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Abstract

In this study, Volterra-Fredholm integral equation is solved by Hosoya
Polynomials. The solutions obtained with these methods were compared
on the figure and table. And error analysis was done. Matlab program-
ming language has been used to obtain conclusitions, tables and error
analysis within a certain algorithm.
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1 Introduction

The integral equations are the base for many mathematical models of diverse fact
in engineering, chemistry, mathematics and other disciplines of science. Numerous
problems of applied mathematics and engineering are relating to integral equations
[1]. Integral equations are defined as equations which the unknown function is under
the integral sign [14]. There are three types of integral equation. These are Fredholm,
Volterra and Volterra-Fredholm integral equations. While both integral boundaries can
be constant, equations that are infinite on one or both are called Fredholm integral
equations. This integral equation is a practicable method to solve this kind of equations
such as the Adomian decomposition method [15]. In recent years, there has been a
expanding attention in the Volterra integral equations ascending invarious disciplines
of engineering and applied mathematics. This equation has been studied in many fields
of study such as Banach space, Haar functions problems, spectral methods, numerical
computational problems and computer science problems [16]. The Volterra-Fredholm
integral equations are associated with many scientific fields of study and have made
an important contribution to the solution of many methods in applied mathematics,
engineering and physics [2]. This integral equations are a combination of Volterra
and Fredholm integral equations. Many methods have been used for solving these
equations with sufficient accuracy and efficiency [3, 5].



2 Volterra-Fredholm Integral Equations

The Volterra-Fredholm integral equations come in sight in two forms, namely

v(x) = w(x) = λ1

a∫
0

L1(x, t)v(t)dt+ λ2

d∫
c

L2(x, t)v(t)dt (1)

or,

v(x) = w(x) = λ

a∫
0

d∫
c

L(r, t)v(t)dtdr (2)

Here (1) implicates Volterra and Fredholm integrals separately, however (2) implicates
both of the integrals [6, 7].

3 Hosoya Polynomials

Distance-based index was the Wiener index presented in 1947 by H. Wiener. Later,
Haruo Hosoya proved the Wiener polynomial in chemistry [13]. The Wiener Polyno-
mial is named The Hosoya Polynomial. Its generalize from the Wiener number. The
Hosoya Polynomial is obtained from path graphs of certain pairs of graphs [8]. Many
studies have been done from the combination of the Hosoya Polynomial and graphs.
For a related graph with the Hosoya polynomial is describe as,

H(P, γ) =
∑
l≥0

d(P, l)γk (3)

where d(P, l) is the distance between vertex pairs in the path graph. The relationship
between the Hosoya polynomial and the Wiener index is [8, 9],

W (P ) = H ′(P, 1) (4)

where H ′(P, γ) is the first derivative of H(P, γ) [10]. Sum of the path graph vertices m
with 1, 2, ...,m are multipled γ parameter. Then Hosoya values are calculated based
on m vertex values. For m integer values we represent path as ρm, then Hosoya
polynomial of path compute as:

H(ρ1, λ) =
∑
l≥0

d(ρ1, l)γ
l = 1

H(ρ2, γ) =
∑
l≥0

d(ρ2, l)γ
l = γ + 2

H(ρ3, γ) =
∑
l≥0

d(ρ3, l)γ
l = γ2 + 2γ + 3

...

H(ρm, γ) = m+ (m− 1)γ + (m− 2)γ2 + ...

+ (m− (m− 2))γm−2 + (m− (m− 1))γm−1



For more information about the Hosoya polynomial one can refer [11, 12]. A function
w(x) ∈ L2[0; 1] is expanded as,

w(x) =

n∑
i=1

ziH(ρi, x) = ZTHρ(x), (5)

where Z and Hρ(x) are mx1 matrices shown as,

Z = [z1, z2, z3, ..., zm]T (6)

and
Hρ(x) = [H(ρ1, x), H(ρ2, x), ..., H(ρm, x)]T (7)

4 Hosoya Polynomial Method

Consider the Volterra-Fredholm integral equation,

v(x) = w(x) +

x∫
0

L(x, t)v(t)dt+

1∫
0

L(x, t)v(t)dt, 0 ≤ x, t ≤ 1 (8)

to solve (8) , the method is as follows:

1. First we taking v(x) as defined in Equation (5). This equation is,

v(x) = ZTHρ(x) (9)

2. Then using place of (9) in (8), we get,

ZTHρ(x) = w(x) +

1∫
0

L(x, t)
[
ZTHρ(t)

]
dt+

x∫
0

L(x, t)
[
ZTHρ(t)

]
dt (10)

3. Substituting the collocation point xj = j−0.5
m

, j = 1, 2, · · · ,m in Equation (10).
Then we obtain,

ZTHρ(xj) = w(xj) + ZT

 1∫
0

L(xj , t)Hp(t)dt+

x∫
0

L(xj , t)Hρ(t)dt

 (11)

ZT (Hρ(xj)− Y ) = w

where

Y =
1∫
0

L(xj , t)Hρ(t)dt+
x∫
0

L(xj , t)Hρ(t)dt

4. Finally, we get the results of unknown Hosoya values,

ZTL = w

where

L = Hρ(xj)− Y

resolving this system of equations, we obtain coefficients Z and then use in place
of these coefficients in (9), we get the necessary solution of (8).



5 Numerical Examples

5.1 Example

Consider Volterra-Fredholm integral equations,

v(x) = w(x) +

x∫
0

(x− t)u(t)dt+

2∫
0

(xt)u(t)dt

w(x) = 2 cos(x)− x cos(2)− 2 sin(2) + x− 1

(12)

which has the exact solution v(x) = cos(x). First we substitute v(x) = ZTHρ(x) in
(12). We get,

ZTHρ(x) = w(x) +

x∫
0

(x− t)
[
ZTHρ(t)

]
dt+

2∫
0

(xt)
[
ZTHρ(t)

]
dt (13)

Therefore for m = 3

Z1[H1(x)−

 x∫
0

(x− t)H1(t)dt+

2∫
0

(xt)H1(t)dt

]

+ Z2[H2(x)−

 x∫
0

(x− t)H2(t)dt+

2∫
0

(xt)H2(t)dt

]

+ Z3[H3(x)−

 x∫
0

(x− t)H3(t)dt+

2∫
0

(xt)H3(t)dt

] = w(x)

(14)

Next, we substitute the Hosoya polynomials as,

Z1[1−

 x∫
0

(x− t)dt+

2∫
0

(xt)dt

]

+ Z2[(x+ 2)−

 x∫
0

(x− t)(t+ 2)dt+

2∫
0

(xt)(t+ 2)dt

]

+ Z3[(x2 + 2x+ 3)− x∫
0

(x− t)(t2 + 2t+ 3)dt+

2∫
0

(xt)(t
2

+ 2t+ 3)dt

]

= w(x)

(15)



Next,

Z1[1− x2

2
− x]

+ Z2[2− x3

6
− x2 − 17x

3
]

+ Z3[3− x2

2
− 40x

3
− x4

12
− x3

3
] = w(x)

(16)

if it is calculated as xj = j−0.5
m

and putting in place of the collocation points x1, x2, x3,
we obtain the system of three equations with three unknowns as,

Z1[1− x1
2

2
− x1] + Z2[2− x1

3

6
− x12 −

17x1
3

]

+ Z3[3− x1
2

2
− 40x1

3
− x1

4

12
− x1

3

3
] = w(x1)

Z1[1− x2
2

2
− x2] + Z2[2− x2

3

6
− x22 −

17x2
3

]

+ Z3[3− x2
2

2
− 40x2

3
− x2

4

12
− x2

3

3
] = w(x2)

Z1[1− x3
2

2
− x3] + Z2[2− x3

3

6
− x32 −

17x3
3

]

+ Z3[3− x3
2

2
− 40x3

3
− x3

4

12
− x3

3

3
] = w(x3)

(17)

Resolving these systems we obtain the three unknown Hosoya values,

Z1 = 0.5012, Z2 = 0.8672, Z3 = -0.4101

Replacing with these coefficients in the approximation, We obtain

v(x) = Z1[H1(x)] + Z2[H2(x) + Z3[H3(x)]

If in (17) is written instead of the x1, x2, x3 values, approximate solutions are obtained,

v1(x) = Z1[H1(x1)] + Z2[H2(x1) + Z3[H3(x1)]

v2(x) = Z1[H1(x2)] + Z2[H2(x2) + Z3[H3(x2)]

v3(x) = Z1[H1(x3)] + Z2[H2(x3) + Z3[H3(x3)]

(18)

We get the approximate values,

v1 = 1.00183, v2 = 0.926377, v3 = 0.759796

Maximun Error analyzed for m = 3,

Emax =

√√√√ m∑
i=1

(ve(xi)− va(xi))
2 =

√
(cos(x1)− v1)2 + (cos(x2)− v2)2 + (cos(x3)− v3)2 = 0.1013

(19)



Table 1: Conclution of Hosoya Polynomial Method, for m = 3
x Hosoya Polynomial Method Exact Solution

0.1667 10.018 0.9861

0.5 0.9263 0.8775

0.8333 0.7597 0.6724

and for m = 3, 8, 10 are shown in the Table 1, 2, 3.

Figure 1: Example 5.1 for m = 3



Table 2: Conclution of Hosoya Polynomial for m = 8
x Hosoya Polynomial Method Exact Solution

0.0625 0.9980 0.9980

0.1875 0.9824 0.9824

0.3125 0.9515 0.9515

0.4375 0.9058 0.9058

0.5625 0.8459 0.8459

0.6875 0.7728 0.7728

0.8125 0.6877 0.6877

0.9375 0.5918 0.5918

Figure 2: Example 5.1 for m = 8



Table 3: . Conclution of Hosoya Polynomial Method for m = 10
x Hosoya Polynomial Method Exact Solution

0.050 0.99875 0.99875

0.150 0.98877 0.98877

0.250 0.96891 0.96891

0.350 0.93937 0.93937

0.450 0.90044 0.90044

0.550 0.85252 0.85252

0.650 0.79608 0.79608

0.750 0.73168 0.73168

0.850 0.65998 0.65998

0.950 0.58168 0.58168

Figure 3: Example 5.1 for m = 10



5.2 Example

Consider Volterra-Fredholm integral equations,

v(x) = w(x) +

x∫
0

(x2 − t)u(t)dt+

1∫
0

(xt+ x)u(t)dt

w(x) = ex + ex(x− 1)− xe− x2(ex − 1) + 1

(20)

which has the exact solution v(x) = ex. Applying the proposed method to solve
Equation (20) for m = 3, 8, 10. We obtain the approximate solution v(x) as shown in
Table 4, 5, 6 and Figure 4, 5, 6. Error analysis is shown in Table 7.

Table 4: Conclution of Hosoya Polynomial Method for m = 3
x Hosoya Polynomial Method Exact Solution

0.1667 1.1803 1.1813

0.5 1.6461 1.6487

0.8333 2.2962 2.3009

Figure 4: Example 5.1 for m = 3



Table 5: Conclution of Hosoya Polynomial Method for m = 8
x Hosoya Polynomial Method Exact Solution

0.0625 1.06449 1.06449

0.1875 1.20623 1.17644

0.3125 1.36684 1.30017

0.4375 1.54883 1.43691

0.5625 1.75505 1.58803

0.6875 1.98874 1.75505

0.8125 2.25353 1.93963

0.9375 2.55359 2.14362

Figure 5: Example 5.1 for m = 8



Table 6: Conclution of Hosoya Polynomial Method for m = 10
x Hosoya Polynomial Method Exact Solution

0.050 1.05127 1.05127

0.150 1.16183 1.16183

0.250 1.28403 1.28402

0.350 1.41907 1.41906

0.450 1.56831 1.56831

0.550 1.73325 1.73325

0.650 1.91554 1.91554

0.750 2.11700 2.11700

0.850 2.33965 2.33964

0.950 2.58571 2.58570

Figure 6: Example 5.1 for m = 10



Table 7: Maximum error analysis of Hosoya Polynomial Method, form = 3, 8, 10
m Example 5.1 Example 5.2

3 2.4074e-15 0.0055

8 1.6431e-12 1.6160e-08

10 1.1172e-11 2.1883e-11

6 Conclusion

In this article, the solution of Volterra-Fredholm integral equations with Hosoya method
is examined. The method was applied to two test problems in the matlab program cre-
ated with a specific algorithm. Hosoya method is calculated form = 3,m = 8,m = 10
values. By determining the x ranking points according to the m values, the maximum
error analysis was made and the solutions acquired by the method were compared with
the exact solutions. The approximate solution obtained in each test problem, numeri-
cal solution, maximum error rate and graphs are shown with tables and figures. When
the obtained results are examined, it is seen that the Hosoya method is an effective
method for solving the Volterra-Fredholm integral equation.
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