2016). Enzymatic
detection of formalin-fixed museum specimens for DNA analysis and
enzymatic maceration of formalin-fixed specimens. In Collection
Forum (Vol. 40, No. 1, pp. 1–6). Department of Psychology, Indiana
University, Bloomington, Indiana 47405: The Society for the Experimental
Analysis of Behavior.
St Laurent, R. A., Hamilton, C. A., & Kawahara, A. Y. (2018). Museum
specimens provide phylogenomic data to resolve relationships of
sack‐bearer moths (Lepidoptera, Mimallonoidea,
Mimallonidae). Systematic Entomology , 43 (4), 729-761.
Staats, M., Erkens, R. H., van de Vossenberg, B., Wieringa, J. J.,
Kraaijeveld, K., Stielow, B., … & Bakker, F. T. (2013). Genomic
treasure troves: complete genome sequencing of herbarium and insect
museum specimens. PloS one , 8 (7), e69189.
Stronen, A. V., Iacolina, L., Pertoldi, C., Kusza, S., Hulva, P., Dykyy,
I., … & Faurby, S. (2019). The use of museum skins for genomic
analyses of temporal genetic diversity in wild
species. Conservation Genetics Resources , 11 (4), 499-503.
Stuart, B. L., Dugan, K. A., Allard, M. W., & Kearney, M. (2006).
Extraction of nuclear DNA from bone of skeletonized and fluid‐preserved
museum specimens. Systematics and Biodiversity , 4 (2),
133-136.
Suchan, T., Pitteloud, C., Gerasimova, N. S., Kostikova, A., Schmid, S.,
Arrigo, N., … & Alvarez, N. (2016). Hybridization capture using RAD
probes (hyRAD), a new tool for performing genomic analyses on collection
specimens. PloS one , 11 (3), e0151651.
Tin, M. M. Y., Economo, E. P., & Mikheyev, A. S. (2014). Sequencing
degraded DNA from non-destructively sampled museum specimens for
RAD-tagging and low-coverage shotgun phylogenetics. PloS one ,
9(5), e96793.
Tingley, M. W., & Beissinger, S. R. (2009). Detecting range shifts from
historical species occurrences: new perspectives on old
data. Trends in Ecology & Evolution , 24 (11), 625–633.
Totoiu, C. A., Phillips, J. M., Reese, A. T., Majumdar, S., Girguis, P.
R., Raston, C. L., & Weiss, G. A. (2020). Vortex fluidics-mediated DNA
rescue from formalin-fixed museum specimens. PloS one , 15 ,
e0225807.
Tsai, W. L., Schedl, M. E., Maley, J. M., & McCormack, J. E. (2019).
More than skin and bones: Comparing extraction methods and alternative
sources of DNA from avian museum specimens. Molecular Ecology
Resources , 2019 , 1–8.
Turvey, S. T., Marr, M. M., Barnes, I., Brace, S., Tapley, B., Murphy,
R. W., … & Cunningham, A. A. (2019). Historical museum collections
clarify the evolutionary history of cryptic species radiation in the
world’s largest amphibians. Ecology and Evolution , 9 (18),
10070–10084.
Wall, A. R., Campo, D., & Wetzer, R. (2014). Genetic utility of natural
history museum specimens: endangered fairy shrimp (Branchiopoda,
Anostraca). ZooKeys , 457 , 1.
Wandeler, P., Hoeck, P. E., & Keller, L. F. (2007). Back to the future:
museum specimens in population genetics. Trends in Ecology &
Evolution , 22 (12), 634–642.
Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for
multi-genome mapping and quality
control. F1000Research , 7 .
Wood, H. M., González, V. L., Lloyd, M., Coddington, J., & Scharff, N.
(2018). Next-generation museum genomics: Phylogenetic relationships
among palpimanoid spiders using sequence capture techniques (Araneae:
Palpimanoidea). Molecular Phylogenetics and
Evolution , 127 , 907-918.
van der Valk, T., Díez-del-Molino, D., Marques-Bonet, T., Guschanski,
K., & Dalén, L. (2019). Historical genomes reveal the genomic
consequences of recent population decline in eastern
gorillas. Current Biology , 29 (1), 165-170.
Vershinina, A. O., Kapp, J. D., Baryshnikov, G. F., & Shapiro, B.
(2019). The case of an arctic wild ass highlights the utility of ancient
DNA for validating problematic identifications in museum
collections. Molecular Ecology Resources , 2020 , 1–9.
Yeates, D. K., Zwick, A., & Mikheyev, A. S. (2016). Museums are
biobanks: unlocking the genetic potential of the three billion specimens
in the world’s biological collections. Current Opinion in Insect
Science , 18 , 83–88.
Yuan, M. L., Wogan, G. O., & Wang, I. J. (2018). Trehalose improves PCR
amplification of vertebrate nuclear DNA from historical
allozymes. Conservation Genetics Resources , 10 , 313–315.