References

Adeli, A., McLaughlin, M. R., Brooks, J. P., Read, J. J., Willers, J. L., Lang, D. J., & Mcgrew, R. (2013). Age chronosequence effects on restoration quality of reclaimed coal mine soils in Mississippi agroecosystems. Soil Science , 178, 335–343. DOI: 10.1097/SS.0b013e3182a79e37
Ahirwal, J., & Maiti, S.K. (2016). Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena , 140, 155-163. DOI: 10.1016/j.catena.2016.01.028
Amaral, L. A., Scala, A., Barthelemy, M., & Stanley, H.E. (2000). Classes of small-world networks. Proceedings of the National Academy of Science of the United States of America , 97(21), 11149–11152. DOI: 10.1073/pnas.200327197
Bai, Z. K., Zhou, W., Wang, J. M. (2018). Rethink on Ecosystem Restoration and Rehabilitation of Mining Areas. China Land Science , 32(11), 1-9. In Chinese. doi: 10.11994/zgtdkx.20181107.162318.
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal , 13, 1722-1736. DOI: 10.1038/s41396-019-0383-2
Banning, N. C., Gleeson, D. B., Grigg, A. H., Grant, C. D., Andersen, G. L., Brodie, E. L., & Murphy, D. V. (2011). Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology , 77(17), 6158–6164. DOI: 10.1128/AEM.00764-11
Bastida, F., Hernandez, T., Albaladejo, J., & Garcia, C. (2013) Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biology & Biochemistry , 65, 12-21, DOI: 10.1016/j.soilbio.2013.04.022
Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology , 5. DOI: 10.3389/fmicb.2014.00219
Bian, Z. F., Lei, S. G., & Jin, D. (2018). Several basic scientific issues related to mined land remediation. Journal of China Coal Society , 43(1), 190-197. In Chinese. doi:10.13225/j.cnki.jccs.2017.4004
Biller, S. J., Mosier, A. C., Wells, G. F., & Francis, C. A. (2012). Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Frontiers in Microbiology , 3. doi: 10.3389/fmicb.2012.00252
Brochier-Armanet, C., Boussau, B., Gribaldo, S., & Forterre, P. (2008). Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Review Microbiology , 6, 245–252. DOI:10.1038/nrmicro1852
Brochier-Armanet, C., Gribaldo, S., & Forterre, P. (2012).”Spotlight on the Thaumarchaeota”The ISME Journal , 6(2), 227–230. doi:10.1038/ismej.2011.145
Chen, F., Yang, Y., Ma, Y., Hou, H., Zhang, S., & Ma, J. (2016). Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas. Environmental science-Processes & impacts , 18, 547-554. DOI: 10.1039/c5em00571j
Chen, F., Zhang, W., Ma, J., Yang, Y., Zhang, S., & Chen, R. (2017). Experimental study on the effects of underground CO2leakage on soil microbial consortia. International Journal of Greenhouse Gas Control , 63, 241-248. DOI: 10.1016/j.ijggc.2017.05.017
Chu, H. Y.,  Fierer, N.,  Lauber, C. L., Caporaso, J. G., Knight, R., & Grogan, P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology , 12(11), 2998-3006. DOI: 10.1111/j.1462-2920.2010.02277.x
Dangi, S. R., Stahl, P. D., Wick, A. F., Ingram, L. J., & Buyer, J. S. (2012). Soil Microbial Community Recovery in Reclaimed Soils on a Surface Coal Mine Site. Soil Science Society of America Journal , 76(3), 915-924. DOI: 10.2136/sssaj2011.0288
Delgado-Baquerizo, M., Bardgett, R. D., Vitousek, P. M., Maestre, F. T., Williams, M. A., Eldridge, D. J., Lambers, H., Neuhauser, S., Gallardo, A., & García-Velázquez, L. (2019). Changes in belowground biodiversity during Ecosystem development. Proceedings of the National Academy of Science of the United States of America , 116(14), 6891–6896. DOI: 10.1073/pnas.1818400116
Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., & Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science , 359(6373), 320-325. DOI: 10.1126/science.aap9516
Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., & Singh, B. K. (2017). It is elemental: soil nutrient stoichiometry drives bacterial diversity.Environmental Microbiology , 19(3), 1176–1188. https://doi.org/10.1111/1462-2920.13642
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications , 7, 1–8. https://doi.org/10.1038/ncomms10541
Deng, Y., Zhang, P., Qin, Y., Tu, Q., Yang, Y., He, Z., Schadt, C. W., & Zhou, J. (2016). Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environmental Microbiology , 18(1), 205-218. DOI: 10.1111/1462-2920.12981
Deng, Y., Jiang, Y. H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics , 13, 113. DOI: 10.1186/1471-2105-13-113
Dick, R. P. (1994). “Soil enzyme activities as indicators of soil quality,” in Defining Soil Quality for Sustainable Environment. Special Publication 35, ed. J. W. Doran (Madison, WI: SSSA-ASA), 107–124.
Dimitriu, P. A., Prescott, C. E., Quideau, S. A., & Grayston, S. J. (2010). Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function. Soil Biology and Biochemistry , 42(12), 2289-2297. DOI: 10.1016/j.soilbio.2010.09.001
Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2018). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. Journal of Proteome Research , 18, 623-632. DOI: 10.1021/acs.jproteome.8b00702
Duval, M. E., Galantini, J. A., Martinez, J. M., Lopez, F. M., & Wall, L. G. (2016). Sensitivity of different soil quality indicators to assess sustainable land management: Influence of site features and seasonality.Soil & Tillage Research , 159, 9–22. DOI: 10.1016/j.still.2016.01.004
Ezeokoli, O. T., Mashigo, S. K., Paterson, D. G., Bezuidenhout, C. C., & Adeleke, R. A. (2019). Microbial community structure and relationship with physicochemical properties of soil stockpiles in selected South African opencast coal mines. Soil Science and Plant Nutrition , 65(4), 332-341. DOI: 10.1080/00380768.2019.1621667
Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology , 15(10), 579-590. DOI: 10.1038/nrmicro.2017.87
Geng, Y. H., Min, Q. W., Cheng, S. K., & Cheng, C. C. (2008). Temporal and spatial distribution of cropland-population-grain system and pressure index on cropland in Jinghe watershed. Transactions of the CSAE , 24, 68-73. In Chinese. https://doi:10.3321/j.issn:1002-6819.2008.10.014
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Science of the United States of America , 99(12), 7821–7826. DOI: 10.1073/pnas.122653799
Griffiths, B.S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews , 37(2), 112-129. DOI: 10.1111/j.1574-6976.2012.00343.x
Griffiths, R. I., Thomson, B. C., James, P., Bell, T.,  Bailey, M.,  & Whiteley, A.S. (2010). The bacterial biogeography of British soils.Environmental Microbiology , 2011, 13(6), 1642-1654. DOI: 10.1111/j.1462-2920.2011.02480.x
Guan, S. Y. (1986). Soil enzyme and its research method [M]. Beijing, China Agriculture Press. In Chinese.
Guarino, C., Zuzolo, D., Marziano, M., Conte, B., Baiamonte, G., Morra, L., Benotti, D., Gresia, D., Stacul, E. R., Cicchella, D., & Sciarrillo, R. (2019). Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Scientific Report , 9, 11522. https://doi.org/10.1038/s41598-019-48005-7
Guimera, R., Sales-Pardo, M., & Amaral, L. A. N. (2007). Classes of complex networks defined by role-to-role connectivity profiles.Nature Physics , 3(1), 63–69. DOI: 10.1038/nphys489
Harris, J. (2009). Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? Science , 325(5940), 573-574. DOI: 10.1126/science.1172975
Hartman, W. H., Richardson, C. J., Vilgalys, R., & Bruland, G. L. (2008). Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Science of the United States of America, 105, 17842–17847. DOI:10.1073/pnas.0808254105
Helingerová, M., Frouz, J., & Šantrůčková, H. (2010). Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecological Engineering , 36(6), 768-776. DOI: 10.1016/j.ecoleng.2010.01.007
Horvath, S., & Dong, J. (2008). Geometric interpretation of gene co-expression network analysis. PLOS Computational Biology , 2008, 4(8). DOI: 10.1371/journal.pcbi.1000117
Hu, Z. Q. (2019). The 30 years’ land reclamation and ecological restoration in China: review, rethinking and prospect. Coal Science and Technology , 47(1), 25-35. In Chinese. doi:10.13199/j.cnki.cst.2019.01. 004.
Hu, Z. Q., & Luo, Y. M. (2006). Suggestions on environmental quality and food safety in overlapped areas of crop and mineral production.Science & Technology review , 24(3), 93-94. In Chinese.
Hu, Z., Fu, Y., Xiao, W., Zhao, Y., & Wei, T. (2015). Ecological restoration plan for abandoned underground coal mine site in Eastern China. International Journal of Mining Reclamation and Environment , 29(4), 316–330. DOI: 10.1080/17480930.2014.1000645
Hu, Z., Chen, C., Xiao, W., Wang, X., Gao, M. (2016). Surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region. International Journal of Coal Science & Technology , 3, 339-348. https://doi.org/10.1007/s40789-016-0144-z
Hunt, D. E., & Ward, C. S. (2015). A network-based approach to disturbance transmission through microbial interactions. Frontiers in Microbiology , 6. DOI: 10.3389/fmicb.2015.01182
Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., & Jenkins, M. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry , 40, 2843–2853. doi: 10.1016/j.soilbio.2008.07.030
Kitano, H. (2004). Biological robustness. Nature Reviews Genetics , 5(11), 826-837. DOI: 10.1038/nrg1471
Köppen, W. (1884). The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world). – Meteorologische Zeitschrift , 1, 215–226. (translated and edited by Volken, E., & Brönnimann, S. (2011) –Meteorologische Zeitschrift , 20, 351–360, DOI: 10.1127/0941-2948/2011/105).
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology , 75, 5111–5120. DOI:10.1128/AEM.00335-09
Layeghifard, M., Hwang, D. M., & Guttman, D. S. (2017). Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology , 25, 217-228. DOI: 10.1016/j.tim.2016.11.008
Lewis, D. E., Chauhan, A., White, J. R., Overholt, W., Green, S. J., Jasrotia, P., Wafula, D., & Jagoe, C. (2012). Microbial and geochemical assessment of bauxitic un-mined and post-mined chronosequence soils from Mocho Mountains, Jamaica. Microbial Ecology , 64(3), 738–749. DOI: 10.1007/s00248-012-0020-3
Li, J., Pu, L., Zhu, M., Zhang, J., Li, P., Dai, X., Xu, Y., & Liu, L. (2014a). Evolution of soil properties following reclamation in coastal areas: a review. Geoderma , 226, 130–139. DOI: 10.1016/j.geoderma.2014.02.003
Li, J., Xin, Z., Yan, J., Li, H., Chen, J., & Ding, G. (2018). Physicochemical and microbiological assessment of soil quality on a chronosequence of a mine reclamation site. European Journal of Soil Science , 69(6), 1056-1067. DOI: 10.1111/ejss.12714
Li, Y., Chen, L., Wen, H., Zhou, T., Zhang, T., & Gao, X. (2014b). 454 Pyrosequencing Analysis of Bacterial Diversity Revealed by a Comparative Study of Soils from Mining Subsidence and Reclamation Areas.Journal of Microbiology and Biotechnology , 24(3), 313-323. DOI: 10.4014/jmb.1309.09001
Li, Y., Wen, H., Chen, L., & Yin, T. (2014c). Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLOS One , 9(12). DOI: 10.1371/journal.pone.0115024
Liang, Q., Chen, H. Q., Gong, Y. S., Yang, H. F., Fan, M. S., & Kuzyakov, Y. (2014). Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. European Journal of Soil Science , 60, 112–119. doi: 10.1016/j.ejsobi.2013.11.009
Lindsay, M. R., Webb, R. I., Strous, M., Jetten, M. S., Butler, M. K., Forde, R. J., & Fuerst, J. A. (2001). ”Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell”. Archives of Microbiology . 175 (6), 413-29. DOI:10.1007/s002030100280.
Liu, J., Sui, Y., Yu, Z., Yao, Q., Shi, Y., Chu, H., Jin, J., Liu, X., & Wang, G. (2016). Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China.Soil Biology and Biochemistry , 95, 212-222. DOI: 10.1016/j.soilbio.2015.12.021
Liu, H. F., Zhang, J. Y., Ai, Z. M., Wu, Y., Xu, H. W., Li, Q., Xue, S., & Liu, G. B. (2018). 16-Year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem. Agriculture, Ecosystems & Environment , 265, 320-330. https://doi.org/10.1016/j.agee.2018.06.032
Liu, Y., Lei, S., & Gong, C. (2019). Comparison of plant and microbial communities between an artificial restoration and a natural restoration topsoil in coal mining subsidence area. Environmental Earth Sciences , 78(6). DOI: 10.1007/s12665-019-8195-2
Lu, R. K. (2000). Analytical methods for soil and agro-chemistry [M]. Beijing, China Agricultural Science and Technology Press. In Chinese.
Luo, Z., Ma, J., Chen, F., Li, X., Hou, H., & Zhang, S. (2019). Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China. International Journal of Environmental Research and Public Health , 16, 4892. DOI:10.3390/ijerph16244892.
Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q., & Yang, Y. (2020). Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Activities in the Loess Plateau, China,Microorganisms , 8, 477. DOI:10.3390/microorganisms8040477
Ma, J., Lu, Y., Chen, F., Li, X., Xiao, D., & Wang, H. (2020). Molecular ecological network complexity drives stand resilience of soil bacteria to mining disturbances among typical damaged ecosystems in China, Microorganisms , 2020, 8, 433, doi:10.3390/microorganisms8030433
Ma, J., Zhang, W., Zhang, S., Zhu, Q., Feng, Q., & Chen, F. (2017). Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario. PeerJ , 5, e4024. DOI: 10.7717/peerj.4024
Martin, F., Torelli, S., Paslier, D. L., Barbance, A., Martin-Laurent, F., Bru, D., Geremia, R., Blake, G., & Jouanneau, Yves. (2012). Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene.Environmental Pollution , 162, 345-353. https://doi.org/10.1016/j.envpol.2011.11.032
Min, X. Y., & Li, X. J. (2017). Soil thermal conductivity and influencing factors under different reclamation modes in a mining area with high groundwater level. Journal of soil and water conservation , 31(3), 176-181. In Chinese. DOI: 10.13870/j.cnki.stbcxb.2017.03.030.
Mukhopadhyay, S., Maiti, S.K., & Masto, R.E. (2014). Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering , 71, 10–20. DOI: 10.1016/j.ecoleng.2014.07.001
Mukhopadhyay, S., Masto, R.E., Yadav, A., George, J., Ram, L.C., & Shukla, S.P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of Total Environment, 542, 540–550. DOI: 10.1016/j.scitotenv.2015.10.035
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E , 74(3). DOI: 10.1103/PhysRevE.74.036104
Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E , 69(6), 066133. DOI: 10.1103/PhysRevE.69.066133
Ngugi, M. R., Dennis, P. G., Neldner, V. J., Doley, D., Fechner, N., & McElnea, A. (2018). Open-cut mining impacts on soil abiotic and bacterial community properties as shown by restoration chronosequence.Restoration Ecology , 5, 839-850.
Novianti, V., Marrs, R.H., Choesin, D.N., Iskandar, D.T., & Suprayogo, D. (2018). Natural regeneration on land degraded by coal mining in a tropical climate: Lessons for ecological restoration from Indonesia.Land Degradation & Development , 29(11), 4050-4060. DOI: 10.1002/ldr.3162
Odum, E. P. (1969). The strategy of ecosystem development. Science, New Series, 164(3877), 262–270
Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Science of the United States of America , 104(50), 19891–19896. DOI: 10.1073/pnas.0706375104
Qu, J. F., Hou, Y. L., Ge, M., Wang, K., Liu, S., Zhang, S., Li, G., & Chen, F. (2017). Carbon Dynamics of Reclaimed Coal Mine Soil under Agricultural Use: A Chronosequence Study in the Dongtan Mining Area, Shandong Province, China. Sustainability , 9, 629; DOI:10.3390/su9040629
Qu, J. F., Hou, Y. L., Ge, M., Wang, K., Liu, S., Zhang, S., Li, G., & Chen, F. (2018). Soil Microbial Biomass Carbon and Basal respiration Characteristics in Dongtan Coal Mining Subsidence Area, Zoucheng City.Resources and Environment in the Yangtze Basin , 27(8), 1858-1865. In Chinese.
Ramirez, K.S., Geisen, S., Morriën, E., Snoek, B.L., & van der Putten, W.H., (2018). Network Analyses Can Advance Above-Belowground Ecology.Trends in Plant Science , 23, 759-768. DOI: 10.1016/j.tplants.2018.06.009
Sheng, H., Zhou, P., Zhang, Y., Kuzyakov, Y., Zhou, Q., Ge, T., & Wang, C. (2015). Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology & Biochemistry , 88,148-157. DOI: 10.1016/j.soilbio.2015.05.015
Shrestha, R. K., & Lal, R. (2010). Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA.Geoderma , 157(3-4), 196–205. DOI: 10.1016/j.geoderma.2010.04.013
Shrestha, R.K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamation.Geoderma , 161(3-4), 168–176. DOI: 10.1016/j.geoderma.2010.12.015
Spargo, A., & Doley, D. (2016). Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment. Journal of Environmental Management , 182, 342-350. DOI: 10.1016/j.jenvman.2016.07.095
Sun, S.Y., Sun, H., Zhang, D., Zhang, J., Cai, Z., Qin, G., & Song, Y. (2019). Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China. International Journal of Environmental Research and Public Health , 16(10), 1757. DOI: 10.3390/ijerph16101757
Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., Detter, J.C., Bork, P., Hugenholtz, P., & Rubin, E.M. (2005). Comparative Metagenomics of Microbial Communities. Science , 308(5721), 554-557. DOI: 10.1126/science.1107851
Tu, Q., Yan, Q., Deng, Y., Michaletz, S.T., Buzzard, V., Weiser, M.D., Waide, R., Ning, D., Wu, L., He, Z., & Zhou, J. (2020). Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology and Biochemistry , 148. https://doi.org/10.1016/j.soilbio.2020.107897.
Wang, S., & Brose, U. (2018). Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters , 21(1), 9-20. DOI: 10.1111/ele.12865
Wang, P., Hu, Z., Yost, R. S., Shao, F., Liu, J., & Li, X. (2016). Assessment of chemical properties of reclaimed subsidence land by the integrated technology using Yellow River sediment in Jining, China.Environmental Earth Science , 75(12). DOI: 10.1007/s12665-016-5848-2
Xiao, L., Bi, Y., Du, S., Wang, Y., & Guo, C. (2019). Effects of re-vegetation type and arbuscular mycorrhizal fungal inoculation on soil enzyme activities and microbial biomass in coal mining subsidence areas of Northern China. Catena , 177, 202-209. DOI: 10.1016/j.catena.2019.02.019
Yu, H., Ding, W., Luo, J., Geng, R., & Cai, Z. (2012). Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil & Tillage Research , 124, 170–177. DOI: 10.1016/j.still.2012.06.011
Yuan, Y., Zhao, Z., Li, X., Wang, Y., & Bai, Z. (2018). Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.Science of the Total Environment , 613, 1196-1206. DOI: 10.1016/j.scitotenv.2017.09.170
Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology , 4, 17. DOI: 10.2202/1544-6115.1128
Zhao, Z. Q., Wang, H. Q., Bai, Z. K., Pan, Z. G., & Wang, Y. (2015). Development of population structure and spatial distribution patterns of a restored forest during 17-year succession (1993–2010) in Pingshuo opencast mine spoil, China. Environmental Monitoring and Assessment , 187(7). DOI: 10.1007/s10661-015-4391-z
Zhong, Y. Q. W., Yan, W. M., & Shangguan, Z. P. (2015). Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. Catena , 135, 38–46. DOI: 10.1016/j.catena.2015.06.018
Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., & Zhi, X. (2010). Functional Molecular Ecological Networks. MBio , 4, e110-e169. DOI: 10.1128/mBio.00169-10
Zhou, J., Deng, Y., Luo, F., He, Z., & Yang, Y. (2011). Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio , 2, e00122-11. DOI: 10.1128/mBio.00122-11
Table 1 Topological features of the molecular ecological networks (MENs) of the soil microbial communities detected in this study. CK: control; r8: eigth years after reclamation; r11: eleventh years after reclamation; r14: fourteenth years after reclamation; r17: seventeenth years after reclamation