References
1. Alkhouli M, Rihal CS, Holmes DR. Transseptal techniques for emerging structural heart interventions. JACC: Cardiovascular Interventions 2016;9:2465-2480.
2. Szegedi N, Széplaki G, Herczeg S, Tahin T, Salló Z, Nagy VK, Osztheimer I, Özcan EE, Merkely B, Gellér L. Repeat procedure is a new independent predictor of complications of atrial fibrillation ablation. EP Europace 2019;21:732-737.
3. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol 2010;35:72-115.
4. Jauvert G, Grimard C, Lazarus A, Alonso C. Comparison of a Radiofrequency Powered Flexible Needle with a Classic Rigid Brockenbrough Needle for Transseptal Punctures in Terms of Safety and Efficacy. Heart, Lung and Circulation 2015/02/01/ 2015;24:173-178.
5. Winkle RA, Mead RH, Engel G, Patrawala RA. The use of a radiofrequency needle improves the safety and efficacy of transseptal puncture for atrial fibrillation ablation. Heart Rhythm 2011;8:1411-1415.
6. Yoshida S, Suzuki T, Yoshida Y, Watanabe S, Nakamura K, Sasaki T, Kawasaki Y, Ehara E, Murakami Y, Kato T, Nakamura Y. Feasibility and safety of transseptal puncture procedures for radiofrequency catheter ablation in small children weighing below 30 kg: single-centre experience. EP Europace 2015;18:1581-1586.
7. Hsu Jonathan C, Badhwar N, Gerstenfeld Edward P, et al. Randomized Trial of Conventional Transseptal Needle Versus Radiofrequency Energy Needle Puncture for Left Atrial Access (the TRAVERSE‐LA Study). Journal of the American Heart Association;2:e000428.
8. Fromentin S, Sarrazin J-F, Champagne J, Nault I, Philippon F, Molin F, Blier L, O’Hara G. Prospective comparison between conventional transseptal puncture and transseptal needle puncture with radiofrequency energy. Journal of Interventional Cardiac Electrophysiology 2011/09/01 2011;31:237-242.
9. ELAYI CS, GURLEY JC, DI SESSA TG, KAKAVAND B. Surgical Electrocautery Facilitated Transseptal Puncture in Children. Pacing and Clinical Electrophysiology 2011;34:827-831.
10. Rogers JH, Stripe BR, Singh GD, Boyd WD, Fan D, Smith TWR. Initial clinical experience with the FlexPoint Steerable Transseptal Needle in left-sided structural heart procedures. Catheterization and Cardiovascular Interventions 2018;92:792-796.
11. Bidart C, Vaseghi M, Cesario DA, Mahajan A, Fujimura O, Boyle NG, Shivkumar K. Radiofrequency current delivery via transseptal needle to facilitate septal puncture. Heart Rhythm 2007;4:1573-1576.
12. Knecht S, Jaïs P, Nault I, et al. Radiofrequency Puncture of the Fossa Ovalis for Resistant Transseptal Access. Circulation: Arrhythmia and Electrophysiology 2008;1:169-174.
13. Abed HS, Alasady M, Lau DH, Lim HS, Sanders P. Approach to the Difficult Transseptal: Diathermy Facilitated Left Atrial Access. Heart, Lung and Circulation 2012;21:108-112.
14. Gowda ST, Qureshi AM, Turner D, Madan N, Weigand J, Lorber R, Singh HR. Transseptal puncture using surgical electrocautery in children and adults with and without complex congenital heart disease. Catheterization and Cardiovascular Interventions 2017;90:E46-E54.
15. Greenstein E, Passman R, Lin AC, Knight BP. Incidence of Tissue Coring During Transseptal Catheterization When Using Electrocautery and a Standard Transseptal Needle. Circulation: Arrhythmia and Electrophysiology 2012;5:341-344.
16. Khan JM, Rogers T, Eng MH, Lederman RJ, Greenbaum AB. Guidewire electrosurgery-assisted trans-septal puncture. Catheterization and Cardiovascular Interventions 2018;91:1164-1170.
17. Burdick J, Schmalz M, Geenen J. Guidewire fracture during endoscopic sphincterotomy. Endoscopy 1993;25:251-252.
18. Fry LC, Linder JD, Mönkemüller KE. Cholangitis as a result of hydrophilic guidewire fracture. Gastrointestinal Endoscopy 2002;56:943-944.
19. Adioui T, Tamzaourte M, Touibi Y, Rouibaa F, Aourarh A. Intrapancreatic guidewire outer coat stripping during endoscopic treatment of chronic pancreatitis: A rare complication. Presse medicale (Paris, France: 1983) 2016;46:240-241.
20. Liu Q, Sun XB. Indirect electrical injuries from capacitive coupling: a rarely mentioned electrosurgical complication in monopolar laparoscopy. Acta obstetricia et gynecologica Scandinavica 2013;92:238-241.
21. Fiorelli A, Accardo M, Carelli E, Del Prete A, Messina G, Reginelli A, Berritto D, Papale F, Armenia E, Chiodini P. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study. Interactive cardiovascular and thoracic surgery 2016;23:47-56.
22. Robinson TN, Jones EL, Dunn CL, Dunne B, Johnson E, Townsend NT, Paniccia A, Stiegmann GV. Separating the laparoscopic camera cord from the monopolar “Bovie” cord reduces unintended thermal injury from antenna coupling: a randomized controlled trial. Annals of surgery 2015;261:1056-1060.
23. Townsend NT, Jones EL, Overbey D, Dunne B, McHenry J, Robinson TN. Single-incision laparoscopic surgery increases the risk of unintentional thermal injury from the monopolar “Bovie” instrument in comparison with traditional laparoscopy. Surgical endoscopy 2017;31:3146-3151.
24. Townsend NT, Jones EL, Paniccia A, Vandervelde J, McHenry JR, Robinson TN. Antenna coupling explains unintended thermal injury caused by common operating room monitoring devices. Surgical Laparoscopy Endoscopy & Percutaneous Techniques 2015;25:111-113.
25. Smith TL, Smith JM. Electrosurgery in otolaryngology–head and neck surgery: principles, advances, and complications. The Laryngoscope 2001;111:769-780.
26. Sayah N, Simon F, Garceau P, Ducharme A, Basmadjian A, Bouchard D, Pellerin M, Bonan R, Asgar AW. Initial clinical experience with VersaCross transseptal system for transcatheter mitral valve repair. Catheterization and Cardiovascular Interventions 2020.
27. Inohara T, Gilhofer T, Luong C, Tsang M, Saw J. VersaCross radiofrequency system reduces time to left atrial access versus conventional mechanical needle. Journal of Interventional Cardiac Electrophysiology 2021/01/22 2021.
28. Capulzini L, Paparella G, Sorgente A, de Asmundis C, Chierchia GB, Sarkozy A, Muller-Burri A, Yazaki Y, Roos M, Brugada P. Feasibility, safety, and outcome of a challenging transseptal puncture facilitated by radiofrequency energy delivery: a prospective single-centre study. EP Europace 2010;12:662-667.
29. Barlow DE. Endoscopic applications of electrosurgery: a review of basic principles. Gastrointestinal Endoscopy 1982;28:73-76.
30. Montero PN, Robinson TN, Weaver JS, Stiegmann GV. Insulation failure in laparoscopic instruments. Surgical Endoscopy 2010/02/01 2010;24:462-465.
31. Wu M-P, Ou C-S, Chen S-L, Yen EY, Rowbotham R. Complications and recommended practices for electrosurgery in laparoscopy. The American journal of surgery 2000;179:67-73.
32. Tucker RD, Voyles CR. Laparoscopic Electrosurgical Complications and Their Prevention. AORN Journal 1995;62:49-71.
33. Voyles CR, Tucker RD. Education and engineering solutions for potential problems with laparoscopic monopolar electrosurgery. The American journal of surgery 1992;164:57-62.
34. Brill AI. Electrosurgery: Principles and Practice to Reduce Risk and Maximize Efficacy. Obstetrics and Gynecology Clinics 2011;38:687-702.
35. Odell RC. Surgical Complications Specific to Monopolar Electrosurgical Energy: Engineering Changes That Have Made Electrosurgery Safer. Journal of Minimally Invasive Gynecology 2013/05/01/ 2013;20:288-298.
36. Demircin S, Aslan F, Karagoz YM, Atilgan M. Medicolegal aspects of surgical diathermy burns: a case report and review of the literature. Rom J Leg Med 2013;21:173-176.
37. Perantinides PG, Tsarouhas AP, Katzman VS. The medicolegal risks of thermal injury during laparoscopic monopolar electrosurgery. Journal of Healthcare Risk Management 1998;18:47-55.
38. Veldtman GR, Wilson GJ, Peirone A, Hartley A, Estrada M, Norgard G, Leung RK, Visram N, Benson LN. Radiofrequency perforation and conventional needle percutaneous transseptal left heart access: Pathological features. Catheterization and Cardiovascular Interventions 2005;65:556-563.
39. Sawabata N, Nezu K, Tojo T, Kitamura S. In vitro comparison between argon beam coagulator and Nd:YAG laser in lung contraction therapy. The Annals of Thoracic Surgery 1996/11/01/ 1996;62:1485-1488.
40. Haines DE, Verow AF. Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation 1990;82:1034-1038.
41. Eshcol J, Wimmer AP. Hemodynamically significant iatrogenic atrial septal defects after cryoballoon ablation. HeartRhythm case reports 2018;5:17-21.
42. Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. Electrosurgery: Part II. Technology, applications, and safety of electrosurgical devices. Journal of the American Academy of Dermatology 2014/04/01/ 2014;70:607.e601-607.e612.
43. GUY DJR, BOYD A, THOMAS SP, ROSS DL. Increasing Power Versus Duration for Radiofrequency Ablation with a High Superfusate Flow. Pacing and Clinical Electrophysiology 2003;26:1379-1385.
44. Khairy P, Chauvet P, Lehmann J, Lambert J, Macle L, Tanguay J-F, Sirois MG, Santoianni D, Dubuc M. Lower Incidence of Thrombus Formation With Cryoenergy Versus Radiofrequency Catheter Ablation. Circulation 2003;107:2045-2050.
45. ANFINSEN O-G, GJESDAL K, BROSSTAD F, ORNING OM, AASS H, KONGSGAARD E, AMLIE JP. The Activation of Platelet Function, Coagulation, and Fibrinolysis during Radiofrequency Catheter Ablation in Heparinized Patients. Journal of Cardiovascular Electrophysiology 1999;10:503-512.
46. Sanchez JM, Shah R, Kouassi Y, Chronowic M, Wilson L, Marcus GM. A cost-effectiveness analysis comparing a conventional mechanical needle to a radiofrequency device for transseptal punctures. J Cardiovasc Electrophysiol Jul 2020;31:1672-1677.