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Abstract: In this paper, we are concerned with the positive continuous entire solu-

tions of the Wolff-type integral system{
u(x) = C1(x)Wβ,γ(v−q)(x),

v(x) = C2(x)Wβ,γ(u−p)(x),

where n ≥ 1, min{p, q} > 0, γ > 1, β > 0 and βγ 6= n. In addition, Ci(x) (i = 1, 2)

are some double bounded functions. If βγ ∈ (0, n), the Serrin-type condition is critical

for existence of the positive solutions for some double bounded functions Ci(x) (i = 1, 2).

Such an integral equation system is related to the study of the γ-Laplace system and

k-Hessian system with negative exponents. Estimated by the integral of the Wolff type

potential, we obtain the asymptotic rates and the integrability of positive solutions, and

studied whether the radial solutions exist.

Key words: Wolff type potential; Serrin-type condition; γ-Laplace system; k-Hessian

system; Asymptotic limit.

1 Introduction

In this paper, we are concerned with the Wolff-type integral system{
u(x) = C1(x)Wβ,γ(v

−q)(x),

v(x) = C2(x)Wβ,γ(u
−p)(x),

(1.1)

where n ≥ 1, min{p, q} > 0, γ > 1, β > 0 and βγ 6= n. In addition, C1(x) and
C2(x) are double bounded functions, namely, there exist C ≥ c > 0 such that

c ≤ Ci(x) ≤ C (i = 1, 2).

If n < βγ, 
Wβ,γ(v

−q)(x) =
∫∞
0

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1 dt

t
,

Wβ,γ(u
−p)(x) =

∫∞
0

(

∫
Bct (x)

u−p(y)dy

tn−βγ
)

1
γ−1 dt

t
.
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If n > βγ,  Wβ,γ(v
−q)(x) =

∫∞
0

(
∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1 dt

t
,

Wβ,γ(u
−p)(x) =

∫∞
0

(
∫
Bt(x)

u−p(y)dy

tn−βγ
)

1
γ−1 dt

t
,

where Bt(x) is a ball of radius t centered at x, and Bc
t (x) be the complement of

Bt(x).

The Wolff potential Wβ,γ(f) of a positive function f ∈ L1
loc(R

n) was introduced
in [7]. According to the different forms of Wolff potentials, we respectively discuss
the properties of the positive continuous entire solutions in two cases: n < βγ and
n > βγ.

First we consider the case n < βγ.
If γ = 2 and β = α

2
, (1.1) is reduced to u(x) = C1(x)

∫
Rn

v−q(y)
|x−y|n−αdy,

v(x) = C2(x)
∫
Rn

u−p(y)
|x−y|n−αdy.

(1.2)

If c(x) ≡ 1, (1.1) becomes {
u(x) = Wβ,γ(v

−q)(x),

v(x) = Wβ,γ(u
−p)(x),

(1.3)

and (1.2) is reduced to  u(x) =
∫
Rn

v−q(y)
|x−y|n−αdy,

v(x) =
∫
Rn

u−p(y)
|x−y|n−αdy.

(1.4)

An analogous integral system is the one with positive exponent u(x) =
∫
Rn

vq(y)
|x−y|n−αdy,

v(x) =
∫
Rn

up(y)
|x−y|n−αdy.

(1.5)

It is the Euler-Lagrange equation satisfied by the extremal functions of the Hardy-
Littlewood-Sobolev inequality. Lieb proved in [20] that (1.5) has a pair of positive
solutions in Lp+1(Rn)× Lq+1(Rn) if and only if 1

p+1
+ 1

q+1
= n−α

n
. Many qualitative

properties (including the radial symmetry, the integrability, and the estimates of
decay rates) can be found in [2], [3], [8], [18] and the references therein. Those
corresponding properties of the Wolff-type integral system with positive exponent{

u(x) = Wβ,γ(v
q)(x),

v(x) = Wβ,γ(u
p)(x),

can be seen in [1], [21] and [11] respectively. In 2016, Lei and Li proved in [17] that{
u(x) = C1(x)Wβ,γ(v

q)(x),

v(x) = C2(x)Wβ,γ(u
p)(x),

(1.6)
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has positive solutions for some double bounded functions C1(x) and C2(x), if and
only if the following Serrin-type condition holds: pq > (γ − 1)2 and

max{βγ(p+ γ − 1)

pq − (γ − 1)2
,
βγ(q + γ − 1)

pq − (γ − 1)2
} < n− βγ

γ − 1
.

These finding provide a theoretical basis for our study of the integrability and asymp-
totic behavior of positive solutions.

For the system with negative exponents, (1.4) is the Euler-Lagrange equation
satisfied by the extremal functions of the Hardy-Littlewood-Sobolev inequality (cf.
[6] and [22]). The existence, the integrability, and the estimates of decay rates of
positive solutions can be found in [12]. The single equation with the negative expo-
nent is associated with the higher-order equation with lower-dimension appearing
in the conformal geometry (cf. [19, 27, 28]).

For system (1.1) with βγ > n, the following

max{p(βγ − n)

γ − 1
,
q(βγ − n)

γ − 1
} > βγ, (1.7)

is called the Serrin-type condition.

Theorem 1.1. Let (u, v) be a pair of positive continuous entire solution of (1.1).
If Serrin-type condition (1.7) does hold, then

min{p(βγ − n)

γ − 1
,
q(βγ − n)

γ − 1
} > βγ. (1.8)

In addition, there exist positive constants c and C > 0 such that for large |x|,

c|x|
βγ−n
γ−1 ≤ u(x) ≤ C|x|

βγ−n
γ−1 , (1.9)

c|x|
βγ−n
γ−1 ≤ v(x) ≤ C|x|

βγ−n
γ−1 , (1.10)

and

(u−1, v−1) ∈ Ls(Rn)× Ls(Rn), ∀ s > n(γ − 1)

βγ − n
. (1.11)

Theorem 1.2. Let (u, v) be a pair of positive continuous entire solution of (1.3)
and (1.7) does hold, then

lim
|x|→∞

u(x)|x|
n−βγ
γ−1 =

γ − 1

βγ − n
[

∫
Rn
v−q(y)dy]

1
γ−1 ,

lim
|x|→∞

v(x)|x|
n−βγ
γ−1 =

γ − 1

βγ − n
[

∫
Rn
u−p(y)dy]

1
γ−1 .

.

Theorem 1.3. If Serrin-type condition (1.7) does hold, then the radial functions

u(x) = (1 + |x|2)θ1 , v(x) = (1 + |x|2)θ2 ,

solve (1.1) for some double bounded functions C1(x), C2(x), where 2θ1 = 2θ2 =
βγ−n
γ−1 .

Next, we consider the case n > βγ.
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We know that the Wolff potential is helpful to well understand the nonlinear
PDEs and other nonlinear problems (cf. [9, 10, 14, 16, 23]). For example, W1,γ(f)
and W 2k

k+1
,k+1(f) can be used to estimate involving positive solution of the γ-Laplace

system {
−div(|∇u|γ−2∇u) = v−q,

−div(|∇v|γ−2∇v) = u−p,
(1.12)

and the k-Hessian system {
Fk[u] = v−q,

Fk[v] = u−p,
(1.13)

where Fk[u] = Sk(λ(D2u)), λ(D2u) = (λ1, λ2, · · ·, λn), with λi being eigenvalues of
the Hessian matrix(D2u), and Sk(·) is the k − th symmetric function

Sk(λ) =
∑

1≤i1<···<ik≤n

λi1λi2 · · · λik .

Special cases of (1.13) are F1[u] = ∆u and Fn[u] = det(D2u).

Consider the positive solution of integral equation with negative exponents

u(x) = C(x)

∫ ∞
0

(

∫
Bt(x)

u−p(y)dy

tn−βγ
)

1
γ−1

dt

t
. (1.14)

In 2015, Lei obtained the nonexistence of the radial solution for (1.14) and showed
that the positive solutions of (1.14) neither decay nor increase uniformly with power
functions (cf. [13]). Those results are different from the properties of the Wolff-type
equations with positive exponents in [4], [5], [15], [24], [25] and [26]. For system
(1.1), we have the same conclusion.

Theorem 1.4. For any double bounded function C1(x), C2(x), (1.1) has no radial

solution as the form u(x) = (1 + |x|2)
θ3
2 and v(x) = (1 + |x|2)

θ4
2 , where θ3 and θ4

are any real numbers.

Theorem 1.5. Assume that (1.1) has a pair of positive solutions (u, v). Then there

do not exist C1, C2 > 0 such that u(x) ≤ C1(1+ |x|2)−
θ5
2 and v(x) ≤ C2(1+ |x|2)−

θ6
2 ,

where θ5 ≥ 0 and θ6 ≥ 0.

Theorem 1.6. Assume that (1.1) has a pair of positive solutions (u, v). Then there

do not exist C1, C2 > 0 such that u(x) ≥ C1(1 + |x|2)
θ7
2 and v(x) ≥ C2(1 + |x|2)

θ8
2 ,

where θ7 > 0 and θ8 > βγ/q, or θ7 > βγ/p and θ8 > 0.

We have the following corollary naturally.

Corollary 1.1. The conclusions in Theorems 1.1-1.6 are still true for (1.2).

Corollary 1.2. For (1.12) and (1.13), the conclusions in Theorems 1.4-1.6 are
still true.

2 Case of n < βγ

In this section, we prove of Theorems 1.1-1.3.
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Proof of Theorem 1.1. Without loss of generality, we assume that 0 < p ≤ q.
Thus by the Serrin-Type condition (1.7), there holds

q >
βγ(γ − 1)

βγ − n
. (2.1)

For |x| > R with some large R > 0, we have

u(x) ≥ c

∫ |x|
2

0

(

∫
B1(0)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t
≥ c|x|

βγ−n
γ−1 , (2.2)

v(x) ≥ c

∫ |x|
2

0

(

∫
B1(0)

u−p(y)dy

tn−βγ
)

1
γ−1

dt

t
≥ c|x|

βγ−n
γ−1 . (2.3)

Similarly, for large |x|,

u1(x) := C1(x)

∫ 2|x|

0

(

∫
Bct (x)

⋂
BR(0)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t
≤ C|x|

βγ−n
γ−1 .

By (2.1) and (2.3), we deduce

u2(x) :=C1(x)

∫ 2|x|

0

(

∫
Bct (x)\BR(0)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤C
∫ 2|x|

0

(

∫∞
R
rn−q

βγ−n
γ−1 dr

r

tn−βγ
)

1
γ−1

dt

t

≤C|x|
βγ−n
γ−1 ,

and

u3(x) :=C1(x)

∫ ∞
2|x|

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤C
∫ ∞
2|x|

(

∫∞
t−|x| r

n−q βγ−n
γ−1 dr

r

tn−βγ
)

1
γ−1

dt

t

≤C|x|
βγ−q βγ−nγ−1

γ−1

≤C|x|
βγ−n
γ−1 .

Therefore, we get

u(x) := u1(x) + u2(x) + u3(x) ≤ C|x|
βγ−n
γ−1 .

This result, together with (2.2), implies (1.9).

Now, (1.9) leads to

∞ >v(x) ≥ c

∫ ∞
|x|

(

∫
Bct (x)

u−p(y)dy

tn−βγ
)

1
γ−1

dt

t

≥c
∫ ∞
|x|

(

∫∞
t−|x| r

n−p βγ
γ−1

tn−βγ
)

1
γ−1

dt

t

≥c
∫ ∞
|x|

t
βγ − pβγ−n

γ−1

γ − 1

dt

t
.
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This implies βγ − pβγ−n
γ−1 < 0, i.e. p > βγ(γ−1)

βγ−n . Therefore, (1.8) does hold. By the

same way of derivation of (1.9), using (1.8) we also get (1.10).

Finally, we prove (1.11). By (1.9), there exists R > 0 such that

u(x) ≥ c|x|
βγ−n
γ−1 , |x| > R.

Therefore, for each s > n(γ−1)
βγ−n ,∫

Rn
u−s(x)dx ≤

∫
BR(0)

u−s(x)dx+

∫
BcR(0)

u−s(x)dx

≤C + C

∫ ∞
R

rn−s
βγ−n
γ−1

dr

r

<∞.

Similarly, v−1 ∈ Ls(Rn). �

Proof of Theorem 1.2. According to Theorem 1.1, we know that (1.8) holds.
Therefore, by (1.11), we see∫

Rn
u−p(x)dx <∞,

∫
Rn
v−q(x)dx <∞.

Step 1. We claim that

lim inf
|x|→∞

|x|
n−βγ
γ−1 u(x) ≥ γ − 1

βγ − n
(

∫
Rn
v−q(x)dx)

1
γ−1 .

In fact, for any given R > 0 and ε ∈ (0, 1), when t ∈ (0, ε|x|), we have BR(0) ⊂
Bc
t (x) for large |x|. Therefore,

u(x) ≥
∫ ε|x|

0

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≥
∫ ε|x|

0

t
βγ−n
γ−1

dt

t
(

∫
BR(0)

v−q(y)dy)
1

γ−1

=
γ − 1

βγ − n
(ε|x|)

βγ−n
γ−1 (

∫
BR(0)

v−q(y)dy)
1

γ−1 .

Therefore,

lim inf
|x|→∞

|x|
n−βγ
γ−1 u(x) ≥ γ − 1

βγ − n
ε
βγ−n
γ−1 (

∫
BR(0)

v−q(y)dy)
1

γ−1 .

Letting ε→ 1 and R→∞ in the inequality above yields our claim.
Step 2. We claim that

lim sup
|x|→∞

|x|
n−βγ
γ−1 u(x) ≤ γ − 1

βγ − n
(

∫
Rn
v−q(x)dx)

1
γ−1 .

For any given ε > 1, we have

u(x) =

∫ ε|x|

0

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t
+

∫ ∞
ε|x|

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

:=u1(x) + u2(x).
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Clearly,

u1(x) =

∫ ε|x|

0

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤
∫ ε|x|

0

t
βγ−n
γ−1

dt

t
(

∫
Rn
v−q(y)dy)

1
γ−1

=
γ − 1

βγ − n
(ε|x|)

βγ−n
γ−1 (

∫
Rn
v−q(y)dy)

1
γ−1 .

Letting |x| → ∞ and then letting ε→ 1, we get

lim sup
|x|→∞

|x|
n−βγ
γ−1 u1(x) ≤ γ − 1

βγ − n
(

∫
Rn
v−q(x)dx)

1
γ−1 .

Next, we claim that

lim sup
|x|→∞

|x|
n−βγ
γ−1 u2(x) = 0. (2.4)

In fact, by Theorem 1.1 we get

|x|
n−βγ
γ−1 u2(x) =|x|

n−βγ
γ−1

∫ ∞
ε|x|

(

∫
Bct (x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤C|x|
n−βγ
γ−1

∫ ∞
ε|x|

(

∫∞
t−|x| r

n−q βγ−n
γ−1 dr

r

tn−βγ
)

1
γ−1

dt

t

≤C|x|
n−βγ
γ−1

∫ ∞
ε|x|

t
βγ−q βγ−nγ−1

γ−1
dt

t

≤C|x|
n−q βγ−nγ−1

γ−1 .

Letting |x| → ∞ and using (1.8), we obtain (2.4), and hence the claim is proved.
Combining Step 1 and Step 2, we obtained the asymptotic estimation of positive

solution u(x). Similarly, the asymptotic estimation of v(x) is also obtained. �

Proof of Theorem 1.3. Set

u(x) = (1 + |x|2)θ1 , v(x) = (1 + |x|2)θ2 ,

where 2θ1 = 2θ2 = βγ−n
γ−1 .

Clearly, for |x| ≤ R with some R > 0, Wβ,γ(v
−q) and Wβ,γ(u

−p) are bounded,
and hence they are proportional to u(x) and v(x), respectively.

For |x| > R, similar to the proof of Theorem 1.1, there exist positive constants
c1, c2, C1, C2 such that

c1|x|
n−βγ
γ−1 ≤ Wβ,γ(v

−q) ≤ C1|x|
n−βγ
γ−1 ,

c2|x|
n−βγ
γ−1 ≤ Wβ,γ(u

−p) ≤ C2|x|
n−βγ
γ−1 .

Thus, for large |x|, there holds

c1Wβ,γ(v
−q) ≤ u(x) ≤ C1Wβ,γ(v

−q),

c2Wβ,γ(u
−p) ≤ v(x) ≤ C2Wβ,γ(u

−p),
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for all x ∈ Rn. Write
C1(x) = u(x)[Wβ,γ(v

−q)]−1,

C2(x) = v(x)[Wβ,γ(u
−p)]−1.

Then C1(x) and C2(x) are double bounded, and system (1.1) has a pair of radial
solutions (u, v). �

3 Case of n > βγ

In this section, we prove of Theorems 1.4-1.6.

Proof of Theorem 1.4. Without loss of generality, if (u, v) solves (1.1) with

u(x) = (1 + |x|2)
θ3
2 , v(x) = (1 + |x|2)

θ4
2 , (3.1)

for some double bounded C1(x) and C2(x). There holds

u(x) ≥c
∫ ∞
2|x|

(

∫
Bt(x)\B1(0)

(1 + |y|2)−
qθ4
2 dy

tn−βγ
)

1
γ−1

dt

t

≥c
∫ ∞
2|x|

(

∫ t−|x|
1

rn−qθ4 dr
r

tn−βγ
)

1
γ−1

dt

t
.

(3.2)

If θ4 ≤ βγ
q

, by (3.2),

u(x) ≥ c

∫ ∞
2|x|

t
βγ−qθ4
γ−1

dt

t
=∞.

It is impossible. Thus θ4 >
βγ
q

.

Suppose for large R > 0, there exists C > 0 such that

v(x) ≥ C|x|θ4 , (3.3)

with θ4 >
βγ
q

as |x| > R.

If t ∈ (0, |x|
2

) and y ∈ Bt(x), it follows that |x|
2
< |y| < 3|x|

2
. Therefore, by (3.3),

we have

u1(x) :=C1(x)

∫ |x|
2

0

(

∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤C|x|−
qθ4
γ−1

∫ |x|
2

0

t
βγ
γ−1

dt

t

≤C|x|
βγ−qθ4
γ−1 ,

u2(x) :=C1(x)

∫ ∞
|x|
2

(

∫
Bt(x)

⋂
BR(0)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤C
∫ ∞
|x|
2

t
βγ−n
γ−1

dt

t

≤C|x|
βγ−n
γ−1 ,
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and

u3(x) :=C1(x)

∫ ∞
|x|
2

(

∫
Bt(x)\BR(0)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≤c
∫ ∞
|x|
2

(

∫ |x|+t
R

rn−qθ4 dr
r

tn−βγ
)

1
γ−1

dt

t
.

In view of θ4 >
βγ
q

, there holds

u3(x) ≤ C

∫ ∞
|x|
2

t
βγ−qθ4
γ−1

dt

t
≤ C|x|

βγ−qθ4
γ−1 , n > qθ4,

u3(x) ≤ C

∫ ∞
|x|
2

(
ln t

tn−βγ
)

1
γ−1

dt

t
≤ C|x|

βγ−n+δ
γ−1 , n = qθ4,

u3(x) ≤ C

∫ ∞
|x|
2

t
βγ−n
γ−1

dt

t
≤ C|x|

βγ−n
γ−1 , n < qθ4,

where δ > 0 is sufficiently small. Clearly,

u(x) := u1(x) + u2(x) + u3(x) ≤ C|x|
µ1
γ−1 , (3.4)

where µ1 := max{βγ− qθ4, βγ−n+ δ}. We can see that µ1 < 0. It contradicts with
θ4 >

βγ
q
> 0. �

Lemma 3.1. Let (1.1) has a pair of positive continuous entire solutions (u, v).
Then there exists C > 0 such that for all x ∈ BR(0) with any R > 0,
if 1 < γ < 2,

u(x) ≥ CR
βγ−n
γ−1 (

∫
BR(0)

v−q(y)dy)
1

γ−1 ,

v(x) ≥ CR
βγ−n
γ−1 (

∫
BR(0)

u−p(y)dy)
1

γ−1 ,

if γ ≥ 2,

u(x) ≥ CR
βγ
γ−1
−n

∫
BR(0)

v−
q

γ−1 (y)dy,

v(x) ≥ CR
βγ
γ−1
−n

∫
BR(0)

u−
p

γ−1 (y)dy.

Proof of Lemma 3.1. Step 1. If 1 < γ < 2, by the Hölder inequality, for any
R > 0, there holds∫ R

0

∫
Bt(x)

v−q(y)dydt ≤[

∫ R

0

(

∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t
]γ−1(

∫ R

0

t
n−βγ+1

2−γ
dt

t
)2−γ

≤CRn−βγ+1[

∫ R

0

(

∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t
]γ−1.
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Therefore, for all x ∈ BR(0), by exchanging the integral variants, we have

u(x) ≥c
∫ 2R

0

(

∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≥cR−
n−βγ+1
γ−1 [

∫ 2R

0

∫
Bt(x)

v−q(y)dydt]
1

γ−1

≥cR−
n−βγ+1
γ−1 [

∫
B2R(0)

v−q(y)

∫ 2R

|x−y|
dtdy]

1
γ−1

≥cR−
n−βγ
γ−1 (

∫
BR(0)

v−q(y)dy)
1

γ−1 .

This is the estimation of u(x). Similarly, v(x) also has the corresponding result.
Step 2. If γ ≥ 2, for any R > 0, there holds∫

Bt(x)

v−
q

γ−1 (y)dy ≤ (

∫
Bt(x)

v−q(y)dy)
1

γ−1 t
n(γ−2)
γ−1 .

Thus for all x ∈ BR(0), we get by exchanging the integral variants that

u(x) ≥c
∫ 2R

0

(

∫
Bt(x)

v−q(y)dy

tn−βγ
)

1
γ−1

dt

t

≥c
∫ 2R

0

∫
Bt(x)

v−
q

γ−1 (y)dyt
βγ
γ−1
−ndt

t

≥c
∫
B2R(0)

v−
q

γ−1 (y)

∫ 2R

|x−y|
t
βγ
γ−1
−ndt

t
dy

≥cR
βγ
γ−1
−n

∫
BR(0)

v−
q

γ−1 (y)dy.

This is the estimation of u. Similarly, v also has the corresponding result. �

Proof of Theorem 1.5. We prove Theorem 1.5 by contradiction. Without loss of
generality, if there exists C2 > 0 such that for |x| > R with large R > 0, there holds

v(x) ≤ C2|x|−θ6 . (3.5)

Step 1. When θ6 = 0, (3.5) means

v(x) ≤ C2.

Therefore

u(x) ≥ c

∫ ∞
1

(

∫
Bt(x)

C−q2 dy

tn−βγ
)

1
γ−1

dt

t
≥ c

∫ ∞
1

t
βγ
γ−1

dt

t
=∞.

It is impossible.
Step 2. When θ6 > 0, (3.5) shows that for all s > n

θ6
,∫

Rn
vs(y)dy ≤

∫
BR(0)

vs(y)dy +

∫
BcR(0)

vs(y)dy

≤C + C

∫ ∞
R

rn−sθ6
dr

r

<∞.

(3.6)
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Step 2.1. If 1 < γ < 2, by Lemma 3.1, for any R > 0, and some large s > n
θ6

, we
have

CRn =

∫
BR(0)

vt(y)v−t(y)dy

≤C(

∫
BR(0)

vs(y)dy)t/s(

∫
BR(0)

v−q(y)dy)t/qRn(1−t/s−t/q)

≤CR
t(n−βγ)

q
+n(1− t

s
− t
q
)u

t(γ−1)
q (0)(

∫
BR(0)

vs(y)dy)
t
s ,

(3.7)

where t ∈ (0,min{s, q}). Clearly, t(n−βγ)
q

+ n(1− t
s
− t

q
)− n < 0. Letting R→∞ in

(3.7) and using (3.6), we can get a contradiction.
Step 2.2. If γ ≥ 2, by Lemma 3.1, for any R > 0 some large s > n

θ6
, by Hölder

inequality, we have

CRn =

∫
BR(0)

vt(y)v−t(y)dy

≤C(

∫
BR(0)

v−
q

γ−1 (y)dy)
(γ−1)t
q (

∫
BR(0)

vs(y)dy)
t
sRn(1− t

s
− γ−1

q
t)

≤CR(n− βγ
γ−1

)
t(γ−1)
q

+n(1− t
s
− γ−1

q
t)u

t(γ−1)
q (0)(

∫
BR(0)

vs(y)dy)
t
s ,

(3.8)

where t ∈ (0,min{s, q
γ−1}). Similarly, (n − βγ

γ−1) t(γ−1)
q

+ n(1 − t
s
− γ−1

q
t) − n < 0.

Thus, letting R→∞ in (3.8), we can get a contradiction. �

Proof of Theorem 1.6. Without loss of generality, we suppose that there exist
C1, C2 > 0, there holds

u(x) ≥ C1|x|θ7 , v(x) ≥ C2|x|θ8 , (3.9)

for |x| > R with large R > 0, where θ7 > 0 and θ8 > βγ/q. Then, for all k1 >
n
θ8

,∫
Rn
v−k1(y)dy ≤

∫
BR(0)

v−k1(y)dy +

∫
BcR(0)

v−k1(y)dy

≤C + C

∫ ∞
R

rn−k1θ8
dr

r

<∞.

(3.10)

Similarly, for all k3 >
n
θ7

, ∫
Rn
u−k3(y)dy <∞. (3.11)

By the Wolff-type inequality (cf. Corollary 2.1 in [21]), we have

‖u‖k2 ≤ C‖Wβ,γ(v
−q)‖k2 ≤ C‖v−1‖

q
γ−1
sq , (3.12)

where k2, s > 1 satisfy
γ − 1

k2
=

1

s
− βγ

n
.

11



In view of θ8 > βγ/q, we can choose sk2 suitably large such that sq > n/θ8.
Therefore, by (3.10), from (3.12) it follows that

u ∈ Lk2(Rn). (3.13)

By (3.11) and (3.13), for any R > 0 and some small L > 0, we get

Rn = C

∫
BR(0)

uL(y)u−L(y)dy ≤ C(

∫
BR(0)

u−k3(y)dy)
L
k3 (

∫
BR(0)

uk2(y)dy)
L
k 2 <∞.

Letting R→∞ in the result above, we get a contradiction. �

4 Proof of Corollaries

In this section, we prove Corollaries 1.1 and 1.2.

Proof of Corollary 1.1..

If n > α, by exchanging the integral variants we get

1

α− n

∫
Rn

v−q(y)

|x− y|n−α
dy

=

∫
Rn
v−q(y)dy

∫ ∞
|x−y|

tα−n
dt

t

=

∫ ∞
0

∫
Bt(x)

v−q(y)dy

tn−α
dt

t
.

Similarly, if n < α, we have

1

α− n

∫
Rn

v−q(y)

|x− y|n−α
dy

=

∫
Rn
v−q(y)dy

∫ |x−y|
0

tα−n
dt

t

=

∫ ∞
0

∫
Bct (x)

v−q(y)dy

tn−α
dt

t
.

Similarly, by the same argument on u(x), we get

1

α− n

∫
Rn

u−p(y)

|x− y|n−α
dy =

∫ ∞
0

∫
Bt(x)

u−p(y)dy

tn−α
dt

t
.

1

α− n

∫
Rn

u−p(y)

|x− y|n−α
dy =

∫ ∞
0

∫
Bct (x)

u−p(y)dy

tn−α
dt

t
.

This show that (1.1) is equivalent to (1.2) with γ = 2 and βγ = α. �

Proof of Corollary 1.2.
According to the results in [9], [10] and [23], if (u, v) is a pair of positive entire

solutions of (1.12) or (1.13) in Rn, we can find C1, C2 > 0 such that

C−11 Wβ,γ(v
−q)(x) ≤ u(x) ≤ C1Wβ,γ(v

−q)(x) + C1 inf
Rn
u, x ∈ Rn, (4.1)

12



C−12 Wβ,γ(u
−p)(x) ≤ v(x) ≤ C2Wβ,γ(u

−p)(x) + C2 inf
Rn
v, x ∈ Rn. (4.2)

Step 1. We claim that the conclusions of Lemma 3.1 and Theorem 1.5 are true for
(1.12) or (1.13).

Without loss of generality, if there exist C1, C2 > 0 such that u(x) ≤ C1(1 +
|x|2)−θ5/2 and v(x) ≤ C2(1 + |x|2)−θ6/2 with θ5, θ6 ≥ 0, then

inf
Rn
v ≤ 1, (4.3)

inf
Rn
u ≤ 1. (4.4)

Clearly, (4.4) implies

Wβ,γ(u
−p)(x) ≥

∫ 3

2

(
|Bt(x)|
tn−βγ

)
1

γ−1
dt

t
≥ c > 0. (4.5)

Combining (4.3) with (4.5) yields

inf
Rn
v ≤ CWβ,γ(u

−p)(x).

Inserting this into (4.2) leads to

C−12 Wβ,γ(u
−p)(x) ≤ v(x) ≤ C2Wβ,γ(u

−p)(x), x ∈ Rn. (4.6)

Set
C2(x) = v(x)(Wβ,γ(u

−p)(x))−1.

Then C2(x) are double bounded and

v(x) = C2(x)Wβ,γ(u
−p)(x).

By the same proof of Theorem 1.5, we also deduce a contradiction.
Step 2. (i) If θ3, θ4 ≤ 0, we know that the conclusions of Theorem 1.4 are true for
(1.12) or (1.13) by the same argument in Step 1.

(ii) If θ3, θ4 > 0, we deduce a contradiction in two cases.
In the case of 0 < θ4 ≤ βγ

q
, there holds

Wβ,γ(v
−q)(x) ≥c

∫ ∞
2|x|

(

∫
Bt(x)\B1(0)

(1 + |y|2)−
qθ4
2 dy

tn−βγ
)

1
γ−1

dt

t

≥c
∫ ∞
2|x|

(

∫ t−|x|
1

(rn−qθ4 dr
r

tn−βγ
)

1
γ−1

dt

t

≥c
∫ ∞
2|x|

t
βγ−qθ4
γ−1

dt

t

=∞.

Therefore, by (4.1) we see u(x) =∞. It is impossible.
In the case of θ4 >

βγ
q

, similar to the calculation of (3.4), we also have

Wβ,γ(v
−q)(x) ≤ C1|x|σ, |x| > R,
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where R is a suitably large positive constant, and

σ =
1

γ − 1
max{βγ − qθ4, βγ − n+ δ},

with δ > 0 is sufficiently small. Thus, σ < 0.

In addition,
inf
Rn
u ≤ u(0). (4.7)

Therefore, by (4.1), we get

u(x) ≤ C(|x|σ + u(0)) ≤ C, |x| > R.

This is contradicts u(x) ≥ C1(1 + |x|2)θ3 with θ3 > 0.

(iii) When θ3θ4 < 0, without loss of generality, we assume θ3 > 0, θ4 < 0.
By (4.1), we have

u(x) ≤ CWβ,γ(v
−q)(x) + inf

Rn
u,

for x ∈ Rn. Thus,

Wβ,γ(v
−q)(x) ≥ C−1(u(x)− u(0)) ≥ c(1 + |x|2)θ3/2 ≥ c,

as long as |x| > R with some large R > 0. Combining with (4.7), we also get

inf
Rn
u ≤ CWβ,γ(v

−q)(x).

Inserting this into (4.1) yields

C−11 Wβ,γ(v
−q)(x) ≤ u(x) ≤ C1Wβ,γ(v

−q)(x),

for |x| > R. Set
C1(x) = u(x)(Wβ,γ(v

−p)(x))−1.

Then C1(x) are double bounded and

u(x) = C1(x)Wβ,γ(v
−q)(x).

By the same proof of Theorem 1.4, we also deduce a contradiction.
Step 3. The conclusions of Theorem 1.6 are still true for (1.12) or (1.13). The
proof is same of (3) in Step 2. �
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