References
1. Alkhouli M, Rihal CS, Holmes DR. Transseptal techniques for
emerging structural heart interventions. JACC: Cardiovascular
Interventions 2016;9:2465-2480.
2. Szegedi N, Széplaki G, Herczeg S, Tahin T, Salló Z, Nagy VK,
Osztheimer I, Özcan EE, Merkely B, Gellér L. Repeat procedure is a new
independent predictor of complications of atrial fibrillation ablation.
EP Europace 2019;21:732-737.
3. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A.
Growing epidemic of coronary heart disease in low- and middle-income
countries. Curr Probl Cardiol 2010;35:72-115.
4. Jauvert G, Grimard C, Lazarus A, Alonso C. Comparison of a
Radiofrequency Powered Flexible Needle with a Classic Rigid
Brockenbrough Needle for Transseptal Punctures in Terms of Safety and
Efficacy. Heart, Lung and Circulation 2015/02/01/ 2015;24:173-178.
5. Winkle RA, Mead RH, Engel G, Patrawala RA. The use of a
radiofrequency needle improves the safety and efficacy of transseptal
puncture for atrial fibrillation ablation. Heart Rhythm
2011;8:1411-1415.
6. Yoshida S, Suzuki T, Yoshida Y, Watanabe S, Nakamura K,
Sasaki T, Kawasaki Y, Ehara E, Murakami Y, Kato T, Nakamura Y.
Feasibility and safety of transseptal puncture procedures for
radiofrequency catheter ablation in small children weighing below 30 kg:
single-centre experience. EP Europace 2015;18:1581-1586.
7. Hsu Jonathan C, Badhwar N, Gerstenfeld Edward P, et al.
Randomized Trial of Conventional Transseptal Needle Versus
Radiofrequency Energy Needle Puncture for Left Atrial Access (the
TRAVERSE‐LA Study). Journal of the American Heart Association;2:e000428.
8. Fromentin S, Sarrazin J-F, Champagne J, Nault I, Philippon
F, Molin F, Blier L, O’Hara G. Prospective comparison between
conventional transseptal puncture and transseptal needle puncture with
radiofrequency energy. Journal of Interventional Cardiac
Electrophysiology 2011/09/01 2011;31:237-242.
9. ELAYI CS, GURLEY JC, DI SESSA TG, KAKAVAND B. Surgical
Electrocautery Facilitated Transseptal Puncture in Children. Pacing and
Clinical Electrophysiology 2011;34:827-831.
10. Rogers JH, Stripe BR, Singh GD, Boyd WD, Fan D, Smith TWR.
Initial clinical experience with the FlexPoint Steerable Transseptal
Needle in left-sided structural heart procedures. Catheterization and
Cardiovascular Interventions 2018;92:792-796.
11. Bidart C, Vaseghi M, Cesario DA, Mahajan A, Fujimura O,
Boyle NG, Shivkumar K. Radiofrequency current delivery via transseptal
needle to facilitate septal puncture. Heart Rhythm 2007;4:1573-1576.
12. Knecht S, Jaïs P, Nault I, et al. Radiofrequency Puncture
of the Fossa Ovalis for Resistant Transseptal Access. Circulation:
Arrhythmia and Electrophysiology 2008;1:169-174.
13. Abed HS, Alasady M, Lau DH, Lim HS, Sanders P. Approach to
the Difficult Transseptal: Diathermy Facilitated Left Atrial Access.
Heart, Lung and Circulation 2012;21:108-112.
14. Gowda ST, Qureshi AM, Turner D, Madan N, Weigand J, Lorber
R, Singh HR. Transseptal puncture using surgical electrocautery in
children and adults with and without complex congenital heart disease.
Catheterization and Cardiovascular Interventions 2017;90:E46-E54.
15. Greenstein E, Passman R, Lin AC, Knight BP. Incidence of
Tissue Coring During Transseptal Catheterization When Using
Electrocautery and a Standard Transseptal Needle. Circulation:
Arrhythmia and Electrophysiology 2012;5:341-344.
16. Khan JM, Rogers T, Eng MH, Lederman RJ, Greenbaum AB.
Guidewire electrosurgery-assisted trans-septal puncture. Catheterization
and Cardiovascular Interventions 2018;91:1164-1170.
17. Burdick J, Schmalz M, Geenen J. Guidewire fracture during
endoscopic sphincterotomy. Endoscopy 1993;25:251-252.
18. Fry LC, Linder JD, Mönkemüller KE. Cholangitis as a result
of hydrophilic guidewire fracture. Gastrointestinal Endoscopy
2002;56:943-944.
19. Adioui T, Tamzaourte M, Touibi Y, Rouibaa F, Aourarh A.
Intrapancreatic guidewire outer coat stripping during endoscopic
treatment of chronic pancreatitis: A rare complication. Presse medicale
(Paris, France: 1983) 2016;46:240-241.
20. Liu Q, Sun XB. Indirect electrical injuries from capacitive
coupling: a rarely mentioned electrosurgical complication in monopolar
laparoscopy. Acta obstetricia et gynecologica Scandinavica
2013;92:238-241.
21. Fiorelli A, Accardo M, Carelli E, Del Prete A, Messina G,
Reginelli A, Berritto D, Papale F, Armenia E, Chiodini P. Harmonic
technology versus neodymium-doped yttrium aluminium garnet laser and
electrocautery for lung metastasectomy: an experimental study.
Interactive cardiovascular and thoracic surgery 2016;23:47-56.
22. Robinson TN, Jones EL, Dunn CL, Dunne B, Johnson E,
Townsend NT, Paniccia A, Stiegmann GV. Separating the laparoscopic
camera cord from the monopolar “Bovie” cord reduces unintended thermal
injury from antenna coupling: a randomized controlled trial. Annals of
surgery 2015;261:1056-1060.
23. Townsend NT, Jones EL, Overbey D, Dunne B, McHenry J,
Robinson TN. Single-incision laparoscopic surgery increases the risk of
unintentional thermal injury from the monopolar “Bovie” instrument in
comparison with traditional laparoscopy. Surgical endoscopy
2017;31:3146-3151.
24. Townsend NT, Jones EL, Paniccia A, Vandervelde J, McHenry
JR, Robinson TN. Antenna coupling explains unintended thermal injury
caused by common operating room monitoring devices. Surgical Laparoscopy
Endoscopy & Percutaneous Techniques 2015;25:111-113.
25. Smith TL, Smith JM. Electrosurgery in otolaryngology–head
and neck surgery: principles, advances, and complications. The
Laryngoscope 2001;111:769-780.
26. Sayah N, Simon F, Garceau P, Ducharme A, Basmadjian A,
Bouchard D, Pellerin M, Bonan R, Asgar AW. Initial clinical experience
with VersaCross transseptal system for transcatheter mitral valve
repair. Catheterization and Cardiovascular Interventions 2020.
27. Inohara T, Gilhofer T, Luong C, Tsang M, Saw J. VersaCross
radiofrequency system reduces time to left atrial access versus
conventional mechanical needle. Journal of Interventional Cardiac
Electrophysiology 2021/01/22 2021.
28. Capulzini L, Paparella G, Sorgente A, de Asmundis C,
Chierchia GB, Sarkozy A, Muller-Burri A, Yazaki Y, Roos M, Brugada P.
Feasibility, safety, and outcome of a challenging transseptal puncture
facilitated by radiofrequency energy delivery: a prospective
single-centre study. EP Europace 2010;12:662-667.
29. Barlow DE. Endoscopic applications of electrosurgery: a
review of basic principles. Gastrointestinal Endoscopy 1982;28:73-76.
30. Montero PN, Robinson TN, Weaver JS, Stiegmann GV.
Insulation failure in laparoscopic instruments. Surgical Endoscopy
2010/02/01 2010;24:462-465.
31. Wu M-P, Ou C-S, Chen S-L, Yen EY, Rowbotham R.
Complications and recommended practices for electrosurgery in
laparoscopy. The American journal of surgery 2000;179:67-73.
32. Tucker RD, Voyles CR. Laparoscopic Electrosurgical
Complications and Their Prevention. AORN Journal 1995;62:49-71.
33. Voyles CR, Tucker RD. Education and engineering solutions
for potential problems with laparoscopic monopolar electrosurgery. The
American journal of surgery 1992;164:57-62.
34. Brill AI. Electrosurgery: Principles and Practice to Reduce
Risk and Maximize Efficacy. Obstetrics and Gynecology Clinics
2011;38:687-702.
35. Odell RC. Surgical Complications Specific to Monopolar
Electrosurgical Energy: Engineering Changes That Have Made
Electrosurgery Safer. Journal of Minimally Invasive Gynecology
2013/05/01/ 2013;20:288-298.
36. Demircin S, Aslan F, Karagoz YM, Atilgan M. Medicolegal
aspects of surgical diathermy burns: a case report and review of the
literature. Rom J Leg Med 2013;21:173-176.
37. Perantinides PG, Tsarouhas AP, Katzman VS. The medicolegal
risks of thermal injury during laparoscopic monopolar electrosurgery.
Journal of Healthcare Risk Management 1998;18:47-55.
38. Veldtman GR, Wilson GJ, Peirone A, Hartley A, Estrada M,
Norgard G, Leung RK, Visram N, Benson LN. Radiofrequency perforation and
conventional needle percutaneous transseptal left heart access:
Pathological features. Catheterization and Cardiovascular Interventions
2005;65:556-563.
39. Sawabata N, Nezu K, Tojo T, Kitamura S. In vitro comparison
between argon beam coagulator and Nd:YAG laser in lung contraction
therapy. The Annals of Thoracic Surgery 1996/11/01/ 1996;62:1485-1488.
40. Haines DE, Verow AF. Observations on electrode-tissue
interface temperature and effect on electrical impedance during
radiofrequency ablation of ventricular myocardium. Circulation
1990;82:1034-1038.
41. Eshcol J, Wimmer AP. Hemodynamically significant iatrogenic
atrial septal defects after cryoballoon ablation. HeartRhythm case
reports 2018;5:17-21.
42. Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D,
Williford PM. Electrosurgery: Part II. Technology, applications, and
safety of electrosurgical devices. Journal of the American Academy of
Dermatology 2014/04/01/ 2014;70:607.e601-607.e612.
43. GUY DJR, BOYD A, THOMAS SP, ROSS DL. Increasing Power
Versus Duration for Radiofrequency Ablation with a High Superfusate
Flow. Pacing and Clinical Electrophysiology 2003;26:1379-1385.
44. Khairy P, Chauvet P, Lehmann J, Lambert J, Macle L, Tanguay
J-F, Sirois MG, Santoianni D, Dubuc M. Lower Incidence of Thrombus
Formation With Cryoenergy Versus Radiofrequency Catheter Ablation.
Circulation 2003;107:2045-2050.
45. ANFINSEN O-G, GJESDAL K, BROSSTAD F, ORNING OM, AASS H,
KONGSGAARD E, AMLIE JP. The Activation of Platelet Function,
Coagulation, and Fibrinolysis during Radiofrequency Catheter Ablation in
Heparinized Patients. Journal of Cardiovascular Electrophysiology
1999;10:503-512.
46. Sanchez JM, Shah R, Kouassi Y, Chronowic M, Wilson L,
Marcus GM. A cost-effectiveness analysis comparing a conventional
mechanical needle to a radiofrequency device for transseptal punctures.
J Cardiovasc Electrophysiol Jul 2020;31:1672-1677.