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Practical Implications  
 

In this paper, we show how to leverage open data and open source software to develop flexible, 

probabilistic monthly and seasonal (three-month) precipitation forecasts for the Pacific region. We 

leverage freely available data from state-of-the-art General Circulation Models and make use of recent 

advances in open-source software ecosystems allowing the processing of large datasets. We provide an 

example of how probabilistic forecast information can be integrated with real-time rainfall monitoring, 

in order to potentially highlight areas in the tropical Pacific region which are at risk of water stress (i.e., 

where rainfall has recently been in deficit and forecasts indicate a high likelihood of dry conditions to 

persist or worsen).  

The water stress product was developed in response to feedback from Pacific Island National 

Meteorological Services and is incorporated in a new version of the Island Climate Update, a regional 

rainfall monitoring and forecasting bulletin for Pacific Island nations and regional support agencies. 

This  operational product aims to provide the regional  with an early alert on island groups which are at 

risk of developing water stress, allowing resources and assistance to be mobilised and directed ahead of 

time.  

Introduction  
 

Pacific Island countries (PICs) are impacted by large rainfall variability, arising from variations in the 

position and intensity of the South Pacific Convergence Zone (SPCZ, Vincent 1994, Widlansky et al, 2011, 

Brown et al, 2020) and the Intertropical Pacific Convergence Zone (ITCZ, Schneider et al. 2014). Extreme 

phases of El Niño-Southern Oscillation (ENSO, see e.g. Neelin et al, 1998) can lead to multi-year drought. 

Generally, islands close to the Equator and east of the International Dateline experience dry conditions 

during La Niña phases of ENSO, while many countries west of the Dateline experience lower rainfall 

during El Niño (Cottrill et al. 2013). A majority of Pacific Islanders, particularly in rural areas and outer-

islands, rely on subsistence agriculture (Geogeou et al, 2022), which can be subject to food security risks 

arising from a range of weather and climate-related extremes.  These extremes also impact water 

security with reliance on rainwater harvesting  and shallow groundwater lenses commonplace on low-

lying islands and atolls that  are subject to water quality and water shortage issues during prolonged 

drought or deluge episodes (Iese et al, 2021). 

Precipitation variability associated with ENSO is projected to increase in the Pacific in response to 

climate change (Power and Delage, 2018, Yun et al, 2021), which will further threaten water and food 

security in the region. As such, better climate forecasts (i.e., one month to season ahead) are becoming 

increasingly recognized as an important component of successful climate change adaptation strategies. 

This has been notably the impetus behind the establishment of the World Meteorological Organisation’s 

(WMO) Global Framework for Climate Services (Hewitt et al, 2012), and the Pacific Islands Climate 

Services (PICS) panel, a regional advisory group to the Pacific Meteorological Council (PMC), whose 

objective is to strengthen the capacity of National Meteorological and Hydrological Services (NMHSs) in 
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observing and understanding weather and climate and in providing related services in support of 

national needs (WMO, see: https://public.wmo.int/en/our-mandate/how-we-do-it/role-and-operation-

of-nmhss). It has also recently motivated the establishment of the WMO Regional Association V Pacific 

Regional Climate Centre (RCC) Network, a virtual Centre of Excellence that assists National 

Meteorological and Hydrological Services (NMHSs) in the Pacific Islands region to deliver better climate 

services and products and to strengthen their capacity to meet national climate information and service 

delivery needs (See https://www.pacificmet.net/rcc). 

Both statistical and dynamical approaches can be used to produce monthly to seasonal climate 

forecasts. Statistical approaches harness empirical relationships between target variables (such as time-

series of monthly or seasonal precipitation accumulations) and indices representative of known climate 

modes such as ENSO, while dynamical approaches use initialised General Circulation Models (GCMs, see 

Meehl et al, 2021). Notably, coupled ocean – atmosphere GCMs provide physically consistent fields of 

atmospheric and surface climate variables, typically up to six months into the future and aggregated at 

the monthly time-scale (e.g. average monthly temperature or precipitation rates).  

One weakness of a statistical approach is the underlying assumption of stationarity, which is likely to not 

hold in a rapidly warming climate. The WMO’s Guidance on Operational Practices for Objective Seasonal 

Forecasting (WMO, 2020) therefore recommends that regional or national outlooks be based on 

dynamical approaches. It also indicates that large ensembles of dynamical climate forecasts from 

different GCMs (Multi-Model Ensembles or MMEs) tend to perform better than single GCMs. An MME 

forecasting approach can help to better account for the uncertainties that can arise from the initial 

conditions, the absence of strong climate drivers and the differences between GCMs formulations. 

Moreover, MME forecasting easily allows forecasts to be expressed in probabilistic terms, which can 

help communicate uncertainties and be readily translated and communicated in terms of risks.  

Several meteorological institutions provide global monthly and seasonal, probabilistic forecasts, typically 

of tercile categories, i.e. the probabilities for monthly or seasonal aggregated statistics to be below, 

above or between percentile 33.3 and 66.6: Examples of which can be found on the Copernicus Climate 

Change Service; https://cds.climate.copernicus.eu/. The Island Climate Update service delivered by 

NIWA since 2000, adopted a multimodel ensemble seasonal climate outlook approach for Pacific Island 

Countries as early as 2008. This developed and utilized  a semi-objective ensemble method through the 

development of the Multimodel Ensemble Tool for Pacific Islands  (Lorrey et al, 2009; McGree and 

Baleisolomone, 2009). This initial effort has grown from  ensemble outlooks based on a limited number 

of rainfall and SST models to now drawing on a much larger model pool and use of more objective 

methods to create spatially-scaled and seasonally-tuned forecasts for Pacific nations. 

The goal of this study is to illustrate how one can help unlock the full potential of MME forecasts by 

integrating them with other sources of climate or environmental information and allowing for the 

development of more useful and actionable climate services (i.e., when they are one component in a 

wider system, be it combining with real-time climate monitoring systems, or inputs to downstream 

models, such as hydrological, crop or disease models, etc.). This requires the GCM forecast (realtime) 

and hindcast (retrospective forecasts) data to be openly and freely accessible, allowing the derivation of 
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statistics and diagnostic variables tailored to the system into which monthly and seasonal climate 

forecasts are integrated.  

In this paper, we utilize near real-time satellite precipitation estimates and monthly and seasonal 

precipitation forecasts from state-of-the-art GCMs to derive an operational system to highlight areas at 

potential for “water stress” in the Pacific (i.e., where rainfall has recently been in deficit and forecasts 

indicate a high likelihood of dry conditions to persist or worsen). The development of this product was 

initiated in response to feedback from NMHSs and regional institutions who desire the ability to track 

the development of drought conditions in the region with a focus on placing the forecasts in the context 

of current hydroclimate anomalies, and to provide improved representation of the confidence of the 

forecasts.  

In order to allow for reproducibility, extensibility and foster the development of  further climate service 

products in the region, we developed a software library, written in Python, to handle all steps of the 

data processing and visualisation pipeline, as well as a set of commented, example Jupyter notebooks 

(Shen, 2014), which will be briefly described in the present paper.  

The first section presents the data, the methodological choices made in developing the various near-real 

time and probabilistic forecast products, as well as a brief overview of the software infrastructure 

supporting this development.  

The second part of the paper is devoted to the validation of the precipitation forecasts from the MME 

system, including some considerations of what controls the variability in the forecast performance in 

space and time.  

The third part briefly presents the development of a regional product to communicate the monthly and 

seasonal probabilistic forecasts in the context of the antecedent conditions from the  real time 

precipitation estimates to highlight changing regions of potential of water stress across the tropical 

Pacific.  

 

1 Data and methodology 

 

Data  

 

Near- real time gridded precipitation estimates: The GPM-IMERG dataset 

For monitoring the evolution of various precipitation statistics over different past accumulation periods 

in near –real time, we use the Integrated Multi-satellitE Retrievals for GPM (Global Precipitation 

Measurement, hereafter GPM-IMERG, see Huffman et al 2014). The GPM-IMERG algorithm combines 

information from the GPM satellite constellation to estimate precipitation over the majority of the 

Earth's surface. This product is particularly valuable over the Pacific region, where real time in-situ 

(surface station) information is sparse and data quality issues are common. We use specifically the Level 
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3, version 6, daily near- real time product, downloaded from 

https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDL.06/, and available with two days 

latency to real time. While there are known biases and deficiencies in the GPM-IMERG product, these 

are mostly present for daily precipitation and especially extreme precipitation (Silva et al, 2021), it is 

assumed these biases are of relatively low importance in the present study, as we use precipitation 

accumulations (from 30 to 360 days) and are only considering relative quantities (such as percentiles of 

scores) instead of absolute amounts in millimeters.   

Monthly and seasonal GCMs forecasts 

The monthly and seasonal forecasts and hindcasts (retrospective forecasts, also named reforecasts) data 

are sourced from the Copernicus Climate Data Store (CDS), established under the auspices of the 

Copernicus Climate Change Service (C3S). The CDS collects hindcast and forecast data generated by 

eight international institutions, namely the European Centre for Medium-Range Weather Forecasts 

(ECMWF), the United Kingdom Meteorological Office (UKMO, UK), Météo-France (the French 

Meteorological agency), The Deutscher Wetterdienst (DWD, Germany), the Centro Euro-Mediterraneo 

sui Cambiamenti Climatici (CMCC, Italy), the National Centers for Environmental Prediction (NCEP, USA), 

the Japan Meteorological Agency (JMA, Japan) and Environment and Climate Change Canada (ECCC, 

Canada). Together, we will refer to the MME constituted from these GCMs as the C3S MME. Currently, 

complete hindcast (1993-2016) datasets for seven GCMs, and forecasts (2017 – present) datasets for 9 

GCMs are available. 

Some characteristics of the GCMs are summarized in Table 1, more details can be found within the CDS 

documentation, at URL https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts. All GCMs 

are state of the art, operational, and coupled ocean – atmosphere models.  

These data are accessible via an API (Application Programmer Interface, see 

https://github.com/ecmwf/cdsapi) which allows the user to select variables of interest, initial month, 

lead-time (in months), and download the resulting files in grib or netcdf formats, both widely used in the 

meteorological and climate communities.  

Table 1: Some characteristics of the GCMs constituting the C3S MME (more details can be found at 

https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts). 

Originating 
institution  

Forecast system  Hindcast ensemble 
size  

Forecast ensemble size  
(as of 15 March 2022)  

Hindcast 
complete 

ECMWF   SEAS5 25 51 Yes 

UKMO GloSea6-GC3.2 28 56  Yes 

Météo-France Météo-France 
System 8 

25 51 Yes 

DWD GCFS 2.1 30 50 Yes 

CMCC CMCC-SPS3.5 40 50 Yes 

NCEP CFSv2 20 112 Yes 

https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDL.06/
https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts
https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts
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JMA JMA/MRI-CPS3 10 140 Yes 

ECCC  CanCM4i 10 10 No 

ECCC  GEM5-NEMO 10 10 no 

 

The total number of members in the MME for the seven GCMs where  the hindcast data is complete 

(ECMWF, UKMO, Météo-France, CMCC, DWD, NCEP and JMA) is therefore 198, while at the time of  

writing, operationally the forecast MME comprises 560 members from nine GCMs.  

Observational datasets for forecast validation 

Due to the GPM-IMERG data starting in 2001, we used the following products to validate the 

deterministic and probabilistic forecasts from the individual GCMs and the C3S MME: the ERA5 

(Hersbach et al., 2020) monthly precipitation (taken from the CDS), the CMAP (CPC Merged Analysis of 

Precipitation, Xie and Arkin, 1997) and the MSWEP 2.0 dataset (Beck et al, 2019). We present only the 

results using ERA5 as the conclusions regarding the performance of the individual GCMs and the MME 

are not dependent on the validation dataset. Note that we make available Jupyter notebooks at (see 

https://zenodo.org/record/6658577) allowing one to easily select an alternative validation dataset.   

Quantile-based climatologies  

The system developed relies on the calculation of several climatological quantities, notably quantiles, 

from time-series of satellite precipitation estimates and monthly and seasonal hindcast data.   

For the GPM-IMERG satellite estimates, the percentile of scores for given accumulation periods 

(currently 30, 60, 90, 180 and 360 days) are calculated compared to the archived dataset over the period 

2001 - 2020 (20 years). More specifically, the latest rainfall accumulation is compared to the 

corresponding accumulations ending on the target day of year, + / - buffer of three days, so that a 90-

day accumulation ending on the 30 September 2021 is compared to the 90-day accumulation ending 27, 

28, 29, 30 September as well as 1, 2, 3 October, for each year from 2001 to 2020 (i.e., a total of 7 x 20 = 

140 values).  

These percentiles of scores are then used as the basis for deriving percentile-based drought monitoring 

indices such as the “Early Action Rainfall” (EAR) Watch categories developed by the Climate and Oceans 

Support Programme in the Pacific (COSPPac - http://cosppac.bom.gov.au/) and the US Drought Monitor 

levels (USDM, see Heim et al, 2020). In addition, the Standardized Precipitation Index (SPI) is calculated, 

following the methodology described in Lloyd-Hughes and Saunders (2002). These three indices are 

widely used by PICs NMHSs to monitor drought conditions, using  data from their surface station 

monitoring network where available, and by regional support and development agencies. The satellite-

derived drought indices make it possible to compare and contextualise local to regional drought 

evolution and provide information for areas where real-time in-situ data is lacking or of poor quality.  

The calculation of these indices is done operationally every day, with the corresponding graphical and 

data products, collectively called the NIWA Island Climate Update (ICU), made available on Amazon Web 

Services (AWS), respectively at URLs https://s3.ap-southeast-

https://s3.ap-southeast-2.amazonaws.com/icu.niwa/images/images.html
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2.amazonaws.com/icu.niwa/images/images.html and https://s3.ap-southeast-

2.amazonaws.com/icu.niwa/netcdf/netcdf.html  

Besides theses indices, the rainfall accumulation and anomalies (in mm) as well as the number of dry 

days, and number of days since last rain, are also calculated and made available at the URLs above.  

Figure 1 presents an example of the maps generated at the regional (Pacific) scale. 

 
Figure 1: Standardized Precipitation Index (SPI) over Pacific Island Exclusive Economic Zones (EEZs) calculated for 
the 90 days precipitation accumulation ending 31 May 2022, according to Lloyd-Hughes and Saunders (2002).  

 

For the C3S GCMs, we derive lead-time dependent monthly and seasonal (three month accumulation) 

climatological values from all the corresponding available hindcast data, spanning 1993 to 2016.  

The tercile (percentiles 33.3 and 66.6), quartile (25, 50, 75) and decile (10, 20, …, 90) climatologies are 

calculated using all members of the hindcast’s GCM’s ensemble: e.g. for the ECMWF GCM, the 

climatological quantiles are calculated from the 1993 – 2016 hindcast dataset, which gives a total of 600 

instances (24 years x 25 ensemble members) for each initial month. 

We calculate both the empirical climatological quantiles, as well as parametrized quantiles, whereby a 

Gamma distribution is first fitted (using the L-moments method, Hosking, 1990) to the monthly or 

seasonal accumulations, the differences did not significantly affect the final validations, and 

comparisons with the tercile probabilities displayed on https://climate.copernicus.eu/seasonal-forecasts 

led us to choose the empirically-derived quantiles as the basis for the derivation of the probabilistic 

forecasts.  

In Section 2, we provide validation information for deterministic forecasts and probabilistic forecasts, 

while the ICU products are based primarily on the probabilistic information.  

Deterministic forecasts are defined as the average of the precipitation anomalies across each member of 

each GCM ensemble, calculated with respect to the GCM lead-time dependent ensemble mean 

https://s3.ap-southeast-2.amazonaws.com/icu.niwa/images/images.html
https://s3.ap-southeast-2.amazonaws.com/icu.niwa/netcdf/netcdf.html
https://s3.ap-southeast-2.amazonaws.com/icu.niwa/netcdf/netcdf.html
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climatology derived from the whole hindcast period (1993-2016). The deterministic MME forecast is 

simply calculated as the average of these anomalies across the GCMs.  

Probabilistic forecasts for each GCM are calculated as the proportion of ensemble members (see Table 

1) falling into each quantile category. The MME probabilities are then calculated as the average of the 

individual GCMs’ probabilities, expressed in percentage and summing to 100%.  

Forecast verification metrics 

To quantify the performance of the deterministic forecasts (average of all GCM anomalies) we use the 

Anomaly Correlation Coefficient (ACC): The ACC is dimensionless, varies between -1 and 1, and is a 

measure of the correlation between the spatial patterns of forecast precipitation anomalies and the 

observed patterns, it is therefore a useful measure of the ability of the GCMs to broadly reproduce the 

spatial distribution of rainfall, and therefore the regional scale hydroclimate.  

For the probabilistic forecasts, we use the overall accuracy (or “hit rate”) first, then focus on the lower 

categories for both tercile and quartile probabilistic forecasts (i.e., the forecast probabilities for rainfall 

being below the 1st tercile (< 33rd percentile) and below the 1st quartile (< 25th percentile), respectively, 

given the significance of dry conditions in the region for water security.  

Verification metrics of particular interest when focusing on one categorical forecast are the precision 

and recall.  

The precision is the number of True Positives (TPs) divided by the number of TPs and False Positives 

(FPs): in other words, it is the number of “positive” predictions (i.e., when the lower quantile category is 

the most likely) divided by the total number of “positive” class values predicted. It is also called the 

Positive Predictive Value (PPV). In the context of this system, it answers the question: out of the months 

or seasons that were predicted to be in the ‘dry’ category, how many turned out to be actually dry ? The 

precision is therefore an informative measure when the costs of a False Positive (predicting dry 

conditions that fail to materialize) is high. 

The recall is the number of TPs divided by the number of TPs and False Negatives (FNs). In other words it 

is the number of “positive” predictions divided by the number of “positive” class values in the 

observational data. It is also called Sensitivity or the True Positive Rate. It indicates what proportion of 

the month or seasons when rainfall fell in the lower quantile category were correctly predicted by the 

forecast system. It is therefore a useful measure to determine when the cost of a False Negative (failing 

to predict dry conditions) is high. 

Both precision and recall vary between 0 and 1, with 1 indicating perfect forecasts for the category in 

question.  

The F1 score is given as reference, it is calculated from the precision and recall and is a synthetic 

measure of a categorical forecast’s performance. It is calculated as 2 x ((precision x recall) / (precision + 

recall)), and also varies between 0 and 1.  

Calculation of sub-regional time-series 
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Sub-regional (based on administrative areas or sub-national island groupings , see Figure 2) probabilistic 

forecasts and their validation required the calculation of area-averaged time-series of precipitation from 

GCMs’ hindcasts and forecasts as well as the gridded validation datasets.  

 
Figure 2: Domain for the calculation of the ACC and RMSE (red, boundaries are [35oS – 25oN, 125oE - 120oW]), 
and location of the 73 administrative areas for which regional tercile and quartile probabilistic forecasts are 
provided (orange), in green is highlighted the ‘Islands’ administrative area of Papua New Guinea, used to 
illustrate the derivation of land-sea masks for the calculation of regional time-series (see Figure 3). The average 
December – February cumulative precipitation amounts from ERA5 (1993 – 2016) is shown in blue filled contours 
and display the typical positions of the ITCZ and SPCZ at this time of year.  
  
 

Given the small land area of many Pacific Islands and atolls, the GCM (and all gridded validation datasets 

such as the ERA5 reanalysis) outputs are first interpolated to 0.2 degree (i.e., five times the typical 

original resolution for the GCMs). We use shapefiles that delineate the exclusive economic zone 

boundaries, administrative areas  and  island coastlines to derive land / sea masks for each of the 73 

territorial areas. In order to account for islands and atolls with small land area, we further apply a buffer 

(0.15o) around the coastlines prior to the mask definition. Given the original resolution of the GCM 

outputs, results are very much insensitive to the exact size of the buffer.  Figure 3 illustrates this process 

for the “Islands region” of Papua New Guinea. 
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Figure 3: Example illustrating the derivation of land / sea masks for the Pacific Island countries administrative 
areas: The black line corresponds to the original coastlines for the ‘Islands’ region of Papua New Guinea, the red 
line corresponds to the 0.15o buffer, the gray shading delineates the resulting land-sea mask used to derive 
regional precipitation time-series from the interpolated gridded datasets (GCM hindcasts and forecasts and 
validation datasets).  

 

Combining real time rainfall monitoring and monthly to seasonal climate forecasts  

The system presented in this paper has been developed in order to ultimately combine real time rainfall 

monitoring and monthly or seasonal probabilistic rainfall forecasts to alert national and regional 

institutions around the Pacific of regions that are at potential risk of ‘water stress’: conceptually, one 

wants to highlight regions where significant rainfall deficits occurred recently, and at the same time the 

probabilistic forecasts indicate a high likelihood for dry conditions to persist or worsen. After feedback 

from potential end-users and several iterations, we derived three categories, with criteria based on the 

most recent 90 days rainfall accumulation percentile of score, and the forecast probability for rainfall 

being below or above the 25th percentile (1st quartile) for either the next month or the next 3 months 

accumulation as a whole. Table 2 presents the detailed criteria use to define these categories; an 

example will be provided in the results section. 

ICU “Water Watch” 

category 

Present situation Next month outlook Next 3 months outlook 

1) Current “water stress” 

conditions, potentially 

easing  

Past 90 days rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation >= 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation >= 25th 

percentile 

2) Areas moving into “water 

stress” conditions 

Past 90 days rainfall 

accumulation > 25th 

percentile and < 40th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation < 25th 

percentile 
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3) Current “Water Stress” 

conditions getting worse 

Past 90 days rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation < 25th 

percentile 

 

Software implementation 

The software infrastructure for downloading and processing the data, the calculation of various 

quantities and their graphical representations, as well as all the code necessary to reproduce the results 

and figures presented in this paper are made available freely (https://zenodo.org/record/6658577). It 

has been developed using the open-source language Python (Van Rossum, 2001), and relies heavily on 

the Scientific Python Ecosystem (Virtanen et al, 2020) and in particular the foundational libraries of the 

Pangeo initiative (Hoyer and Hamman, 2017; Abernathey et al, 2017; Brady and Spring, 2021).  

The processing of a large amount of data was facilitated by the underlying dask library (Rocklin, 2015). It 

makes it possible to run all steps of the data processing and analysis pipeline on small-scale hardware 

such as a laptop, even though the complete archive for the C3S MME hindcast datasets (for a surface 

variable such as the precipitation rate of interest here) exceeds 16 GB, (i.e., too large to fit in memory on 

typical laptops hardware). 

 

Results  
 

Validation of deterministic forecasts  

We first present validation results for the deterministic C3S MME forecasts, calculated as the average of 

precipitation anomalies across the seven GCMs for which all initial months are available over the 1993 – 

2016 hindcast period.  
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Figure 4: Anomaly Correlation Coefficient (ACC) between the individual GCMs precipitation reforecasts (1993 – 
2016) and ERA5 precipitation for a) monthly accumulations b) seasonal (3 months) accumulations anomalies, 
over the domain [35oS – 25oN, 125oE – 120oW, see Figure 2]. The leadtime (x-axis) is given in months (seasons) 
from the initial month, so that e.g. leadtime 1 for monthly (seasonal) forecasts initialized in January corresponds 
to February (February – April) accumulations.  

 

Figure 4 confirms that overall, the C3S MME performs better than even the ‘best’ GCM (ECMWF in this 

instance). This is in line with the WMO (2020) conclusions: The average of forecast inputs (the multi-

model ensemble approach) is statistically a better predictor of observed climate than a single model 

alone and makes combining different climate model predictions advantageous and an advisable 

approach (See SPECS (2016) for a review on this topic). The ACC for seasonal (three month 

accumulation) is also significantly larger than for monthly accumulations, and, as expected, the 

performance degrades as the lead-time increases. 

As the next season (three month) period is generally the focus of PICs NMHSs national outlook bulletins, 

we will mainly focus on this time scale and lead-time in the rest of this paper, however the code allows 

replication of the following figures for the monthly time-scale and for other lead-times.  

As expected, the performance of the individual GCMs and the C3S MME is significantly seasonally 

dependent: Figure 5 shows the one season lead-time ACC as a function of the month of the initialization  

 
Figure 5: ACC over the domain [35oS – 25oN, 125oE - 120oW] for one season ahead forecasts, as a function of the 
initial month (i.e. January initial month corresponds to FMA forecasts and so on)  
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Generally speaking, seasonal forecasts for December-February (DJF, initialised in November) have the 

highest ACC. The lowest ACC is found for forecasts initialized in March (i.e. for the AMJ forecast period). 

Three GCMs are characterized by low ACC during the Austral autumn period: Météo-France, NCEP and 

DWD. Removing these three GCMs from the MME however only leads to very marginal improvement on 

the overall MME’s ACC during this period. The maximum difference found is for forecasts initialised in 

April, where the ACC for the “reduced” MME is 0.58 instead of 0.55. On the other hand, the removal of 

these GCMs from the MME tends to slightly decrease the MME’s ACC during Austral summer. The same 

seasonal patterns and conclusions regarding the removal of Météo-France, NCEP and DWD from the 

MME also hold for longer lead-times. 

The ACC variability for seasonal values at one season lead-time is shown in Figure 6. There is a 

considerable amount of variability in the ability of the individual GCMs – and the MME – to reproduce 

the observed overall pattern of rainfall anomalies over the Pacific domain.  

 
Figure 6: ACC variability for each target season from March – May 1993 to October – December 2016. Gray lines: 
individual GCMs, black line: Multi-Model Ensemble, blue line: Centered, 5 points running average of the MME’s 
ACC.   

 

At one season lead-time, the ACC for the C3S MME exceeds 0.6 40% of the time, and exceeds 0.4 75% of 

the time, but about 3% of the seasons are associated with ACC <= 0.2.  

Given the important role of ENSO in controlling the intensity and position of the Pacific Convergence 

Zones (Widlansky et al, 2011), it can be assumed that the variability in the ability of the GCMs (and 

MME) to forecast the patterns of precipitation anomalies over the Pacific region is at least partially 

dependent upon the state and characteristics of ENSO when the GCMs are initialised. We chose to 

investigate this dependency using three widely used SST (Sea Surface Temperature) ENSO indices 

(Trenberth and Stepaniak, 2001) : The Niño 3.4 index (190o to 240oE, 5oS to 5oN) representative of the 
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standard ‘canonical’ ENSO events, The Trans-Niño Index (TNI), calculated as the difference between the 

Nino1+2 index (270o to 280oE, 10oS to Equator) and the Nino4 index (160oE to 210oE), 5oS to 5oN) and 

representative of the east – west gradient in SST anomalies, as well as the El Niño “Modoki” index (EMI) 

used to capture the El Niño Modoki phenomenon (also sometimes referred to as “Central Pacific El 

Niño”) whereby the maximum SST anomalies is located towards the central rather than the eastern 

Pacific (Ashok et al 2007), the EMI being calculated as:  

EMI = [SSTA]A – 0.5*[SSTA]B – 0.5*[SSTA]C  (1) 

The brackets in equation (1) represent the area-averaged SSTA over each of the region A (165°E–140°W, 

10°S–10°N), B (110°W–70°W, 15°S–5°N), and C (125°E–145°E, 10°S–20°N), respectively. 

All indices are calculated using the detrended monthly SST anomalies from the ERSST version 5 dataset 

(Huang et al. 2017). We use a 1993 – 2016 climatology to be consistent with the leadtime-dependent 

climatologies calculated from the C3S GCMs.  

We then use a threshold of +/- 1 standard deviation to define positive (> +1 std), negative (< - 1 std) and 

neutral phases (>= -1 std and <= +1 std) for each of the above indices.  

For reference, the Figure 7 shows the Pacific-wide SST anomalies associated with each index and phase  

 
Figure 7: SST (ERSSTv5) anomalies for the different phases of the Nino3.4, EMI and TNI indices. The detrended anomalies 
have been calculated with respect to a 1993-2016 climatology. The same threshold of +/- 1 standard deviation has been used 
to define the positive (> +1 std), negative (< - 1 std) and neutral phases (>= -1 std and <= +1 std) phases for each index.  

 

The most prominent difference between ‘canonical’ ENSO phases and Modoki phases is the location of 

the maximum SST anomalies along the equator, with canonical positive ENSO phases characterised by 

maximum positive SST anomalies located east of the International Dateline, towards the South American 

coast, and ‘Modoki’ positive phases characterised by maximum SST anomalies located around the 

International Dateline and negative SST anomalies off the South American coast.   
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The ACC is then calculated for all GCMs, and the C3S MME for seasonal forecasts initialized during the 

different phases of each index (Figure 8).  

 

 
Figure 8: ACC for seasonal forecasts as a function of leadtime during the different phases of a) the ‘Canonical’ 

ENSO mode (as characterized by the Niño 3.4 index) b) the El Niño ‘Modoki’ index (as characterized by the El 

Niño Modoki Index) and c) the Trans-Niño Index (TNI). The bold line corresponds to the MME, and the light lines 
to each individual GCM.   

 

As expected, there are large differences in the performance of the GCMs and the MME (as measured by 

the ACC) depending on the phase, and the characteristics of ENSO conditions at initialisation.  

The ACC is generally higher during the positive phases of Niño3.4 and TNI, but negatives phase of the 

EMI, the commonality therefore being the presence of large positive SST anomalies in the far eastern 

Pacific and the establishment of a strong west-to-east gradient in anomalies.  

Conversely, the ACC tends to be lower during ENSO phases and flavors characterized by an inverse 

gradient in SST anomalies, such as during the negative phases of the TNI.  

The patterns displayed for the MME (Figure 8) hold true all individual GCMs: Meaning that for all GCMs 

at all lead-times (with one exception, see below), the ACC during positive phases of the TNI is larger than 

for neutral phases, which is itself larger than for negative phases). The only exception is for Météo-

France and for Nino3.4, where at lead 3 (three seasons ahead) the ACC for neutral ENSO phases is 0.47, 

and 0.46 for negative phases.  

These results therefore suggest that the sign and amplitude of SST anomalies in the eastern Pacific 

specifically plays a major role in determining the skill (as measured by the ACC) of the GCM forecasts: 
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Positive SST anomalies (i.e., during either the positive phase of ‘canonical’ ENSO events, or the negative 

phase of the ‘modoki’ ENSO events), tend to lead to enhanced skill, while negative SST anomalies (i.e., 

during either the negative phase of canonical ENSO or the positive phase of modoki ENSO) lead to 

reduced skill, in comparison to neutral phases of both ENSO flavours. 

This result is of operational significance, as this information can be used to convey the level of 

confidence in the seasonal forecast information in real-time, by monitoring the SST anomaly patterns.  

Validation of probabilistic forecasts 

The MME probabilities for tercile and quartile categories are calculated as the average of the individual 

GCMs’ probabilities. We first present the overall accuracy score (or ‘hit-rate’), then focus on the 

performance of the forecasts for the lower quantile categories (i.e., respectively the lower tercile 

(probability for rainfall being below the 33rd percentile) and lower quartile (probability for rainfall being 

below the 25th percentile). This is because an accurate prediction of drought conditions is of primary 

interest for the region.  

  
Figure 9: Accuracy (or ‘hit rate’) of the MME seasonal tercile (a) and quartile (b) probabilistic forecasts (one 
season ahead) against the seasonal tercile categories derived from ERA5. All calculations were performed over 
the 1993 – 2016 hindcast period.  

 

Figure 9 presents the respective accuracy for tercile (Figure 9a) and quartile (Figure 9b) most likely 

category from the MME, one season ahead. Note that a climatological forecast would result in an 

accuracy of 0.33 (33%) and 0.25 (25%) respectively for the tercile and quartile forecasts.  

The C3S MME is therefore more skillful than a climatological forecast for the vast majority of the region, 

with the notable exception being the southeast Pacific (South of French Polynesia). More precisely, 91% 

of the grid-points are associated with an accuracy score exceeding 40% for the MME terciles 

probabilistic forecasts, and 88% of grid points are associated with an accuracy score exceeding 30% for 

the quartile probabilistic forecasts.  

High skill is found in the tropical region between 10S and 10N, and east of ~ 160E as well as for southern 

parts of Papua New Guinea, the Solomon Islands, Vanuatu and Fiji.  

The spatial distribution of the C3S MME accuracy for both terciles and quartiles forecasts can be readily 

related to the average position of the ITCZ and the SPCZ (see Figure 2): The regions with higher accuracy 

tend to flank the average position of the convergence zones (i.e., regions that experience significant 
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rainfall anomalies when there are large variations in the position of the convergence zones, usually 

associated with ENSO). The predictability of rainfall in the region is therefore clearly linked to the ability 

of the GCMs to forecast shifts in the position and intensity of the convergence zones.  

Forecasts of drought conditions 

Figures 10 and 11 present the precision, recall and F1 scores for the C3S MME forecasts of the lower 

tercile and lower quartile categories, respectively.  

Overall, the general pattern follows the spatial distribution of the accuracy scores in Figure 9, but these 

figures provide insights into the ability of the C3S MME forecast system to specifically forecast dry 

conditions in comparison with the other rainfall categories.  

 

 
Figure 10: Precision (a), recall (b) and F1 score (c) for MME seasonal (1 season ahead) forecasts of the 
lower tercile category  (precipitation below the 33rd percentile)  
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Figure 11: Precision (a), recall (b) and F1 score (c) for MME seasonal (1 season ahead) forecasts of 
the lower quartile category  (precipitation below the 25th percentile) 

 
 

In particular, for any grid point, one can extract the precision and recall statistics and derive insights 

related to the context-dependent costs of False Positives (predicting drought conditions that failed to 

eventuate) and False Negatives (failure to predict drought conditions that actually occurred).  

Sub-regional time-series  

In the supplementary material (S1) we provide tables presenting the accuracy scores for the tercile and 

quartile probabilistic forecasts from the MME for the 73 sub-regional (PICs administrative areas) time-

series (see Figure 2). These tables do not provide additional information on the performance of the C3S 

MME compared to Figure 9, but are an example of the tailored products that can be derived from the 

availability of open seasonal forecast data. Tables of probabilistic tercile and quartile seasonal forecasts 

are derived operationally every month and are part of the suite of products offered by the ICU.  

Combining forecast and near realtime rainfall monitoring 



19 

In the previous section we demonstrated that the overall skill of the C3S MME probabilistic forecast 

system is reasonable (i.e., exceeding the skill of a ‘climatological’ forecast) for a large proportion of the 

southwest Pacific, and that, in particular, forecasts for dry conditions, such as rainfall accumulations 

below the 25th percentile, are associated with reasonable precision and recall statistics (see section 1 

and Figure 11). The overall performance of the forecast system makes it conceivable to combine it with 

near-realtime rainfall monitoring information to alert national or regional institutions of potential 

“water stress” conditions: defined here when rainfall has recently been in deficit and forecasts indicate a 

high likelihood of dry conditions to persist or worsen. As one example, based on the empirical 

conditional statements presented in section 1 (Table 2), operationally on the 2nd of each month, we 

combine the percentiles of scores for the past 90 days (i.e., up to the last day of the previous calendar 

month) and the probability for the following month or season (three month accumulation) to be below 

the 25th percentile to produce and map three water stress categories, corresponding to the likely 

trajectories of drought conditions over the region. Further work is underway to assess the validity of 

combining the satellite derived near real-time three drought indices mentioned above with probabilistic 

forecasts of these three drought indices. 

  

 

Figure 12: Island Climate Update “Water Stress” product, which combines near-real-time information 

and probabilistic, seasonal rainfall forecasts from the C3S MME. 
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Summary and conclusions  
 

In this paper, we present a set of products aimed at tracking and forecasting drought conditions across   

the tropical Pacific region. The system employs near –real time satellite rainfall estimates to track the 

evolution of several drought indices and indicators at different time-scales and a state-of-the-art 

probabilistic seasonal forecast system based on the forecasts provided operationally for nine coupled 

ocean-atmosphere GCMs. The validation of the individual GCMs and the MME for the region, both 

deterministic and probabilistic forecasts, show that the MME out-performs even the best GCM, and is 

able to forecast the general patterns of rainfall anomalies over the region. The MME’s performance 

varies significantly seasonally (with summer rainfall usually better predicted) and is also a function of the 

ENSO state (phase and location of maximum SST anomalies). The probabilistic forecasts for dryness, 

such asrainfall being below the 25th percentile, have reasonable precision and recall for the majority of 

the region, indicating that this system is associated with a relatively low rate of ‘false alarms’ or ‘misses’ 

for dry conditions. Using empirical conditional statements, the probabilistic information can be 

combined with the real-time rainfall estimates to highlight regions at risk of water stress. This product is 

representative of the kind of climate services that can be developed based on openly available seasonal 

climate forecast and climate monitoring data. It is enabled by the development of an open-source, 

flexible software infrastructure, made possible by the growing popularity of the open-source Python 

programming language in the climate and meteorology communities, the reliance on well-tested, self-

described data formats, and the development of an integrated eco-system of third-party Python 

libraries (packages). This combination of tools can handle all steps of the data processing and analysis 

pipelines and allows small-scale parallelization, making it possible to run the processing, analysis and 

visualisation pipeline on small-scale hardware such as a decent laptop. 

It was our goal to show that the use of open-data and open-source software, and recent advances in 

small scale parallelization and out-of-core computation, makes it possible to develop tailored climate 

services leveraging large-scale ensemble seasonal forecast systems (such as the C3S MME) as a part of a 

larger, integrated system combining several data streams. While the example presented combines 

rainfall, and in particular drought, monitoring and forecasting, it could easily be adapted to other 

variables (such as tracking and predicting the development of marine heatwaves see Jacox et al, 2022) 

or to develop input fields or time-series to ‘downstream’ models, either mechanistic, empirical or 

conceptual. Indeed the data streams generated as part of this project are now being used as input to a 

range of country-level climate service products, impact forecasting and decision-support systems being 

developed and operational in a wide range of Pacific Island countries. 
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