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Abstract

In this article, we study the global well-posedness and large-time behaviors of solu-
tions to the two-dimensional tropical climate system with zero thermal diffusion for
a small initial data in the whole space. The main approaches include high and low
frequency decomposition method and exploiting the structure of system (1) to obtain
the estimates of thermal dissipation. We utilize the time decay properties of the ker-
nels to a linear differential equation to obtain the decay rates of solutions of the low
frequency part and the decay property of exponential operator for the high frequency
part. The key ingredient here is the explicit large-time decay rate of solutions.
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1 INTRODUCTION

The tropical climate models can be used to predict the weather in hydrodynamics and also have a wide range of applications
in many fields such as molecular biology, agricultural production, and so on1,2. By performing a Galerkin truncation up to the
hydrostatic Boussinesq equations, the system without any dissipation terms was first derived by Frierson-Majda-Pauluis for
large-scale dynamics of precipitation fronts in the tropical atmosphere3. For abbreviation, a general tropical climate model with
both dissipation and damping terms is given as follows,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

)tu + u ⋅ ∇u − �Δu + �u + div(v ⊗ v) + ∇P = 0,
)tv + u ⋅ ∇v − �Δv + �v + v ⋅ ∇u + ∇� = 0,
)t� + u ⋅ ∇� − �Δ� + divv = 0,
divu = 0,
(u, v, �)(t, x)|t=0 = (u0, v0, �0)(x),

where u = (u1, u2) and v = (v1, v2) denote the barotropic mode and the first baroclinic mode of velocity field, P denotes the
pressure, and � represents the temperature. Here �, �, �, � and � are non-negative parameters.
There are considerable mathematical studies on the tropical climate model recently from various authors. In the 2D case, Li-

Titi4 had proved the global well-posedness of strong solutions for the tropical climate model with � = � = 1 and � = � = � = 0.
They obtained the higher regularity of u and the gradient estimate of (u, v, �) by constructing a new unknown ! = v−∇(−Δ)−1�
to bypass the obstacle caused by the absence of thermal diffusion. In this article some background on tropical models was
introduced and more relevant background can be found in5,6,7,8. Wan9 studied a tropical climate model with � = � = 0 and
�, �, � > 0. The author obtained the global regularity of classical solutions with small initial data in Hs(ℝ2), s > 2. And Ma
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and Wan10 proved the global well-posedness of global strong solutions for the system with � = � = � = 0 and � > 0, � > 0,
under the hypotheses of small initial data in Hs(ℝ2), s > 3. Ye and Zhu11 studied the existence of global strong solutions
for the tropical climate model with temperature-dependent diffusion on the barotropic mode (� = � = 0 and �, � ≥ 0) under
small initial data (u0, v0, �0) ∈ Hs(ℝ2), s > 1. Zhou12 established the global regularity for the 2D tropical climate model with
generalized nonlocal dissipation of the barotropic mode (� = 1 and � = � = 0). We also mention the 3D case. Wang-Zhang-
Pan13 considered the global existence of unique strong solutions for the system with � = � = � = 1 and � = � = 0 under
the assumption of small initial data. Zhu14 obtained the global well-posedness of strong solutions for the system with fractional
diffusion on barotropic mode (� = � = � = � = 0) under initial data inH3(ℝ3). The issue of global regularity of the generalized
tropical climate system has been also investigated in a number of articles15,16,17.
In this paper, we consider the cauchy problem of a two-dimensional tropical climate model with a damping term and zero

thermal diffusion, namely
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)tu + u ⋅ ∇u − Δu + ∇P = −div(v ⊗ v), (x, t) ∈ ℝ2 ×ℝ+,
)tv + u ⋅ ∇v + v ⋅ ∇u + v = −∇�,
)t� + u ⋅ ∇� = −divv,
divu = 0,

(1)

with the initial data
(u, v, �)(t, x)|t=0 = (u0, v0, �0)(x), x ∈ ℝ2. (2)

We emphasize that in this paper the equation for � contains no dissipation or any damping term and then powerful classical
tools such as the Fourier splitting methods designed for the systems with full dissipation no longer apply here. Without the
dissipation term −Δv and add a damping term v, it is well known that the local and global well-posedness of solutions to
system (1) under the hypotheses of small initial data studied by Ma and Wan10. They used the spectral analysis technique and
constructed a new energy estimate of u in Besov space to achieve the goal. To our knowledge, many models with damping
terms such as damped Navier-Stokes equations18, compressible Euler equations19,20 and MHD equations21 have been studied.
Wang20 studied the large-time behavior of the smooth solutions of three-dimensional compressible Euler equations of isentropic
gases with damping. Wu et al.21 proved the global well-posedness of the incompressible MHD system with a velocity damping
term when the initial data is close to an equilibrium state (0, y). They also obtained the explicit large-time decay rates of the
solutions and their approach exploits the time decay properties of the kernel functions to a linear differential equation. Lai and
Wu et al.22 had investigated the large-time behavior of solutions to a special Boussinesq system with partial dissipation )22u and
a damping term � under small initial data inH2(ℝ2). The tool commonly used in dealing with such problems is the bootstrapping
argument. We also refer to related works23,24,25,26.
Our effort here is mainly related to the global well-posedness and large-time behaviors of the solutions of system (1). The

main methods to establish the global existence and uniqueness of smooth solutions and obtain the explicit large-time decay
rates for various sobolev norms, i.e. ‖∇i(u, v, �)‖L∞ , i = 0, 1, of the solutions are by the high and low frequency decomposition
method to overcome the difficulties caused by nonlinear terms F1 and F2 (definition in Section 2). And we exploit the structure
of system (1) coming from the coupled terms and damping term to overcome this difficulty caused by the absence of thermal
dissipation. We utilize the time decay properties of the kernel functions to a linear differential equation to obtain the decay rates
of solutions of the low frequency part and the decay property of exponential operator to get the decay rates of solutions of the
high frequency part. More details can be found in Section 3.
Before precisely stating the main result, we introduce the functional settings. In this paper, a generic constant C means a

positive constant independent of time. The operator ⟨∇⟩ is defined by ⟨∇⟩ ∶= (I − Δ)
1
2 . The operator ⟨t⟩ denotes ⟨t⟩ ∶= 1 + t.

For any constantN ≥ 3, we define working space X with its norm given by

‖(u, v, �)‖X =‖⟨∇⟩N (u, v, �)‖L2 + ⟨t⟩‖vt‖L2 +
1
∑

j=0
⟨t⟩

j+2
2
‖∇jv‖L2+

⟨t⟩
3
2
‖(ut, �t)‖L2 + ⟨t⟩

3
2
‖∇Δ(u, �)‖L2 + ⟨t⟩

3
2
‖Δv‖L2+

2
∑

i=0
⟨t⟩

i+1
2
‖∇i(u, �)‖L2 + ⟨t⟩

3
2
‖divvt‖L2 ,

(3)

and space X0,
||(u0, v0, �0)||X0

= ‖⟨∇⟩N (u0, v0, �0)‖L2 + ‖(u0, u1, �0, �1)‖L1 , (4)
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where ‖f‖Lp = ‖f‖Lpxy for 1 ≤ p ≤∞.

Theorem 1. Let N ≥ 3 be a constant. Assume the initial data (u0, v0, �0) ∈ X0 with ∇ ⋅ u0 = 0. Then, there exists a small
constant � > 0 such that if (u0, v0, �0) satisfies

||(u0, v0, �0)||X0
≤ �, (5)

then the cauchy problem (1) admits a unique global solution (u, v, �) satisfying

(u, v, �) ∈ X. (6)

Moreover, the following time decay estimates hold
‖(u, �)‖L∞ ≤ C⟨t⟩−1,

‖(∇u,∇�)‖L∞ ≤ C⟨t⟩−
11
8 ,

‖v‖L∞ ≤ C⟨t⟩−
11
8 ,

‖∇v‖L∞ ≤ C⟨t⟩−
9
8 .

(7)

Remark 1. The proof of Theorem 1.1 relies on the bootstrapping argument (see, e.g.27). More precisely, we verify that

U (t) ≤ C(U (0) +Q(U (t))), t > 0. (8)

where Q(m) = m� for m < 1 and � > 1, we denote U (t) ∶= ‖(u, v, �)‖X and accordingly U (0) as ||(u, v, �)||X0
. Once (8) is

confirmed, a bootstrapping argument applied to (8) would lead to the desired global existence and stability of Theorem 1.1. Our
main goals are to check (8).

The rest of the paper mainly includes the expressions and estimates of solutions of the linearized system in Section 2 and
several estimates for the proof of Theorem 1.1 in Section 3.

2 PRELIMINARY

This section is divided into three parts. First, we derive the linearized equation and then obtain integral formulation (19) with
explicit representation and the time decay estimates of the kernels of the linear equation. In addition, several technical lemmas
are given here.

2.1 Reformulation of system
Firstly, (1) can be rewritten as the following equivalent system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)ttu + )tu − Δu = )t�1 + �1 + )tΔu,
)ttv + )tv − ∇divv = −)t(u ⋅ ∇v) − )t(v ⋅ ∇u) − ∇(u ⋅ ∇�),
)tt� + )t� − Δ� = div(u ⋅ ∇v) + div(v ⋅ ∇u) − )t(u ⋅ ∇�) − u ⋅ ∇�,
divu = 0,
(u, v, �)|t=0 = (u0, v0, �0),
(ut, vt, �t)|t=0 = (u1, v1, �1),

(9)

where �1 is expressed by
�1 ∶= − u ⋅ ∇u − div(v ⊗ v) − ∇P

= − ∇(−Δ)−1(∇ ⋅ (u ⋅ ∇u) + ∇ ⋅ (∇ ⋅ (v ⊗ v)))
− u ⋅ ∇u − div(v ⊗ v).

(10)
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From (9), we obtain
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)ttu + )tu − Δu = F1,
)tt� + )t� − Δ� = F2,
(u, �)|t=0 = (u0, �0),
(ut, �t)|t=0 = (u1, �1),

(11)

with
{

F1 ∶= )t�1 + �1 + )tΔu,
F2 ∶= div(u ⋅ ∇v) + div(v ⋅ ∇u) − )t(u ⋅ ∇�) − u ⋅ ∇�.

(12)

It can be easily found that u and � have the same structure of the linear part in (11), which plays a crucial role in ensuring the
global existence of small solutions.

2.2 Representation of solution of linearization problem
For simplicity, we consider the linear system as follows,

{

)tt� + )t� − Δ� = F ,
�(0, x) = �0, �t(0, x) = �1,

(13)

whereF is given by (11)-(12).
Taking the Fourier transform of above formula yields

{

)tt�̂ + )t�̂ + |�|2�̂ = F̂ ,
�̂(0, x) = �̂0, �̂t(0, x) = �̂1,

(14)

where the Fourier transform �̂ is defined as

�̂(t, �) ∶= ∫
ℝ2

e−ix⋅��(t, x)dx. (15)

Then we solve (14) by a simple ODE theory to obtain

�1 = −
1
2
+
√

1
4
− |�|2, �2 = −

1
2
−
√

1
4
− |�|2, (16)

And by Duhamel’s principle, it follows

�̂(t, �) = !̂0(�)�̂0(�) + !̂1(�)(
1
2
�̂0(�) + �̂1(�)) +

t

∫
0

!̂1(t − s, �)F̂ (s, �)ds, (17)

with
⎧

⎪

⎨

⎪

⎩

!̂0(t, �) ∶=
1
2
(e�1t + e�2t),

!̂1(t, �) ∶=
e�1t − e�2t
�1 − �2

.
(18)

Thus, we can get the integral representation of solution of (13):

�(t, x) = !0(x)�0(x) + !1(x)(
1
2
�0(x) + �1(x)) +

t

∫
0

!1(t − s, x)F (s, x)ds. (19)

In the following, we present the decay estimate on !̂i(t, �).

Lemma 1. Let !̂i(t, �), i = 0, 1, be defined in (16) and (18). Then for 1 ≤ p ≤ +∞ and � ≥ 0, it holds

‖|�|�!̂i‖Lp
(|�|≤ 12 )

≤ C⟨t⟩−
1
p
− �
2 . (20)

Proof. According to the expressions of !0 and !1, we have for |�| ≤
1
2
that

!̂0(t, �) =
1
2
(e(−

1
2
+
√

1
4
−|�|2)t + e(−

1
2
−
√

1
4
−|�|2)t), (21)
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and
!̂1(t, �) =

1

2
√

1
4
− |�|2

(e(−
1
2
+
√

1
4
−|�|2)t − e(−

1
2
−
√

1
4
−|�|2)t). (22)

Since it holds
−1 −

√

1 − 4|�|2

2
≤
−1 +

√

1 − 4|�|2

2
=

−2�2

1 +
√

1 − 4|�|2
≤ −�2, (23)

we obtain
0 ≤ !̂i(t, �) ≤ Ce−|�|2t. (24)

For 1 ≤ p < +∞ and � ≥ 0, multiplying the above equation by |�|� and integrating over {� ∈ ℝ | |�| ≤ 1
2
}, we deduce

‖|�|�!̂i‖
p
Lp
(|�|≤ 12 )

≤ C ∫
|�|≤ 1

2

|�|p�e−p|�|2td�. (25)

Set yi = �it
1
2 , i.e. t−

1
2 dyi = d�i so that the right hand of (25) changes into

∫
|y|≤ 1

2
t
1
2

t−
p
2
�
|y|p�e−p|y|2 t−1dy ≤ C⟨t⟩−1−

p
2
� .

(26)

And for p = +∞, we have
||�|�!̂i| ≤ |�|�e−|�|2t = |�|�t

�
2 e−|�|2t ⋅ t−

�
2 ≤ C⟨t⟩−

�
2 , (27)

where ⟨t⟩ = Ct for t ≫ 0. The proof of Lemma 1 is completed.

Lemma 2. Let !̂(t, �) denote a Fourier multiplier operator with ‖!̂(t, �)‖Li�1�2
< ∞, i = 1, 2. Then for any Schwartz function

f , there holds
‖!(t, )x, )y)f‖L2 ≤ C‖!̂‖L2�1�2

‖f‖L1 , (28)

‖!(t, )x, )y)f‖L2 ≤ C‖!̂‖L∞�1�2
‖f‖L2 . (29)

Proof. The above two inequalities can be derived by ‖f‖L∞ ≤ C‖f̂‖L1 and Plancherel formula. Indeed, we obtain

‖!(t, )x, )y)f‖L2 = ‖!̂(t, �1, �2)f̂‖L2�1�2
≤ C‖!̂‖L2�1�2

‖f̂‖L∞�1�2
≤ C‖!̂‖L2�1�2

‖f‖L1 ,

and
‖!(t, )x, )y)f‖L2 = ‖!̂(t, �1, �2)f̂‖L2�1�2

≤ C‖!̂‖L∞�1�2
‖f‖L2 .

2.3 Auxiliary lemmas
Lemma 3. For any �, � ≥ 0, � + � > 1, it holds

t

∫
0

⟨t − �⟩−�⟨�⟩−�d� ≤ C

{

⟨t⟩−�−�+1, if � < 1, � < 1,
⟨t⟩−� + ⟨t⟩−� , if � > 1 or � > 1.

(30)

The proof is shown in Appendix A.1. And a similar result can be found in28.

Lemma 4. For any s > 0, 1
r
= 1

p1
+ 1

p2
= 1

q1
+ 1

q2
with p1, p2, q1, q2 ∈ (1,∞], r ∈ (1,∞), the commutator estimate holds:

‖[⟨∇⟩s, u ⋅ ∇]v‖r ≤ C(‖⟨∇⟩su‖p1‖∇v‖p2 + ‖∇u‖q1‖⟨∇⟩
sv‖q2), (31)

which can be seen in29.



6 D.Niu and H.Wu

Lemma 5. For a constant C > 0, it holds

‖f‖L∞xy ≤ C‖f‖
1
4
L2xy

‖∇f‖
1
2
L2xy

‖Δf‖
1
4
L2xy
. (32)

Proof. By
‖f‖L∞x ≤ C‖f‖

1
2
L2x
‖)xf‖

1
2
L2x
,

we infer
‖f‖L∞xy ≤ C‖ sup

y
f‖

1
2
L2x
‖ sup

y
)xf‖

1
2
L2x

≤ C‖f‖
1
4
L2xy

‖)yf‖
1
4
L2xy

‖)xf‖
1
4
L2xy

‖)xyf‖
1
4
L2xy

≤ C‖f‖
1
4
L2xy

‖∇f‖
1
2
L2xy

‖Δf‖
1
4
L2xy
.

3 PROOF OF THE MAIN THEOREM

In this section, we establish the global existence and uniqueness of smooth solutions and obtain the explicit large-time decay rates
for various sobolev norms of the solutions, i.e. ‖∇i(u, v, �)‖L∞ , i = 0, 1, and ‖∇j(u, v, �)‖L2 , j = 0, 1, 2. The main techniques
include the high and low frequency decomposition method and exploiting the structure of system (1) to overcome this difficulty
caused by the absence of thermal dissipation. Here we utilize the estimates of !̂i(t, �) to obtain the decay rates of solutions of the
low frequency part and the decay property of exponential operator to get the decay rates of solutions of the high frequency part.
For the sake of clarity, we divide this section into several parts to obtain the relevant estimates of (u, v, �). Recall the definition

of (3), the derivation of the estimate of ‖⟨∇⟩N (u, v, �)‖L2 is given first.

3.1 Estimates of u
Lemma 6. For any t > 0, there holds

‖⟨∇⟩N (u, v, �)‖L2 ≤ C(U (t) +Q(U (t))). (33)

Proof. Firstly, applying ⟨∇⟩N to (1), we obtain
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)t⟨∇⟩Nu + ⟨∇⟩N (u ⋅ ∇u) − ⟨∇⟩NΔu + ⟨∇⟩N∇P = −⟨∇⟩N∇ ⋅ (v ⊗ v),
)t⟨∇⟩Nv + ⟨∇⟩N (u ⋅ ∇v) + ⟨∇⟩Nv + ⟨∇⟩N (v ⋅ ∇u) = −⟨∇⟩N∇�,
)t⟨∇⟩N� + ⟨∇⟩N (u ⋅ ∇�) = −⟨∇⟩Ndivv,
⟨∇⟩Ndivu = 0,

(34)

then taking the inner product with ⟨∇⟩Nu, ⟨∇⟩Nv, ⟨∇⟩N�, respectively, yields
1
2
d
dt

‖⟨∇⟩Nu‖2L2 + ‖⟨∇⟩N∇u‖2L2 = −∫ ⟨∇⟩N (∇ ⋅ (v ⊗ v)) ⋅ ⟨∇⟩Nudx

− ∫ ⟨∇⟩N (u ⋅ ∇u) ⋅ ⟨∇⟩Nudx − ∫ ⟨∇⟩N∇P ⋅ ⟨∇⟩Nudx,
(35)

1
2
d
dt

‖⟨∇⟩Nv‖2L2 + ‖⟨∇⟩Nv‖2L2 = −∫ ⟨∇⟩N∇� ⋅ ⟨∇⟩Nvdx

− ∫ ⟨∇⟩N (u ⋅ ∇v) ⋅ ⟨∇⟩Nvdx − ∫ ⟨∇⟩N (v ⋅ ∇u) ⋅ ⟨∇⟩Nvdx,
(36)

1
2
d
dt

‖⟨∇⟩N�‖2L2 = −∫ ⟨∇⟩N (u ⋅ ∇�)⟨∇⟩N�dx − ∫ ⟨∇⟩Ndivv⟨∇⟩N�dx. (37)

Applying the standard commutator notation

⟨∇⟩N (u ⋅ ∇v) = [⟨∇⟩N , u ⋅ ∇]v + u ⋅ ∇⟨∇⟩Nv, (38)
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after integrating by parts and invoking ∇ ⋅ u = 0, we infer
1
2
d
dt
(‖⟨∇⟩N (u, v, �)‖2L2 + ‖⟨∇⟩N∇u‖2L2 + ‖⟨∇⟩Nv‖2L2

= − ∫ ⟨∇⟩N∇ ⋅ (v ⊗ v) ⋅ ⟨∇⟩Nudx − ∫ [⟨∇⟩N , u ⋅ ∇]u ⋅ ⟨∇⟩Nudx

− ∫ [⟨∇⟩N , u ⋅ ∇]v ⋅ ⟨∇⟩Nvdx − ∫ [⟨∇⟩N , v ⋅ ∇]u ⋅ ⟨∇⟩Nvdx

− ∫ v ⋅ ∇⟨∇⟩Nu ⋅ ⟨∇⟩Nvdx − ∫ [⟨∇⟩N , u ⋅ ∇]�⟨∇⟩N�dx

=(1) + (2) + (3) + (4) + (5) + (6),

(39)

where one has used the fact

∫ ⟨∇⟩N∇� ⋅ ⟨∇⟩Nvdx = −∫ ⟨∇⟩Ndivv⟨∇⟩N�dx. (40)

Then by Hölder inequality, Young inequality, and Lemma 4, we deduce
(1) + (5) ≤C‖v‖L∞‖⟨∇⟩N∇u‖L2‖⟨∇⟩Nv‖L2

≤C‖v‖2L∞‖⟨∇⟩
Nv‖2L2 +

1
2
‖⟨∇⟩N∇u‖2L2 ,

and
(2) ≤ ‖[⟨∇⟩N , u ⋅ ∇]u‖L2‖⟨∇⟩Nu‖L2 ≤ C‖∇u‖L∞‖⟨∇⟩Nu‖2L2 ,

similarly, there holds
(3) ≤ ‖[⟨∇⟩N , u ⋅ ∇]v‖L2‖⟨∇⟩Nv‖L2

≤ C‖∇v‖L∞‖⟨∇⟩Nu‖L2‖⟨∇⟩Nv‖L2 + C‖∇u‖L∞‖⟨∇⟩Nv‖2L2
≤ C(‖∇u‖L∞ + ‖∇v‖L∞)(‖⟨∇⟩Nu‖2L2 + ‖⟨∇⟩Nv2‖L2),

we also get
(4) ≤ ‖[⟨∇⟩N , v ⋅ ∇]u‖L2‖⟨∇⟩Nv‖L2

≤ C‖∇v‖L∞‖⟨∇⟩Nu‖L2‖⟨∇⟩Nv‖L2 + C‖∇u‖L∞‖⟨∇⟩Nv‖2L2
≤ C(‖∇u‖L∞ + ‖∇v‖L∞)(‖⟨∇⟩Nu‖2L2 + ‖⟨∇⟩Nv2‖L2),

and
(6) ≤ ‖[⟨∇⟩N , u ⋅ ∇]�‖L2‖⟨∇⟩N�‖L2

≤ C(‖∇u‖L∞ + ‖∇�‖L∞)(‖⟨∇⟩Nu‖2L2 + ‖⟨∇⟩N�‖2L2).
Substituting the above estimates of (1)-(6) into (39), we have

d
dt
(‖⟨∇⟩N (u, v, �)‖2L2 + ‖⟨∇⟩N∇u‖2L2 + ‖⟨∇⟩Nv‖2L2

≤C‖⟨∇⟩N (u, v, �)‖2L2(‖∇u‖L∞ + ‖∇v‖L∞ + ‖∇�‖L∞ + ‖v‖2L∞).
(41)

It follows from (41) that

‖⟨∇⟩N (u, v, �)‖L2 ≤‖⟨∇⟩N (u0, v0, �0)‖L2 + C

t

∫
0

(‖∇u‖L∞ + ‖∇v‖L∞ + ‖∇�‖L∞

+ ‖v‖2L∞)‖⟨∇⟩
N (u, v, �)‖L2ds

≤‖⟨∇⟩N (u0, v0, �0)‖L2 + C

t

∫
0

⟨s⟩−
9
8 ds(U (t)2 + U (t)3)

≤U (0) + C(U (t)2 + U (t)3),

(42)

Therefore, we obtain
‖⟨∇⟩N (u, v, �)‖L2 ≤ C(U (0) +Q(U (t))). (43)

Lemma 7. For any t > 0, there holds
‖|∇|−1()t�1 + �1)‖L1 ≤ C⟨t⟩−

3
2U (t)2. (44)
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Proof. The expression of �1 directly gives

‖|∇|−1�1‖L2 ≤‖|∇|−1∇(−Δ)−1∇ ⋅ (u ⋅ ∇u)‖L2 + ‖|∇|−1(∇ ⋅ (v ⊗ v))‖L2
+ ‖|∇|−1∇(−Δ)−1∇ ⋅ (∇ ⋅ (v ⊗ v))‖L2 + ‖|∇|−1(u ⋅ ∇u)‖L2

≤C(‖|∇|−1∇ ⋅ (u ⊗ u)‖L2 + ‖|∇|−1∇ ⋅ (v ⊗ v)‖L2)
≤C(‖uiuj‖L2 + ‖vivj‖L2)
≤C(‖u‖2L4 + ‖v‖2L4)
≤C(‖u‖L2‖∇u‖L2 + ‖v‖L2‖∇v‖L2)

≤C⟨t⟩−
3
2U (t)2.

(45)

Similarly, one has
‖|∇|−1)t�1‖L2 ≤‖|∇|−1)t∇(−Δ)−1∇ ⋅ (u ⋅ ∇u)‖L2 + ‖|∇|−1)t(∇ ⋅ (v ⊗ v))‖L2

+ ‖|∇|−1)t∇(−Δ)−1∇ ⋅ (∇ ⋅ (v ⊗ v))‖L2 + ‖|∇|−1)t(u ⋅ ∇u)‖L2
≤C(‖|∇|−1∇ ⋅ )t(u ⊗ u)‖L2 + ‖|∇|−1∇ ⋅ )t(v ⊗ v)‖L2)
≤C(‖)t(uiuj)‖L2 + ‖)t(vivj)‖L2)
≤C(‖u‖L∞‖)tu‖L2 + ‖v‖L∞‖)tv‖L2)

≤C⟨t⟩−
19
8 U (t)2.

(46)

Thus, it holds
‖|∇|−1()t�1 + �1)‖L1 ≤ C⟨t⟩−

3
2U (t)2. (47)

Lemma 8. For any t > 0, there holds
‖u‖L2 ≤ C⟨t⟩−

1
2 (U (0) + U (t)2). (48)

Proof. Firstly, we will split ‖u‖L2 into the following two parts

‖û‖L2 = ‖û‖L2
(|�|≤ 12 )

+ ‖û‖L2
(|�|> 12 )

. (49)

For case |�| ≤ 1
2
, by integral representation of solutions (19), there holds

‖u‖L2 ≤ ‖!0u0‖L2 + ‖!1(
1
2
u0 + u1)‖L2 +

t

∫
0

‖!1(t − �)F1‖L2d�, (50)

then it follows by Lemma 1 − 2 that

‖!̂0û0‖L2 ≤ ‖!̂0‖L2‖u0‖L1 ≤ C⟨t⟩−
1
2U (0), (51)

and
‖!̂1(

1
2
û0 + û1)‖L2 ≤ ‖!̂1‖L2‖(

1
2
u0 + u1)‖L1 ≤ C⟨t⟩−

1
2U (0). (52)
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Moreover, we obtain
t

∫
0

‖!1(t − �)F1‖L2d�

≤

t

∫
0

‖!1(t − �)(F1 − )tΔu)‖L2d� +

t

∫
0

‖!1(t − �))tΔu‖L2d�

≤C

t

∫
0

‖|�|!̂1(t − �)‖L∞‖|∇|−1(F1 − )tΔu)‖L2d�

+ C

t

∫
0

‖Δ̂!1(t − �)‖L∞‖)tu‖L2d�

≤C

t

∫
0

⟨t − �⟩−
1
2 ⋅ ⟨�⟩−

3
2 d�U (t)2

+ C

t

∫
0

⟨t − �⟩−1 ⋅ ⟨�⟩−
3
2 d�(U (0) + U (t)2))

≤C⟨t⟩−
1
2 (U (0) + U (t)2),

(53)

where by (54) derived from the expression of F1 and Lemma 7, one has used

‖|∇|−1(F1 − )tΔu)‖L2 = ‖|∇|−1()t�1 + �1)‖L2 ≤ C⟨t⟩−
3
2U (t)2. (54)

Hence, we have
‖u‖L2

(|�|≤ 12 )
≤ C⟨t⟩−

1
2 (U (0) + U (t)2). (55)

For case |�| > 1
2
, taking the Fourier transform of the (1)1 yields

)tû + |�|2û = −û ⋅ ∇u − ̂div(v ⊗ v) − ∇̂P = G(�, t), (56)

multiplying (56) by the integrating factor e|�|2t and integrating in time gives

û(�, t) = e−|�|2tû0 +

t

∫
0

e−|�|2(t−�)G(�, �)d�. (57)
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By Plancherel theorem and Hölder inequality and space X, we get

‖û‖L2 ≤‖e−|�|
2tû0‖L2 +

t

∫
0

‖e−|�|2(t−�)G‖L2d�

≤e−
1
4
t
‖û0‖L2 +

t

∫
0

e−
1
4
(t−�)

‖G‖L2d�

≤e−
1
4
t
‖u0‖L2 +

t

∫
0

e−
1
4
(t−�)(‖u ⋅ ∇u‖L2 + ‖∇ ⋅ (v ⊗ v)‖L2)d�

≤e−
1
4
t
‖u0‖L2 +

t

∫
0

e−
1
4
(t−�)(‖u‖L∞‖∇u‖L2 + ‖v‖L∞‖∇v‖L2)d�

≤e−
1
4
t
‖u0‖L2 + C

t

∫
0

e−
1
4
(t−�)(⟨�⟩−1 ⋅ ⟨�⟩−1

+ ⟨�⟩−
11
8 ⋅ ⟨�⟩−

3
2 )d�U (t)2

≤e−
1
4
t
‖u0‖L2 + C

t

∫
0

e−
1
4
(t−�) ⋅ ⟨�⟩−2d�U (t)2

≤C⟨t⟩−2(U (0) + U (t)2),

(58)

which gives rise to
‖û‖L2

(|�|> 12 )
≤ C⟨t⟩−2(U (0) + U (t)2). (59)

The combination of (55) and (59) yields
⟨t⟩

1
2
‖u‖L2 ≤ C(U (0) + U (t)2). (60)

Lemma 9. For any t > 0, there holds
‖∇u‖L2 ≤ C⟨t⟩−1(U (0) + U (t)2). (61)

Proof. Similarly, we split ‖∇u‖L2 into the following two parts:

‖∇̂u‖L2 = ‖∇̂u‖L2
(|�|≤ 12 )

+ ‖∇̂u‖L2
(|�|> 12 )

. (62)

For case |�| ≤ 1
2
, by integral representation of solutions (19), there holds

‖∇u‖L2 ≤ ‖∇!0u0‖L2 + ‖∇!1(
1
2
u0 + u1)‖L2 +

t

∫
0

‖∇!1(t − �)F1‖L2d�, (63)

the right-hand side of (63) can be controlled as follows. We deduce by Lemma 1 − 2 that

‖∇̂!0û0‖L2 ≤ ‖|�|!̂0‖L2‖u0‖L1 ≤ C⟨t⟩−1U (0), (64)

and
‖∇̂!1(

1
2
û0 + û1)‖L2 ≤ ‖|�|!̂1‖L2‖(

1
2
u0 + u1)‖L1

≤ C⟨t⟩−1U (0).
(65)
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Moreover, one has
t

∫
0

‖∇!1(t − �)F1‖L2d�

≤

t

∫
0

‖∇!1(t − �)(F1 − )tΔu)‖L2d� +

t

∫
0

‖∇!1(t − �))tΔu‖L2d�

≤C

t

∫
0

‖|�|2!̂1(t − �)‖L∞‖|∇|−1(F1 − )tΔu)‖L2d�

+ C

t

∫
0

‖|�|3!̂1(t − �)‖L∞‖)tu‖L2d�

≤C

t

∫
0

⟨t − �⟩−1 ⋅ ⟨�⟩−
3
2 d�U (t)2

+ C

t

∫
0

⟨t − �⟩−
3
2 ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−1(U (0) + U (t)2).

(66)

Combining the above estimates together, we obtain
‖∇u‖L2

(|�|≤ 12 )
≤ C⟨t⟩−1(U (0) + U (t)2). (67)

For case |�| > 1
2
, similar to ‖û‖L2 , we derive from (56), (57), Plancherel theorem, Hölder inequality, and space X that

‖|�|û‖L2 ≤ ‖e−|�|2t|�|û0‖L2 +

t

∫
0

‖e−|�|2(t−�)|�|G‖L2d�

≤ e−
1
8
t
‖e−

1
2
|�|2t

|�|û0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|G‖L2d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇u‖L2 + ‖∇ ⋅ (v ⊗ v)‖L2)d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u‖L∞‖∇u‖L2 + ‖v‖L∞‖∇v‖L2)d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−2d�U (t)2

≤ C⟨t⟩−2(U (0) + U (t)2),

(68)

hence
‖∇̂u‖L2

(|�|> 12 )
≤ C⟨t⟩−2(U (0) + U (t)2). (69)

The combination of (67) and (69) yields
⟨t⟩‖∇u‖L2 ≤ C(U (0) + U (t)2). (70)

Lemma 10. For any t > 0, there holds
‖Δu‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (71)



12 D.Niu and H.Wu

Proof. Similarly, we split ‖Δu‖L2 into the following two parts:

‖Δ̂u‖L2 = ‖Δ̂u‖L2
(|�|≤ 12 )

+ ‖Δ̂u‖L2
(|�|> 12 )

. (72)

For case |�| ≤ 1
2
, we obtain the estimate of ‖Δu‖L2 as

‖Δu‖L2 ≤ ‖Δ!0u0‖L2 + ‖Δ!1(
1
2
u0 + u1)‖L2 +

t

∫
0

‖Δ!1(t − �)F1‖L2d�, (73)

then it follows by Lemma 1 − 2 that

‖Δ̂!0û0‖L2 ≤ ‖|�|2!̂0‖L2‖u0‖L1 ≤ C⟨t⟩−
3
2U (0), (74)

and
‖Δ̂!1(

1
2
û0 + û1)‖L2 ≤ ‖|�|2!̂1‖L2‖(

1
2
u0 + u1)‖L1

≤ C⟨t⟩−
3
2U (0).

(75)

Moreover, one has
t

∫
0

‖Δ!1(t − �)F1‖L2d�

≤

t

∫
0

‖Δ!1(t − �)(F1 − )tΔu)‖L2d� +

t

∫
0

‖Δ!1(t − �))tΔu‖L2d�

≤C

t

∫
0

‖|�|3!̂1(t − �)‖L∞‖|∇|−1(F1 − )tΔu)‖L2d�

+ C

t

∫
0

‖|�|4!̂1(t − �)‖L∞‖)tu‖L2d�

≤C

t

∫
0

⟨t − �⟩−
3
2 ⋅ ⟨�⟩−

3
2 d�U (t)2

+ C

t

∫
0

⟨t − �⟩−2 ⋅ ⟨�⟩−
3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2).

(76)

Hence, we have
‖Δ̂u‖L2

(|�|≤ 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (77)
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For case |�| > 1
2
, similar to ‖∇u‖L2 , we derive from (56), (57), Plancherel theorem, Hölder inequality, and space X that

‖|�|2û‖L2 ≤ ‖e−|�|2t|�|2û0‖L2 +

t

∫
0

‖e−|�|2(t−�)|�|2G‖L2d�

≤ e−
1
8
t
‖e−

1
2
|�|2t

|�|2û0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|2G‖L2d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇u‖L2 + ‖∇ ⋅ (v ⊗ v)‖L2)d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−2d�U (t)2

≤ C⟨t⟩−2(U (0) + U (t)2),

(78)

from the above inequality, we deduce
‖Δ̂u‖L2

(|�|> 12 )
≤ C⟨t⟩−2(U (0) + U (t)2). (79)

The combination of (77) and (79) gives
⟨t⟩

3
2
‖Δu‖L2 ≤ C(U (0) + U (t)2). (80)

Lemma 11. For any t > 0, there holds
‖∇Δu‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (81)

Proof. Firstly, we split ‖∇Δu‖L2 into the following two parts:

‖∇̂Δu‖L2 = ‖∇̂Δu‖L2
(|�|≤ 12 )

+ ‖∇̂Δu‖L2
(|�|> 12 )

. (82)

For case |�| ≤ 1
2
, we obtain the estimate of ‖∇Δu‖L2 as

‖∇Δu‖L2 ≤ ‖∇Δ!0u0‖L2 + ‖∇Δ!1(
1
2
u0 + u1)‖L2 +

t

∫
0

‖∇Δ!1(t − �)F1‖L2d�, (83)

then we derive by Lemma 1 − 2 that

‖∇̂Δ!0û0‖L2 ≤ ‖|�|3!̂0‖L2‖u0‖L1 ≤ C⟨t⟩−2U (0), (84)

and
‖∇̂Δ!1(

1
2
û0 + û1)‖L2 ≤ ‖|�|3!̂1‖L2‖(

1
2
u0 + u1)‖L1

≤ C⟨t⟩−2U (0).
(85)
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Moreover, there holds
t

∫
0

‖∇Δ!1(t − �)F1‖L2d�

≤

t

∫
0

‖∇Δ!1(t − �)(F1 − )tΔu)‖L2d� +

t

∫
0

‖∇Δ!1(t − �))tΔu‖L2d�

≤C

t

∫
0

‖|�|4!̂1(t − �)‖L∞‖|∇|−1(F1 − )tΔu)‖L2d�

+ C

t

∫
0

‖|�|5!̂1(t − �)‖L∞‖)tu‖L2d�

≤C

t

∫
0

⟨t − �⟩−2 ⋅ ⟨�⟩−
3
2 d�U (t)2

+ C

t

∫
0

⟨t − �⟩−
5
2 ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2).

(86)

Combining the above estimates together, we have

‖∇̂Δu‖L2
(|�|≤ 12 )

≤ C⟨t⟩−
3
2 (U (0) + U (t)2). (87)

For case |�| > 1
2
, similar to ‖∇u‖L2 , we derive from (56), (57), Plancherel theorem, Hölder inequality, and space X that

‖|�|3û‖L2 ≤ ‖e−|�|2t|�|3û0‖L2 +

t

∫
0

‖e−|�|2(t−�)|�|3G‖L2d�

≤ e−
1
8
t
‖e−

1
2
|�|2t

|�|3û0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|3G‖L2d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇u‖L2 + ‖∇ ⋅ (v ⊗ v)‖L2)d�

≤ Ce−
1
8
t
‖u0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−2d�U (t)2

≤ C⟨t⟩−2(U (0) + U (t)2),

(88)

which gives rise to
‖∇̂Δu‖L2

(|�|> 12 )
≤ C⟨t⟩−2(U (0) + U (t)2). (89)

Combining (87) and (89), we obtain
⟨t⟩

3
2
‖∇Δu‖L2 ≤ C(U (0) + U (t)2). (90)

Lemma 12. For any t > 0, there holds
‖)tu‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (91)
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Proof. We deduce from (1)1 that

‖)tu‖L2 ≤ ‖u ⋅ ∇u‖L2 + ‖Δu‖L2 + ‖∇ ⋅ (v ⊗ v)‖L2 + ‖∇P‖L2
≤ C(‖u‖L∞‖∇u‖L2 + ‖Δu‖L2 + ‖v‖L∞‖∇v‖L2)

≤ C(⟨t⟩−1 ⋅ ⟨t⟩−1 + ⟨t⟩−
3
2 + ⟨t⟩−

11
8 ⋅ ⟨t⟩−

3
2 )U (t)2

≤ C⟨t⟩−
3
2 (U (0) + U (t)2).

(92)

Lemma 13. For any t > 0, there holds
‖u‖L∞ ≤ C⟨t⟩−1U (t),

‖∇u‖L∞ ≤ C⟨t⟩−
11
8 U (t).

(93)

Proof. By lemma 5 and interpolation inequality, we infer

‖u‖L∞ ≤ C‖u‖
1
2
L2‖Δu‖

1
2
L2

≤ C⟨t⟩−
1
4 ⋅ ⟨t⟩−

3
4U (t)

≤ C⟨t⟩−1U (t),

(94)

and
‖∇u‖L∞ ≤ C‖∇u‖

1
4
L2‖Δu‖

1
2
L2‖∇Δu‖

1
4
L2

≤ C⟨t⟩−
1
4 ⋅ ⟨t⟩−

3
4 ⋅ ⟨t⟩

3
8U (t)

≤ C⟨t⟩−
11
8 U (t).

(95)

3.2 Estimates of v
In this part, we establish some estimates on v. Importantly, we take advantage of the damping term of (1)2. It provides the decay
property of exponential operator to get the decay rates for various sobolev norms of solutions.

Lemma 14. For any t > 0, it holds
‖v‖L2 ≤ C⟨t⟩−1(U (0) + U (t)2). (96)

Proof. By (1)2,
)tv + u ⋅ ∇v + v ⋅ ∇u + v = −∇�, (97)

multiplying (97) by v and integrating over ℝ2 yields
1
2
d
dt

‖v‖2L2 + ‖v‖2L2

= − ∫ ∇� ⋅ vdx − ∫ v ⋅ ∇u ⋅ vdx

≤C‖∇�‖L2‖v‖L2 + C‖v‖L∞‖∇u‖L2‖v‖L2

≤C(‖∇�‖2L2 + ‖v‖2L∞‖∇u‖
2
L2) +

1
2
‖v‖2L2 ,

(98)

then we derive from multiplying (98) by the integrating factor et and integrating in time that

‖v‖2L2 ≤ e−t‖v0‖
2
L2 + C

t

∫
0

e−(t−�)(‖∇�‖2L2 + ‖v‖2L∞‖∇u‖
2
L2)d�

≤ e−t‖v0‖
2
L2 + C

t

∫
0

e−(t−�)(⟨�⟩−2 + ⟨�⟩−
11
4 ⋅ ⟨�⟩−2)d�(U (0)2 + U (t)4)

≤ C⟨t⟩−2(U (0)2 + U (t)4).

(99)
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Therefore, it follows by (99) that
⟨t⟩‖v‖L2 ≤ C(U (0) + U (t)2). (100)

Lemma 15. For any t > 0, it holds
‖∇v‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (101)

Proof. Similar to the proof of ‖v‖L2 , there holds
1
2
d
dt

‖∇v‖2L2 + ‖∇v‖2L2

= − ∫ ∇� ⋅ Δvdx + ∫ u ⋅ ∇v ⋅ Δvdx + ∫ v ⋅ ∇u ⋅ Δvdx

≤C(‖Δ�‖L2‖∇v‖L2 + ‖∇v‖L∞‖∇u‖L2‖∇v‖L2 + ‖v‖L∞‖Δu‖L2‖∇v‖L2)

≤C(‖Δ�‖2L2 + ‖∇v‖2L∞‖∇u‖
2
L2 + ‖v‖2L∞‖Δu‖

2
L2) +

1
2
‖∇v‖2L2 ,

(102)

then applying Gronwall’s inequality gives

‖∇v‖2L2 ≤e
−t
‖∇v0‖2L2 + C

t

∫
0

e−(t−�)(‖Δ�‖2L2 + ‖∇v‖2L∞‖∇u‖
2
L2

+ ‖v‖2L∞‖Δu‖
2
L2)d�

≤e−t‖∇v0‖2L2 + C

t

∫
0

e−(t−�)(⟨�⟩−3 + ⟨�⟩−2 ⋅ ⟨�⟩−2

+ ⟨�⟩−
11
4 ⋅ ⟨�⟩−3)d�(U (0)2 + U (t)4)

≤C⟨t⟩−3(U (0)2 + U (t)4).

(103)

Hence, we have
⟨t⟩

3
2
‖∇v‖L2 ≤ C(U (0) + U (t)2). (104)

Lemma 16. For any t > 0, it holds
‖Δv‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (105)

Proof. First, by Holder’s inequality and a standard commutator estimate (see,e.g.,30), there holds
1
2
d
dt

‖Δv‖2L2 + ‖Δv‖2L2

= − ∫ [Δ, u ⋅ ∇]v ⋅ Δvdx − ∫ [Δ, v ⋅ ∇]u ⋅ Δvdx

− ∫ v ⋅ ∇Δu ⋅ Δvdx − ∫ Δ∇� ⋅ Δvdx

≤C(‖[Δ, u ⋅ ∇]v‖L2‖Δv‖L2 + ‖[Δ, v ⋅ ∇]u‖L2‖Δv‖L2
+ ‖v ⋅ ∇Δu‖L2‖Δv‖L2 + ‖Δ∇�‖L2‖Δv‖L2

≤C(‖Δu‖2L2‖∇v‖
2
L∞ + ‖∇u‖2L∞‖Δv‖

2
L2

+ ‖∇Δu‖2L2‖v‖
2
L∞ + ‖Δ∇�‖2L2) +

1
2
‖Δv‖2L2 ,

(106)
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then we deduce from applying the Gronwall’s inequality that

‖Δv‖2L2 ≤e
−t
‖Δv0‖2L2 + C

t

∫
0

e−(t−�)(‖Δ∇�‖2L2 + ‖∇v‖2L∞‖Δu‖
2
L2

+ ‖Δv‖2L2‖∇u‖
2
L∞ + ‖v‖2L∞‖∇Δu‖

2
L2)d�

≤e−t‖Δv0‖2L2 + C

t

∫
0

e−(t−�)(⟨�⟩−3 + ⟨�⟩−5

+ ⟨�⟩−3 ⋅ ⟨�⟩−
11
4 )d�(U (0)2 + U (t)4)

≤C⟨t⟩−3(U (0)2 + U (t)4),

(107)

Hence, we have
⟨t⟩

3
2
‖Δv‖L2 ≤ C(U (0) + U (t)2). (108)

Lemma 17. For any t > 0, it holds
‖)tv‖L2 ≤ C⟨t⟩−1(U (0) + U (t)2). (109)

Proof. . Using (1)2, we have the following estimate:

‖)tv‖L2 ≤ ‖v‖L2 + ‖u ⋅ ∇v‖L2 + ‖v ⋅ ∇u‖L2 + ‖∇�‖L2
≤ ‖v‖L2 + ‖u‖L2‖∇v‖L∞ + ‖v‖L2‖∇u‖L∞ + ‖∇�‖L2

≤ C(⟨t⟩−1 + ⟨t⟩−
3
2 + ⟨t⟩−

19
8 )(U (0) + U (t)2)

≤ C⟨t⟩−1(U (0) + U (t)2).

(110)

Lemma 18. For any t > 0, it holds
‖div)tv‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (111)

Proof. Similarly, by (1)2, we obtain

‖div)tv‖L2 ≤‖∇ ⋅ v‖L2 + ‖∇ ⋅ (u ⋅ ∇v)‖L2 + ‖∇ ⋅ (v ⋅ ∇u)‖L2 + ‖Δ�‖L2
≤‖∇v‖L2 + ‖∇u‖L∞‖∇v‖L2 + ‖u‖L∞‖Δv‖L2
+ ‖v‖L∞‖Δu‖L2 + ‖Δ�‖L2

≤C(⟨t⟩−
3
2 + ⟨t⟩−

23
8 + ⟨t⟩−

5
2 )(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2).

(112)

Lemma 19. For any t > 0, it holds
‖v‖L∞ ≤ C⟨t⟩−

11
8 U (t),

‖∇v‖L∞ ≤ C⟨t⟩−
9
8U (t).

(113)

Proof. We derive from Lemma 5 that
‖v‖L∞ ≤ C‖v‖

1
4
L2‖∇v‖

1
2
L2‖Δv‖

1
4
L2

≤ C⟨t⟩−
1
4 ⋅ ⟨t⟩−

3
4 ⋅ ⟨t⟩−

3
8U (t)

≤ C⟨t⟩−
11
8 U (t),

(114)
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and
‖∇v‖L∞ ≤ C‖∇v‖

1
4
L2‖Δv‖

1
2
L2‖∇Δv‖

1
4
L2

≤ C‖∇v‖
1
4
L2‖Δv‖

3
4
− 1
4(N−2)

L2 ‖⟨∇⟩Nv‖
1

4(N−2)

L2

≤ C⟨t⟩−
3
2
(1− 1

4(N−2)
)U (t)

≤ C⟨t⟩−
9
8U (t),

(115)

forN ≥ 3.

3.3 Estimates of �
To overcome the difficulty by the absence of thermal dissipation, we exploit the structure of system (1) coming from the coupled
terms and damping term. By taking div to the equation of v and then we obtain the thermal dissipation −Δ�.

Lemma 20. For any t > 0, it holds
‖F2‖L1 ≤ ⟨t⟩−

3
2U (t)2. (116)

Proof. Owing to the expression of F2, we infer

‖F2‖L1 ≤‖div(u ⋅ ∇v)‖L1 + ‖div(v ⋅ ∇u)‖L1 + ‖)t(u ⋅ ∇�)‖L1 + ‖u ⋅ ∇�‖L1
≤‖u‖L2‖∇�‖L2 + ‖ut‖L2‖∇�‖L2 + ‖u‖L2‖∇�t‖L2
+ ‖∇u‖L2‖∇v‖L2 + ‖u‖L2‖Δv‖L2 + ‖v‖L2‖Δu‖L2

≤C(⟨t⟩−
1
2 ⋅ ⟨t⟩−1 + ⟨t⟩−

3
2 ⋅ ⟨t⟩−1 + ⟨t⟩−

1
2 ⋅ ⟨t⟩−

3
2 )U (t)2

≤C⟨t⟩−
3
2U (t)2.

(117)

Lemma 21. For any t > 0, it holds
‖�‖L2 ≤ C⟨t⟩−

1
2 (U (0) + U (t)2). (118)

Proof. For case |�| ≤ 1
2
, by integral representation of solutions (19), we get

‖�‖L2 ≤ ‖!0�0‖L2 + ‖!1(
1
2
�0 + �1)‖L2 +

t

∫
0

‖!1(t − �)F2‖L2d�. (119)

then we derive from Lemma 1 and Lemma 2 that

‖!0�0‖L2 ≤ ‖!̂0‖L2‖�0‖L1 ≤ C⟨t⟩−
1
2U (0), (120)

and
‖!1(

1
2
�0 + �1)‖L2 ≤ C⟨t⟩−

1
2
‖(1
2
�0 + �1)‖L1 ≤ C⟨t⟩−

1
2U (0). (121)

Moreover, there holds
t

∫
0

‖!1(t − �)F2‖L2d�

≤

t

∫
0

‖!̂1(t − �)‖L2‖F2‖L1d�

≤C

t

∫
0

⟨t − �⟩−
1
2 ⋅ ⟨�⟩−

3
2 d�U (t)2

≤C⟨t⟩−
1
2U (t)2.

(122)
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Inserting the above estimstes of (120)-(122) into (119), we obtain

‖�̂‖L2
(|�|≤ 12 )

≤ C⟨t⟩−
1
2 (U (0) + U (t)2). (123)

For case |�| > 1
2
, combining (1)2 with (1)3, and taking div to the equation of v to obtain the thermal diffusion −Δ�, and then

adding it to the equation of �, we deduce the following equation:

)t� − Δ� = −u ⋅ ∇� + ∇ ⋅ ()tv) + ∇ ⋅ (u ⋅ ∇v) + ∇ ⋅ (v ⋅ ∇u) = H. (124)

Then taking the Fourier transform to (124) yields

)t�̂ + |�|2�̂ = Ĥ, (125)

multiplying (125) by the integrating factor e|�|2t and integrating in time, we have

�̂ = e−|�|2t�̂0 +

t

∫
0

e−|�|2(t−�)Ĥd�. (126)

Next, we deduce from Plancherel theorem and Hölder inequality and space X that

‖�̂‖L2 ≤‖e−|�|
2t�̂0‖L2 +

t

∫
0

‖e−|�|2(t−�)Ĥ‖L2d�

≤e−
1
4
t
‖�̂0‖L2 +

t

∫
0

e−
1
4
(t−�)

‖Ĥ‖L2d�

≤e−
1
4
t
‖�0‖L2 +

t

∫
0

e−
1
4
(t−�)(‖u ⋅ ∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇ ⋅ (u ⋅ ∇v)‖L2 + ‖∇ ⋅ (v ⋅ ∇u)‖L2)d�

≤e−
1
4
t
‖�0‖L2 +

t

∫
0

e−
1
4
(t−�)(‖u‖L∞‖∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇u‖L∞‖∇v‖L2 + ‖u‖L∞‖Δv‖L2 + ‖v‖L∞‖Δu‖L2)d�

≤e−
1
4
t
‖�0‖L2 + C

t

∫
0

e−
1
4
(t−�)(⟨�⟩−1 ⋅ ⟨�⟩−1 + ⟨�⟩−

3
2

+ ⟨�⟩−
11
8 ⋅ ⟨�⟩−

3
2 + ⟨�⟩−1 ⋅ ⟨�⟩−

3
2 )d�(U (0) + U (t)2)

≤e−
1
4
t
‖�0‖L2 + C

t

∫
0

e−
1
4
(t−�) ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2),

(127)

hence, we get
‖�̂‖L2

(|�|> 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (128)

The combination of (123) and (128) gives
⟨t⟩

1
2
‖�‖L2 ≤ C(U (0) + U (t)2). (129)

Lemma 22. For any t > 0, it holds
‖∇�‖L2 ≤ C⟨t⟩−1(U (0) + U (t)2). (130)



20 D.Niu and H.Wu

Proof. For case |�| ≤ 1
2
, it follows by (19) that

‖∇�‖L2 ≤ ‖∇!0�0‖L2 + ‖∇!1(
1
2
�0 + �1)‖L2 +

t

∫
0

‖∇!1(t − �)F2‖L2d�. (131)

Similarly, we get
‖∇!0�0‖L2 ≤ ‖|�|!̂0‖L2‖�0‖L1 ≤ C⟨t⟩−1U (0), (132)

and
‖∇!1(

1
2
�0 + �1)‖L2 ≤ C⟨t⟩−1U (0). (133)

Moreover, there holds
t

∫
0

‖∇!1(t − �)F2‖L2d�

≤

t

∫
0

‖|�|!̂1(t − �)‖L2‖F2‖L1d�

≤C

t

∫
0

⟨t − �⟩−1 ⋅ ⟨�⟩−
3
2 d�U (t)2

≤C⟨t⟩−1U (t)2,

(134)

thus combining the above estimates together, we obtain

‖∇̂�‖L2
(|�|≤ 12 )

≤ C⟨t⟩−1(U (0) + U (t)2). (135)

For case |�| > 1
2
, similar to ‖�‖L2 , one has

�̂ = e−|�|2t�̂0 +

t

∫
0

e−|�|2(t−�)Ĥd�. (136)

By Plancherel theorem and Hölder inequality and space X, we infer

‖|�|�̂‖L2 ≤‖e−|�|
2t
|�|�̂0‖L2 +

t

∫
0

‖e−|�|2(t−�)|�|Ĥ‖L2d�

≤e−
1
8
t
‖e−

1
2
|�|2t

|�|�̂0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|Ĥ‖L2d�

≤e−
1
8
t
‖�0‖L2 +

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇ ⋅ (u ⋅ ∇v)‖L2 + ‖∇ ⋅ (v ⋅ ∇u)‖L2)d�

≤e−
1
8
t
‖�0‖L2 +

t

∫
0

e−
1
8
(t−�)(‖u‖L∞‖∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇u‖L∞‖∇v‖L2 + ‖u‖L∞‖Δv‖L2 + ‖v‖L∞‖Δu‖L2)d�

≤e−
1
8
t
‖�0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2),

(137)

which gives rise to
‖∇̂�‖L2

(|�|> 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (138)
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The combination of (135) and (138) yields

⟨t⟩‖∇�‖L2 ≤ C(U (0) + U (t)2). (139)

Lemma 23. For any t > 0, it holds
‖Δ�‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (140)

Proof. For case |�| ≤ 1
2
, we derive from (19) that

‖Δ�‖L2 ≤ ‖Δ!0�0‖L2 + ‖Δ!1(
1
2
�0 + �1)‖L2 +

t

∫
0

‖Δ!1(t − �)F2‖L2d�, (141)

then there hold
‖Δ!0�0‖L2 ≤ ‖|�|2!̂0‖L2‖�0‖L1 ≤ C⟨t⟩−

3
2U (0), (142)

and
‖Δ!1(

1
2
�0 + �1)‖L2 ≤ C⟨t⟩−

3
2U (0). (143)

Furthermore, one has
t

∫
0

‖Δ!1(t − �)F2‖L2d�

≤

t

∫
0

‖|�|2!̂1‖L2‖F2‖L1d�

≤C

t

∫
0

⟨t − �⟩−
3
2 ⋅ ⟨�⟩−

3
2 d�U (t)2

≤C⟨t⟩−
3
2U (t)2.

(144)

Hence, we have
‖Δ̂�‖L2

(|�|≤ 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (145)

For case |�| > 1
2
, similar to ‖∇�‖L2 , we derive from (136), Plancherel theorem, Hölder inequality, and space X that

‖|�|2�̂‖L2 ≤‖e−|�|
2t
|�|2�̂0‖L2 +

t

∫
0

‖e−|�|2(t−�)|�|2Ĥ‖L2d�

≤e−
1
8
t
‖e−

1
2
|�|2t

|�|2�̂0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|2Ĥ‖L2d�

≤Ce−
1
8
t
‖�0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇ ⋅ (u ⋅ ∇v)‖L2 + ‖∇ ⋅ (v ⋅ ∇u)‖L2)d�

≤Ce−
1
8
t
‖�0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2),

(146)

which gives rise to
‖Δ̂�‖L2

(|�|> 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (147)
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Thus, we derive from the combination of (145) and (147)

⟨t⟩
3
2
‖Δ�‖L2 ≤ C(U (0) + U (t)2). (148)

Lemma 24. For any t > 0, it holds
‖∇Δ�‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (149)

Proof. For case |�| ≤ 1
2
, we obtain the estimate of ‖∇Δ�‖L2 by (19):

‖∇Δ�‖L2 ≤ ‖∇Δ!0�0‖L2 + ‖∇Δ!1(
1
2
�0 + �1)‖L2 +

t

∫
0

‖∇Δ!1(t − �)F2‖L2d�, (150)

the right-hand side of (150) can be controlled as follows. We deduce by Lemma 1 − 2 that

‖∇Δ!0�0‖L2 ≤ ‖|�|3!̂0‖L2‖�0‖L1 ≤ C⟨t⟩−2U (0), (151)

and
‖∇Δ!1(

1
2
�0 + �1)‖L2 ≤ C⟨t⟩−2U (0). (152)

Furthermore, one has
t

∫
0

‖∇Δ!1(t − �)F2‖L2d�

≤

t

∫
0

‖|�|3!̂1‖L2‖F2‖L1d�

≤C

t

∫
0

⟨t − �⟩−2 ⋅ ⟨�⟩−
3
2 d�U (t)2

≤C⟨t⟩−
3
2U (t)2,

(153)

Combining the above estimates together, we have

‖∇̂Δ�‖L2
(|�|≤ 12 )

≤ C⟨t⟩−
3
2 (U (0) + U (t)2). (154)

For case |�| > 1
2
, similar to ‖∇�‖L2 , we derive from (136), Plancherel theorem, Hölder inequality, and space X that

‖|�|3�̂‖L2 ≤‖e−|�|
2t
|�|3�̂0‖L2 +

t

∫
0

‖e−|�|3(t−�)|�|3Ĥ‖L2d�

≤e−
1
8
t
‖e−

1
2
|�|3t

|�|2�̂0‖L2 +

t

∫
0

e−
1
8
(t−�)

‖e−
1
2
|�|2(t−�)

|�|3Ĥ‖L2d�

≤Ce−
1
8
t
‖�0‖L2 + C

t

∫
0

e−
1
8
(t−�)(‖u ⋅ ∇�‖L2 + ‖∇ ⋅ )tv‖L2

+ ‖∇ ⋅ (u ⋅ ∇v)‖L2 + ‖∇ ⋅ (v ⋅ ∇u)‖L2)d�

≤Ce−
1
8
t
‖�0‖L2 + C

t

∫
0

e−
1
8
(t−�) ⋅ ⟨�⟩−

3
2 d�(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2),

(155)

which gives rise to
‖∇̂Δ�‖L2

(|�|> 12 )
≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (156)
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The combination of (154) and (156) yields

⟨t⟩
3
2
‖∇Δ�‖L2 ≤ C(U (0) + U (t)2). (157)

Lemma 25. For any t > 0, it holds
‖)t�‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (158)

Proof. Due to (1)3, one has
‖)t�‖L2 ≤ ‖(∇ ⋅ v)‖L2 + ‖u ⋅ ∇�‖L2

≤ ‖∇v‖L2 + ‖u‖L∞‖∇�‖L2

≤ C(⟨t⟩−
3
2 + ⟨t⟩−1 ⋅ ⟨t⟩−1)(U (0) + U (t)2)

≤ C⟨t⟩−
3
2 (U (0) + U (t)2).

(159)

Lemma 26. For any t > 0, it holds
‖∇�t‖L2 ≤ C⟨t⟩−

3
2 (U (0) + U (t)2). (160)

Proof. We derive from (1)3 that

‖∇�t‖L2 ≤‖∇(∇ ⋅ v)‖L2 + ‖∇(u ⋅ ∇�)‖L2
≤‖Δv‖L2 + ‖∇u‖L∞‖∇�‖L2 + ‖u‖L∞‖Δ�‖L2

≤C(⟨t⟩−
3
2 + ⟨t⟩−

11
8 ⋅ ⟨t⟩−1 + ⟨t⟩−1 ⋅ ⟨t⟩−

3
2 )(U (0) + U (t)2)

≤C⟨t⟩−
3
2 (U (0) + U (t)2).

(161)

Lemma 27. For any t > 0, it holds
‖�‖L∞ ≤ C⟨t⟩−1U (t), (162)

‖∇�‖L∞ ≤ C⟨t⟩−
11
8 U (t). (163)

Proof. From Lemma 5, we deduce
‖�‖L∞ ≤ C‖�‖

1
2
L2‖Δ�‖

1
2
L2

≤ C⟨t⟩−
1
4 ⋅ ⟨t⟩−

3
4U (t)

≤ C⟨t⟩−1U (t),

(164)

and
‖∇�‖L∞ ≤ C‖∇�‖

1
4
L2‖Δ�‖

1
2
L2‖∇Δ�‖

1
4
L2

≤ C⟨t⟩−
1
4 ⋅ ⟨t⟩−

3
4 ⋅ ⟨t⟩

3
8U (t)

≤ C⟨t⟩−
11
8 U (t).

(165)

Remark 2. Combining Section 3.1, 3.2, and 3.3, for any t > 0, there holds

U (t) ≤ C(U (0) + U (t)2 + U (t)3). (166)

An application of the bootstrapping argument would yield the global uniform bound that would guarantee the global existence
and the stability of the solution. One example of this process can be found in23.
To apply a bootstrapping argument, we take U (0) ≤ �, � is a suitable small constant, e.g., � = 1

16C2
. The argument starts

with the ansatz that
U (t) ≤ ℎ = 1

4C
, (167)
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then
U (t) ≤ CU (0) + 1

4
U (t) + 1

16C
U (t)

≤ CU (0) + 1
2
U (t),

(168)

and we get
U (t) ≤ 2CU (0) ≤ 1

8C
= 1
2
ℎ. (169)

The bootstrapping argument then concludes that, for all t > 0,

U (t) ≤ 2C�. (170)

This completes the proof of Theorem 1.1.
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APPENDIX

A .1

proof of lemma 2.3. Firstly, for any �, � ≥ 0 and � + � > 1, we deduce
t

∫
0

⟨t − �⟩−�⟨�⟩−�d� =

t
2

∫
0

⟨t − �⟩−�⟨�⟩−�d� +

t

∫
t
2

⟨t − �⟩−�⟨�⟩−�d�

∶= Γ1 + Γ2,

(A1)

then for case �, � ≠ 1, there holds

Γ1 ≤

t
2

∫
0

( t
2
+ 1)−�(� + 1)−�d�

≤ ( t
2
+ 1)−�

t
2

∫
0

(� + 1)−�d�

≤ ( t
2
+ 1)−� 1

1 − �
(� + 1)1−�|

t
2
0

≤ 1
1 − �

( t
2
+ 1)1−�−� − 1

1 − �
( t
2
+ 1)−� ,

(A2)

which gives rise to

Γ1 ≤ C

{

⟨t⟩−�−�+1, if � < 1,
⟨t⟩−� , if � > 1.

(A3)
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And we obtain

Γ2 ≤

t

∫
t
2

⟨t − �⟩−�( t
2
+ 1)−�d�

≤ ( t
2
+ 1)−�

t

∫
t
2

(t − � + 1)−�d�

≤ ( t
2
+ 1)−�

t
2

∫
0

(y + 1)−�dy(y = t − �)

≤ ( t
2
+ 1)−� 1

1 − �
(y + 1)1−�|

t
2
0

≤ ( t
2
+ 1)−�[ 1

1 − �
( t
2
+ 1)1−� − 1

1 − �
],

(A4)

hence, we have

Γ2 ≤ C

{

⟨t⟩−�−�+1, if � < 1,
⟨t⟩−� , if � > 1.

(A5)

For � = 1 and � < 1, there holds

Γ1 ≤

t
2

∫
0

( t
2
+ 1)−1(� + 1)−�d�

≤ ( t
2
+ 1)−�+"

t
2

∫
0

( t
2
+ 1)�−"−1(� + 1)−�d�

≤ ( t
2
+ 1)−�+"

t
2

∫
0

(� + 1)−1−"d�

≤ C⟨t⟩−�+",

(A6)

and

Γ2 ≤

t

∫
t
2

⟨t − �⟩−1( t
2
+ 1)−�d�

≤ ( t
2
+ 1)−�

t
2

∫
0

(y + 1)−1dy(y = t − �)

≤ ( t
2
+ 1)−�+"

t
2

∫
0

( t
2
+ 1)−"(y + 1)−1dy

≤ ( t
2
+ 1)−�+"

t
2

∫
0

(y + 1)−1−"d�

≤ C⟨t⟩−�+".

(A7)
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For � = 1 and � > 1, we derive

Γ1 ≤

t
2

∫
0

( t
2
+ 1)−1(� + 1)−�d�

≤ ( t
2
+ 1)−1

t
2

∫
0

(� + 1)−�d�

≤ C⟨t⟩−1,

(A8)

and

Γ2 =

t

∫
t
2

⟨t − �⟩−1( t
2
+ 1)−�d�

≤ ( t
2
+ 1)−�

t
2

∫
0

(y + 1)−1dy(y = t − �)

≤ ( t
2
+ 1)−�+"

t
2

∫
0

( t
2
+ 1)−"(y + 1)−1dy

≤ C⟨t⟩−�+".

(A9)

Similarly, we can obtain Γ1 ≤ C⟨t⟩−�+" and Γ2 ≤ C⟨t⟩−1 for � = 1 and � > 1. And one have Γ1 ≤ C⟨t⟩−�+" and Γ2 ≤ C⟨t⟩−�+"

for � = 1 and � < 1. Also, there holds Γ1 ≤ C⟨t⟩−1+" and Γ2 ≤ C⟨t⟩−1+" for � = 1 and � = 1.
Combining all of the above, we have

t
2

∫
0

⟨t − �⟩−�⟨�⟩−�d� ≤ C

⎧

⎪

⎨

⎪

⎩

⟨t⟩−�−�+1, if � < 1,
⟨t⟩−� , if � > 1,
⟨t⟩−�+", if � = 1,

(A10)

and
t

∫
t
2

⟨t − �⟩−�⟨�⟩−�d� ≤ C

⎧

⎪

⎨

⎪

⎩

⟨t⟩−�−�+1, if � < 1,
⟨t⟩−� , if � > 1,
⟨t⟩−�+", if � = 1.

(A11)

In addition, it holds
t

∫
0

e−
(t−�)⟨�⟩−�d� ≤ C

t

∫
0

⟨t − �⟩−�⟨�⟩−�d�, (A12)

due to e−
(t−�) ⋅ ⟨t − �⟩� ≤ C for 
 > 0.
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