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Abstract: This paper is devoted to dealing with the following nonlinear Kirchhoff type

problem with general convolution nonlinearity and variable potential:{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = (Iα ∗ F (u))f(u), in R3,

u ∈ H1(R3),

where a > 0, b ≥ 0 are constants, V ∈ C1(R3, [0,+∞)), f ∈ C(R,R), F (t) =
∫ t

0
f(s)ds,

Iα : R3 → R is the Riesz potential, α ∈ (0, 3). By applying some new analytical tricks

introduced by [X.H. Tang, S.T. Chen, Adv. Nonlinear Anal. 9 (2020) 413-437], the existence

results of ground state solutions of Pohožaev type for the above Kirchhoff type problem are

obtained under some mild assumptions on V and the general ”Berestycki-Lions assumptions”

on the nonlinearity f . Our results generalize and improve the ones in [P. Chen, X.C. Liu,

J. Math. Anal. Appl. 473 (2019) 587-608.] and other related results in the literature.
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1. Introduction

In this paper, the following nonlinear Kirchhoff type problem with general convolution nonlinearity and
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variable potential is considered:{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = (Iα ∗ F (u))f(u), in R3,

u ∈ H1(R3),
(1.1)

where a > 0, b ≥ 0 are constants, α ∈ (0, 3), the Riesz potential Iα : R3 → R is defined by

Iα(x) =
Γ( 3−α

2 )

Γ(α2 )2
απ

3
2 |x|3−α

, x ∈ R3\{0},

F (t) =
∫ t

0
f(s)ds, f : R → R and V : R3 → R. We assume that the nonlinearity f , F and the potential V

satisfy the following basic conditions:

(V1) V ∈ C(R3, [0,+∞)) and V∞ := lim|x|→∞ V (x) ≥ (̸=)V (x), ∀ x ∈ R3;

(S1) f ∈ C(R,R) and there is a constant c0 > 0 such that

|f(t)t| ≤ c0(|t|1+α/3 + |t|3+α), ∀ t ∈ R;

(S2) lim|t|→0
F (t)

|t|1+α/3 = 0 and lim|t|→∞
F (t)
|t|3+α = 0;

(S3) there exists t0 > 0 such that F (t0) ̸= 0.

When b = 0 and a = 1, then problem (1.1) becomes to the following form with variable potential:{
−∆u+ V (x)u = (Iα ∗ F (u))f(u), in R3,

u ∈ H1(R3),
(1.2)

which is called generalized Choquard equation. In [1], Moroz and Van Schaftingen introduced (S1)-(S3)

to investigate ground state solutions for problem (1.2). It is known that (S1)-(S3) were regarded as the

Berestycki-Lions type conditions and were almost necessary and sufficient conditions for studying Choquard

equations.

When the potential V (x) is always equal to 1, f(u) = u and α = 2, problem (1.2) reduces to the well

known Choquard-Pekar equation, which was introduced by Pekar [2] in 1954 for describing the quantum

mechanics of a polaron at rest. It is also known as the Schrödinger-Newton equation or the stationary

Hartree equation. Now, let’s recall some works on Choquard equations. In [3], Lieb obtained some existence

and uniqueness results for a nonlinear Choquard equation; Clapp and Salazar [4] studied positive and sign

changing solutions for a kind of nonlinear Choquard equation in an exterior domain of RN and obtained some

existence results under some symmetry assumptions on the exterior domain and the potential; Chen, Tang

and Wei [5] investigated Nehari-type ground state solutions for a kind of Choquard equation with doubly

critical exponents; Tang, Wei and Chen [6] obtained existence results of Nehari-type ground state solutions

for a kind of Choquard equation with local nonlinear perturbation and lower critical exponent; In [7], Chen

and Tang established existence results of ground state solutions for a general Choquard equation; Li, Li

and Tang [8] considered ground state solutions for a class of Choquard equations with potential vanishing

at infinity which is Hardy-Littlewood-Sobolev upper critical growth; In [9], Deng, Jin and Shuai considered
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positive ground state solutions for Choquard equations; There are also semiclassical state solutions [10],

bound state solutions [11], nontrivial solutions [12] for other kinds of Choquard equations. However, there

is few literature which only uses (S1)-(S3) to deal with Choquard equations. As far as we known, only

Tang and Chen [13] used (S1)-(S3) to investigate a kind of singularly perturbed Choquard equations by

introducing some new techniques and obtained some nice results, which generalize and improve many works

in the literature.

When b ̸= 0, problem (1.1) is Kirchhoff type problem with variable potential and general convolution

nonlinearity. Now, let us review some results about (1.1). The Kirchhoff type problems appear in real world

with an interesting physical background. Indeed, if we let α → 0 in (1.1), then problem (1.1) reduces to the

following Kirchhoff type problem{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = g(u), x ∈ R3,

u ∈ H1(R3),
(1.3)

where a, b > 0 are constants, g = Ff is local nonlinearity, V ∈ C(R3,R). Such a problem is seen as being

nonlocal since problem (1.3) is no longer a pointwise identity due to the presence of
∫
R3 |∇u|2dx. Problem

(1.3) is related to the stationary analogue of the following Kirchhoff equation:

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (1.4)

where ρ is the mass density, h is the area of cross-section, ρ0 is the initial tension, L is the length of the

string and E is the Young modulus of the material. When Kirchhoff [14] investigated the free vibrations of

elastic strings, he extend the classical D’Alembert’s wave equation to this situation, and then put forward

problem (1.4), which considers the changes in length of the string caused by transverse vibrations. Please

see [15, 16] and reference therein for more details of mathematical and physical background.

Kirchhoff equation (1.3) has received more and more attention from mathematical community after Lions

[17] brought forward an abstract functional analysis framework for studying it. Via the variational method,

there have been many important results on the existence and multiplicity of solutions for problem (1.3),

when the nonlinearity g is autonomous or nonautonomous and satisfies different kinds of conditions, see for

example [18] -[36] and the references therein. A classical way to deal with (1.3) is to use the mountain-pass

theorem. To this end, one usually assumes that the potential V (x) is periodic or is radial or V (x) ≡ 1, while

the nonlinearity g(t) is subcritical and satisfies the following condition:

(G1) g(t)/|t|3 is increasing for t ∈ R\{0};

or satisfies the following classical Ambrosetti-Rabinowitz type condition

(AR) there exists µ > 4 such that 0 ≤ µG(t) ≤ g(t)t, ∀ t ∈ R, where G(t) =
∫ t

0
g(s)ds.

Under (G1) or (AR), one can easily verify the Mountain Pass geometry and the boundedness of Palais-Smale

sequences (PS-sequences for short) for the energy functional. The existence result of ground state solutions
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for problem (1.3) was first proved by He and Zou [37]. When the nonlinearity in problem (1.3) is a special

form with respect to u, for example, problem (1.3) reduces to the following form{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = |u|p−2u, x ∈ R3,

u ∈ H1(R3),
(1.5)

Li and Ye [30] first established the existence of positive ground state solutions when 2 < p ≤ 4 and V (x) ≡ 1

by applying a minimizing argument on a new manifold

M̃ = {u ∈ H1(R3) : ⟨Φ′
0(u), u⟩+ P0(u) = 0},

where Φ0(u) and P0(u) are the energy functional and the Pohožaev equality for problem (1.5), respective-

ly. The idea used in [30] comes from [38], in which a kind of nonlinear Schrödinger-Poisson system was

investigated. Subsequently, Guo [39] generalized the results of [30] to problem (1.3). Later, Chen and Tang

[19], Tang and Chen [35] improved the above results to problem (1.3) under (V1), some standard growth

assumptions on g, and the following additional conditions:

(V2)’ V ∈ C1(R3,R) and there is θ′ ∈ (0, 1) such that

∇V (x) · x ≤ θ′a

2|x|2
, a.e. x ∈ R3\{0};

(G2) g ∈ C(R,R) and g(t)t+6G(t)
t|t| is nondecreasing on (−∞, 0) ∪ (0,+∞);

(G3) g ∈ C1(R+,R) and g(t)
t is increasing on (0,+∞).

Compared with problem (1.2) and problem (1.3), it feels more difficult to study problem (1.1) since it

contains two nonlocal terms. Chen and Liu [40] studied the following Kirchhoff type equation{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u, x ∈ R3,

u ∈ H1(R3),
(1.6)

they obtained a ground state solution for all p ∈ (1 + α/3, 3 + α) under some assumptions on the potential

V (x). In [41], Lü investigated (1.6) with p ∈ (2, 3 + α) and V (x) = 1 + µh0(x), where h0(x) ≥ 0 is a steep

potential well function and µ > 0 is a parameter. By applying the concentration compactness principle

and the Nehari manifold, some existence results of ground state solutions for problem (1.6) were obtained

by Lü when µ is sufficiently large. We must point out that the results obtained in [40] fulfill the gap of

p ∈ (1+α/3, 2] and improve the result obtained in [41]. Very recently, by applying variational methods and

some new analytical skills, Chen, Zhang and Tang [42] obtained some results for problem (1.1) under (V1),

(V2), (S2) and the following conditions:

(S2)’ lim|t|→∞
F (t)
|t|1−α = ∞;

(S3)’ the function f(t)t+(3+α)F (t)
t|t|−α is nondecreasing on (−∞, 0) ∪ (0,+∞).
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(V3)’ V ∈ C1(R3,R) and there is θ ∈ [0, 1) such that for every x ∈ R3\{0}, t 7→ 4V (tx)+∇V (tx) ·tx+ θa
2t2|x|2

is nonincreasing on (0,+∞).

We must point out that when f(u) = |u|p−2u, the results obtained in [42] also fill the gap with p ∈
(1+α/3, 2] and cover many results in the literature, such as the results in [30, 35, 39] when α → 0. Besides,

the results obtained in [42] are more general than those in [40] since the nonlinearity F is more general than

that of [40]. However, there seems to be no results for (1.1) when the nonlinearity F is more general which

only satisfies (S1)-(S3). Our main purpose is to deal with this case. For some s ∈ (2, 2∗) and any ε > 0, by

Hardy-Littlewood-Sobolev inequality, (S1) and (S2), one has∫
R3

(Iα ∗ F (u))F (u)dx =
Γ( 3−α

2 )

Γ(α2 )2
απ3/2

∫
R3

∫
R3

F (u(x))F (u(y))

|x− y|3−α
dxdy

≤ C0∥F (u)∥26/(3+α)

≤ ε(∥u∥2(3+α)/3
2 + ∥u∥2(3+α)

2∗ ) + Cε∥u∥s(3+α)/3
s , ∀ u ∈ H1(R3), (1.7)

where C0 ia a positive constant and Cε is a positive constant which depends on ε. Under (V1), (S1), (S2)

and using (1.7), it is standard to check that the energy functional for problem (1.1) defined by

Φ(u) =
1

2

∫
R3

[a|∇u|2 + V (x)u2]dx− 1

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

4

(∫
R3

|∇u|2dx
)2

, ∀ u ∈ H1(R3) (1.8)

is of C1 and the critical points of (1.8) correspond to the weak solutions of problem (1.1).

When the potential V (x) is a constant V∞, problem (1.1) becomes to the following so called ”limiting

problem” which is autonomous:{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V∞u = (Iα ∗ F (u))f(u), in R3,

u ∈ H1(R3),
(1.9)

whose energy functional is defined as follows:

Φ∞(u) =
1

2

∫
R3

[a|∇u|2 + V∞u2]dx− 1

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

4

(∫
R3

|∇u|2dx
)2

, ∀ u ∈ H1(R3). (1.10)

The Pohožaev type identity corresponds to problem (1.9) is defined as follows:

P∞(u) =
a

2
∥∇u∥22 +

3V∞

2
∥u∥22 −

3 + α

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

2
∥∇u∥42 = 0, ∀ u ∈ H1(R3). (1.11)

The following set is related to P∞(u) which is defined as

M∞ := {u ∈ H1(R3)\{0} : P∞(u) = 0}.

In view of [39], if u is a solution of problem (1.9), then it must satisfy (1.11). Hence, M∞ is a natural

constraint for Φ∞. In most of the previous literature, the obtained least energy solution u0 of problem (1.9)

satisfies Φ∞(u0) ≥ infM∞ Φ∞. There is a natural question: can one find a solution ũ ∈ M∞ such that

Φ∞(ũ) = inf
M∞

Φ∞. (1.12)
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Motivated mainly by [13, 19, 40, 42], we will use a more direct method to prove some existence results on

ground state solutions for problem (1.1). A weak solution of problem (1.1) is called a ground state solution if

it has minimal ”energy” Φ among all nontrivial weak solutions. Moreover, the ground state solution obtained

in this paper also minimizes the functional Φ on Pohožaev manifold associated with problem (1.1), under

(V1), (S1)-(S3) and the following growth condition on V :

(V2) V ∈ C1(R3,R) and there exists θ ∈ [0, 1) such that t 7→ 3V (tx)+∇V (tx)·(tx)
tα + θa

4t2+α|x|2 is nonincreasing

on (0,+∞) for every x ∈ R3\{0}.

To state our results, similar to (1.11), we define the Pohožaev functional on H1(R3) as follows:

P (u) =
a

2
∥∇u∥22 +

1

2

∫
R3

[3V (x) +∇V (x) · x]u2dx− 3 + α

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

2
∥∇u∥42 = 0. (1.13)

Similarly, we set

M := {u ∈ H1(R3)\{0} : P (u) = 0}.

Then one knows that every nontrivial solution of problem (1.1) is contained in M . Now, we can state our

first main result.

Theorem 1.1. Suppose that (V1)-(V2) and (S1)-(S3) hold. Then problem (1.1) admits a solution ũ ∈ H1(R3)

such that Φ(ũ) = infM Φ = infu∈Υ maxt>0 Φ(ut) > 0, where

Υ :=

{
u ∈ H1(R3) : 0 <

∫
R3

(Iα ∗ F (u))F (u)dx

}
and ut := ut(x) = u(t−1x).

Since problem (1.9) is autonomous form of problem (1.1), the following corollary follows from Theorem

1.1 obviously.

Corollary 1.2. Suppose that (S1)-(S3) hold. Then problem (1.9) admits a solution ũ ∈ H1(R3) such that

Φ∞(ũ) = infM∞ Φ∞ = infu∈Υ maxt>0 Φ
∞(ut) > 0.

For the autonomous problem (1.9), we can easily show that its least energy solution corresponds to

the obtained solution ũ in the above Corollary 1.2 under the Pohožaev type identity (1.11). Specially, we

estabilsh the following result.

Theorem 1.3. Suppose that (S1)-(S3) hold. Then problem (1.9) admits a solution ũ ∈ H1(R3) such that

Φ∞(ũ) = infM∞ Φ∞ = inf{Φ∞(u) : u ∈ H1(R3)\{0} is a soltuion of problem (1.9)}.

Remark 1.4. As pointed out in [13], from Theorem 1.1, we know that the least energy value m := infM Φ

possesses a minimax characterization m := infu∈Υ maxt>0 Φ(ut), which seems much simpler than the usual

characterization related to the Mountain Pass level.

In order to obtain the existence of the least energy solutions for problem (1.1), besides the conditions

(V1) and (S1)-(S3), we also need the following decay assumption on ∇V which is weaker than (V2):
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(V3) V ∈ C1(R3,R) and there is θ′ ∈ [0, 1) and R̃ ≥ 0 such that

∇V (x) · x ≤

{
θ′αV (x), |x| ≥ R̃;

a
2|x|2 , 0 < |x| ≤ R̃.

Now, we can state the following theorem.

Theorem 1.5. Suppose that (V1), (V3) and (S1)-(S3) hold. Then problem (1.1) admits a solution ũ ∈
H1(R3) such that Φ(ũ) = infΛ Φ, where

Λ := {u ∈ H1(R3)\{0} : Φ′(u) = 0}.

Remark 1.6. In fact, there are many functions which satisfy (V1)-(V3). For example, V (x) = A1 − A2

1+|x|3

satisfies (V1) and (V3) for 0 < (3 + α)A2 < αA1 and V (x) = A3 − A4e
−|x|α for A3 > A4 > 0 satisfies

(V1) and (V2). The results obtained in this paper generalize and improve some previous results on problem

(1.1) in the literature, which seem also new for the ”limiting problem” of problem (1.1), that is V (x) ≡ V∞.

Specially speaking, Theorem 1.1 and Theorem 1.3 complete the gap of p ∈ (1 + α/3, 2] when f(u) = |u|p−2u.

Remark 1.7. Let α → 0, the results obtained in this paper also cover many results in the literature, for

example, the ones in [19, 21, 22, 30, 35, 39, 40], in which the nonlinearity is a special form of (Iα ∗F (u))f(u).

Besides, the nonlinearity F in this paper only need to satisfy the Berestycki-Lion type conditions (S1)-(S3),

which seem more simpler.

To prove Theorem 1.1, motivated by [13], firstly, choosing a sequence {un} of Φ on M such that

P (un) = 0, Φ(un) → m := inf
M

Φ. (1.14)

Secondly, proving that un ⇀ ũ ∈ H1(R3)\{0} by ”the least energy squeeze approach” and the concentration-

compactness argument, and then checking that ũ ∈ M and Φ(ũ) = infM Φ. Finally, checking that ũ is a

critical point of Φ. We would like to point out that it is very difficult to prove the solution ũ ∈ M and

Φ(ũ) = infM Φ because of lack of adequate information on Φ′(un) and global compactness. To deal with

this difficulty, we construct an important inequality which is related to Φ(u), Φ(ut) and P (u). We point out

that this inequality is very important in the sequent arguments. Compared with most of the existence of

results obtained in the existing literature, we do not need to compare the critical level of problem (1.1) with

the one of the ”limiting problem” (1.9). Besides, we do not need to construct the following strict inequality:

max
t∈[0,1]

Φ(x0(t)) < inf{Φ∞(u) : u ∈ H1(R3)\{0} is a solution of problem (1.9)} (1.15)

for some path x0 ∈ C([0, 1],H1(R3)). It is easy to see that x0(t) > 0 under (V1). It is also known that

(1.15) is often proved under (V1), (S1)-(S3) and other additional assumptions on f , such as tf(t) ≥ 0 and

f is odd. However, we do not need the strict inequality (1.15) in our proofs in this paper. Our approach
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could be used for studying problems where the ground state solutions or paths of the problems at infinity

are indefinite.

To prove Theorem 1.5, we borrow the idea from Jeanjean-Tanaka [43], that is, a bounded (PS)-sequence

for Φ is obtained by using an approximation procedure, but not starting directly from an arbitrary (PS)-

sequence. Specially speaking, for λ ∈ [1/2, 1], a family of functionals Φλ : H1(R3) → R defined by

Φλ(u) =
1

2

∫
R3

[a|∇u|2 + V (x)u2]dx− λ

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

4

(∫
R3

|∇u|2dx
)2

(1.16)

are considered. These functionals have a Mountain Pass geometry, whose corresponding Mountain Pass

levels are denoted by cλ. Corresponding to (1.16), we also define

Φ∞
λ (u) =

1

2

∫
R3

[a|∇u|2 + V∞u2]dx− λ

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

4

(∫
R3

|∇u|2dx
)2

, ∀ u ∈ H1(R3). (1.17)

From Corollary 1.2, there exists a minimizer u∞
λ of Φ∞

λ on M∞
λ for every λ ∈ [1/2, 1], where the set M∞

λ is

defined as follows

M∞
λ := {u ∈ H1(R3)\{0} : P∞

λ (u) = 0} (1.18)

and

P∞
λ (u) =

a

2
∥∇u∥22 +

3V∞

2
∥u∥22 −

(3 + α)λ

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

2
∥∇u∥42, ∀ u ∈ H1(R3). (1.19)

Let

A(u) =
1

2

∫
R3

[a|∇u|2 + V (x)u2]dx+
b

4

(∫
R3

|∇u|2dx
)2

, B(u) =
1

2

∫
R3

(Iα ∗ F (u))F (u)dx, ∀ u ∈ H1(R3).

Then Φλ(u) = A(u) − λB(u). Because B(u) is indefinite, we can’t use the classical monotonicity trick.

Moreover, since the minimizer u∞
λ is not positive definite, it is also more difficult to prove the following key

inequality

cλ < m∞
λ := inf

u∈M∞
λ

Φ∞
λ (u) (= Φ∞

λ (u∞
λ )), λ ∈ [1/2, 1]. (1.20)

By the excellent work of Jeanjean-Tolan [44], for a.e. λ ∈ [1/2, 1], the functional Φλ still possesses a bounded

(PS)-sequence {un(λ)} ⊂ H1(R3) at level cλ. Different from the classical way to obtain (1.20) in the existing

literature, following the strategy in [13], by means of u∞
1 and the following key inequality established in

Lemma 2.2

Φ(u) ≥ Φ(ut) +
1− t3+α

3 + α
P (u) +

a(1− θ)g(t)

2(3 + α)
∥∇u∥22 +

bi(t)

4(3 + α)
∥∇u∥42, ∀ u ∈ H1(R3), t > 0, (1.21)

we can find λ̄ ∈ [1/2, 1] such that

cλ < m∞
λ , λ ∈ (λ̄, 1]. (1.22)

In our arguments, we do not need any information on sign of u∞
1 . By the idea of a precise decomposition of

bounded (PS)-sequence in [43] and (1.22), one can obtain a nontrivial critical point uλ of Φλ with cλ = Φ(uλ)
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for almost every λ ∈ (λ̄, 1]. Finally, we prove that problem (1.1) has a least energy solution under (V1),

(V3) and (S1)-(S3) with the help of Pohožaev identity.

Now, we give out the following notations which are used in the whole paper:

♣ Ls(R3)(1 ≤ s ≤ +∞) denotes the Lebesgue space with the norm ∥u∥s =
(∫

R3 |u|sdx
)1/s

;

♣ For any x ∈ R3 and r > 0, Br(x) := {y ∈ R3 : |y − x| < r};
♣ H1(R3) denotes the usual Sobolev space equipped with the inner product and norm

(u, v) =

∫
R3

(∇u · ∇v + uv)dx, ∥u∥ = (u, v)1/2, ∀ u, v ∈ H1(R3);

♣ For any u ∈ H1(R3)\{0} and t > 0, ut := ut(x) = u(x/t);

♣ C1, C2, C3, · · · are positive constants possibly different in different space.

The rest of the paper is organized as follows. In Section 2, some preliminaries are given and the proofs of

Theorem 1.1 and Theorem 1.3 are given too. In Section 3, we study the existence of a least energy solution

for problem (1.1) and Theorem 1.5 will be proved.

2. Ground state solutions

In this section, we give the proofs of Theorem 1.1 and Theorem 1.3. In order to do this, some useful

lemmas are given. When the potential V (x) is a constant, for example V (x) ≡ V∞, since it satisfies (V1)

and (V2) too, all conclusions on Φ also hold true for Φ∞. When studying problem (1.9), for convenience,

we always assume that V∞ > 0. First, in view of [13], we can verify Lemma 2.1 by a simple calculation.

Lemma 2.1. For all t ∈ [0, 1) ∪ (1,+∞), the following inequalities hold:

g(t) := 2 + α− (3 + α)t+ t3+α > g(1) = 0, (2.1)

h(t) := α− (3 + α)t3 + 3t3+α > h(1) = 0, (2.2)

i(t) := 1 + α− (3 + α)t2 + 2t3+α > i(1) = 0. (2.3)

Moreover, under (V2), for all t ≥ 0 and x ∈ R3\{0}, the following inequality is true:

(α+ 3t3+α)V (x) + (t3+α − 1)∇V (x) · x− (3 + α)t3V (tx) ≥ −aθ[2 + α− (3 + α)t+ t3+α]

4|x|2
. (2.4)

Lemma 2.2. Suppose that (V1), (V2) and (S2) hold. Then for all t > 0 and u ∈ H1(R3), the following

inequality holds:

Φ(u) ≥ Φ(ut) +
1− t3+α

3 + α
P (u) +

a(1− θ)g(t)

2(3 + α)
∥∇u∥22 +

bi(t)

4(3 + α)
∥∇u∥42. (2.5)

Proof. From Hardy inequality, one has

∥∇u∥22 ≥ 1

4

∫
R3

u2

|x|2
dx, ∀ u ∈ H1(R3). (2.6)
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From the definition of ut and (1.8), we have

Φ(ut) =
at

2

∫
R3

|∇u|2dx+
t3

2

∫
R3

V (tx)u2dx− t3+α

2

∫
R3

(Iα ∗ F (u))F (u)dx+
bt2

4

(∫
R3

|∇u|2dx
)2

. (2.7)

Hence, from (1.8), (1.13), (2.1), (2.3), (2.4), (2.6) and (2.7), we have

Φ(u)− Φ(ut) =
(1− t)a

2
∥∇u∥22 +

1

2

∫
R3

[V (x)− t3V (tx)]u2dx

−1− t3+α

2

∫
R3

(Iα ∗ F (u))F (u)dx+
(1− t2)b

4

(∫
R3

|∇u|2dx
)2

=
1− t3+α

3 + α

{
a

2
∥∇u∥22 +

1

2

∫
R3

[3V (x) +∇V (x) · x]u2dx

−3 + α

2

∫
R3

(Iα ∗ F (u))F (u)dx+
b

2
∥∇u∥42

}
+
a[2 + α− (3 + α)t+ t3+α]

2(3 + α)
∥∇u∥22 +

b[1 + α− (3 + α)t2 + 2t3+α]

4(3 + α)
∥∇u∥42

+
1

2

∫
R3

{[
α+ 3t3+α

3 + α
V (x)− t3V (tx)

]
− 1− t3+α

3 + α
∇V (x) · x

}
u2dx

≥ 1− t3+α

3 + α
P (u) +

a(1− θ)g(t)

2(3 + α)
∥∇u∥22 +

bi(t)

4(3 + α)
∥∇u∥42. (2.8)

It follows from (2.8) that (2.5) holds.

The following two corollaries are obtained by Lemma 2.2.

Corollary 2.3. Suppose that (S1) and (S2) hold. Then

Φ∞(u) = Φ∞(ut) +
1− t3+α

3 + α
P∞(u) +

bi(t)

4(3 + α)
∥∇u∥42 +

ag(t)∥∇u∥22 + V∞h(t)∥u∥22
2(3 + α)

, ∀ u ∈ H1(R3). (2.9)

Corollary 2.4. Suppose that (V1), (V2), (S1) and (S2) hold. Then

Φ(u) = max
t>0

Φ(ut), ∀ u ∈ M. (2.10)

Lemma 2.5. Suppose that (V1) and (V2) hold. Then there exist two positive constants z1 and z2 such that

z1∥u∥2 ≤ a∥∇u∥22 +
∫
R3

[3V (x) +∇V (x) · x]u2dx ≤ z2∥u∥2, ∀ u ∈ H1(R3). (2.11)

Proof. The proof of Lemma 2.5 is similar to that of [13], for the readers’ convenience, we give the details

here. Letting t = 0 in (2.4), we have

αV (x)−∇V (x) · x ≥ −a(2 + α)θ

4|x|2
, ∀ x ∈ R3\{0}. (2.12)

By (V1) and (2.12), we have

∇V (x) · x ≤ a(2 + α)θ

4|x|2
+ αV∞, ∀ x ∈ R3\{0}. (2.13)
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Similarly, letting t → ∞ in (2.4), then, by (V1), we obtain

−3V∞ − aθ

4|x|2
≤ −3V (x)− aθ

4|x|2
≤ ∇V (x) · x, ∀ x ∈ R3\{0}. (2.14)

From (V1), (2.13) and (2.14), there is a positive constant C1 such that

|∇V (x) · x| ≤ C1, ∀ x ∈ R3. (2.15)

By (2.4), for any t > 0 and x ∈ R3, we have

3V (x) +∇V (x) · x ≥ − aθ

4|x|2
+ (3 + α)t−αV (tx)−

[
αV (x)−∇V (x) · x+

a(2 + α)θ

4|x|2

]
t−(3+α). (2.16)

From (V1), there exists a positive constant R such that

V∞

2
≤ V (x) for all |x| ≥ R (2.17)

and [
C1 + αV∞ +

a(2 + α)θ

4

]
≤ (3 + α)V∞R3

4
. (2.18)

From (V1), (2.15), (2.16) and (2.18), one has

3V (x) +∇V (x) · x ≥ − aθ

4|x|2
+ (3 + α)R−αV (Rx)−R−3−α

[
αV (x)−∇V (x) · x+

a(2 + α)θ

4|x|2

]
≥ − aθ

4|x|2
+

(3 + α)R−αV∞

4
, ∀ |x| ≥ 1. (2.19)

By Sobolev inequality and Hölder inequality, we have

∫
|x|<1

u2dx ≤ ω
(2∗−2)/2
3

(∫
|x|<1

u2∗dx

)2/2∗

≤ S−1ω
2/3
3 ∥∇u∥22, (2.20)

where ω3 denotes the volume of the unit ball of R3. Hence, from (2.6), (2.13), (2.14), (2.19) and (2.20), one

obtains ∫
R3

[3V (x) +∇V (x) · x]u2dx+ a

∫
R3

|∇u|2dx

≤ (3 + α)V∞∥u∥22 + a[1 + (2 + α)θ]∥∇u∥22
≤ [(3 + α)V∞ + a+ aθ(2 + α)]∥u∥2 := z2∥u∥2, for all u ∈ H1(R3) (2.21)
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and ∫
R3

[3V (x) +∇V (x) · x]u2dx+ a

∫
R3

|∇u|2dx

=

∫
|x|<1

[3V (x) +∇V (x) · x]u2dx+

∫
|x|≥1

[3V (x) +∇V (x) · x]u2dx+ a

∫
R3

|∇u|2dx

≥ −aθ

4

∫
R3

u2

|x|2
dx+

(3 + α)R−αV∞

4

∫
|x|≥1

u2dx+ a∥∇u∥22

≥ (3 + α)R−αV∞

4

∫
|x|≥1

u2dx+ a(1− θ)∥∇u∥22

≥ (3 + α)R−αV∞

4

∫
|x|≥1

u2dx+
a(1− θ)S

2ω
2/3
3

∫
|x|<1

u2dx+
a(1− θ)

2
∥∇u∥22

≥ min

{
a(1− θ)S

2ω
2/3
3

,
(3 + α)R−αV∞

4

}
∥u∥22 +

a(1− θ)

2
∥∇u∥22

≥ min

{
a(1− θ)S

2ω
2/3
3

,
(3 + α)R−αV∞

4
,
a(1− θ)

2

}
∥u∥2 := z1∥u∥2, for all u ∈ H1(R3). (2.22)

It follows from (2.21) and (2.22) that (2.11) holds.

Lemma 2.6. Suppose that (V1), (V2) and (S1)-(S3) hold. Then Υ ̸= ∅ and

{u ∈ H1(R3)\{0} : P∞(u) ≤ 0 or P (u) ≤ 0} ⊂ Υ. (2.23)

Proof. From the proof of Claim 1 in Proposition 2.1 of [1], (S3) implies that Υ ̸= ∅. In the following, we

have two cases to consider:

1). u ∈ H1(R3)\{0} with P∞(u) ≤ 0, then (1.11) implies that u ∈ Υ.

2). u ∈ H1(R3)\{0} with P (u) ≤ 0, then from (1.13), (2.6) and (2.14), we have

3 + α

2

∫
R3

(Iα ∗ F (u))F (u)dx

= −P (u) +
a

2

∫
R3

|∇u|2dx+
1

2

∫
R3

[3V (x) +∇V (x) · x]u2dx+
b

2

(∫
R3

|∇u|2dx
)2

≥ a

2
∥∇u∥22 −

aθ

8

∫
R3

u2

|x|2
dx+

b

2
∥∇u∥42

≥ a(1− θ)

2
∥∇u∥22 +

b

2
∥∇u∥42 > 0. (2.24)

(2.24) implies that u ∈ Υ.

Lemma 2.7. Suppose that (V1), (V2) and (S1)-(S3) hold. Then for any u ∈ Υ, there is a unique tu > 0

such that utu ∈ M .
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Proof. Let u ∈ Υ be fixed and define a function ξ(t) := Φ(ut) on (0,∞). From (1.13) and (2.7), we have

ξ′(t) = 0 ⇔ at

2
∥∇u∥22 +

bt2

2
∥∇u∥42 −

(3 + α)t3+α

2

∫
R3

(Iα ∗ F (u))F (u)dx

+
t3

2

∫
R3

[3V (tx) +∇V (tx) · (tx)]u2dx = 0

⇔ P (ut) = 0 ⇔ ut ∈ M. (2.25)

From the definition of Υ and using (S1), (V1) and (2.7), we have limt→0 ξ(t) = 0, ξ(t) < 0 for t large enough

and ξ(t) > 0 for t > 0 small enough. Hence, maxt∈(0,∞) ξ(t) can be attained at some tu > 0 such that

utu ∈ M and ξ′(tu) = 0.

Now, we prove that tu is unique for any u ∈ Υ. In fact, for any given u ∈ Υ, let t1, t2 > 0 be such that

ut1 , ut2 ∈ M . Then P (ut1) = P (ut2) = 0. Together with (2.5), one has

Φ(ut1) ≥ Φ(ut2) +
t3+α
1 − t3+α

2

(3 + α)t3+α
1

P (ut1) +
bi(t2/t1)

4(3 + α)
∥∇ut1∥42 +

a(1− θ)g(t2/t1)

2(3 + α)
∥∇ut1∥22

= Φ(ut2) +
bt21i(t2/t1)

4(3 + α)
∥∇u∥42 +

a(1− θ)t1g(t2/t1)

2(3 + α)
∥∇u∥22 (2.26)

and

Φ(ut2) ≥ Φ(ut1) +
t3+α
2 − t3+α

1

(3 + α)t3+α
2

P (ut2) +
bi(t1/t2)

4(3 + α)
∥∇ut2∥42 +

a(1− θ)g(t1/t2)

2(3 + α)
∥∇ut2∥22

= Φ(ut1) +
bt22i(t1/t2)

4(3 + α)
∥∇u∥42 +

a(1− θ)t2g(t1/t2)

2(3 + α)
∥∇u∥22. (2.27)

It follows from (2.1), (2.3), (2.26) and (2.27) that t1 = t2. Hence, for any u ∈ Υ, tu > 0 is unique.

Corollary 2.8. Suppose that (S1)-(S3) hold. Then, there is a unique tu > 0 for any u ∈ Υ, such that

utu ∈ M∞.

It follows from Corollary 2.4, Lemma 2.6, Lemma 2.7 and Corollary 2.8 that M ̸= ∅, M∞ ̸= ∅. Besides, we
have the following lemma.

Lemma 2.9. Suppose that (V1), (V2) and (S1)-(S3) hold. Then

inf
u∈M

Φ(u) := m = inf
u∈Λ

max
t>0

Φ(ut).

By a standard argument as that in [45], the following Brezis-Lieb type lemma is easy to be obtained.

Lemma 2.10. Suppose that (V1) and (S2) hold. If un ⇀ ũ in H1(R3), then

Φ(un) = Φ(ũ) + Φ(un − ũ) +
b

2
∥∇ũ∥22∥∇(un − ũ)∥22 + o(1)

and

P (un) = P (ũ) + P (un − ũ) + b∥∇ũ∥22∥∇(un − ũ)∥22 + o(1).
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Lemma 2.11. Suppose that (V1), (V2) and (S1)-(S3) hold. Then

(i) there is a positive constant ρ such that ∥u∥ ≥ ρ, ∀ u ∈ M ;

(ii) m = infu∈M Φ(u) > 0.

Proof. (i). From (1.7), (1.13), (2.11), Sobolev embedding theorem and P (u) = 0 for any u ∈ M , we have

z1
2
∥u∥2 ≤ a

2
∥∇u∥22 +

b

2
∥∇u∥42 +

1

2

∫
R3

[3V (x) +∇V (x) · x]u2dx

=
3 + α

2

∫
R3

(Iα ∗ F (u))F (u)dx

≤ ∥u∥2(3+α)/3 + C2∥u∥2(3+α). (2.28)

It follows from (2.28) that

∥u∥ ≥ ρ := min

{
1,

[
z1

2(1 + C2)

]3/2α}
, ∀ u ∈ M. (2.29)

(ii). Letting {un} ⊂ M with Φ(un) → m. Now, we consider two possible cases.

Case 1). infn∈N ∥∇un∥2 := σ0 > 0. From (2.1), (2.3) and (2.5) with t → 0, one has

o(1) +m = Φ(un) ≥ a(1− θ)(2 + α)

2(3 + α)
∥∇un∥22 +

b(1 + α)

4(3 + α)
∥∇u∥42

≥ a(1− θ)(2 + α)

2(3 + α)
σ2
0 +

b(1 + α)

4(3 + α)
σ4
0 . (2.30)

Case 2). infn∈N ∥∇un∥2 = 0. After passing to a subsequence and using (2.29), we have

∥un∥2 ≥ 1

2
ρ, ∥∇un∥2 → 0. (2.31)

From Sobolev inequality and (1.7), it yields that∫
R3

(Iα ∗ F (u))F (u)dx ≤ C3

(
∥u∥2(3+α)/3

2 + ∥u∥2(3+α)
2∗

)
≤ C3

(
∥u∥2(3+α)/3

2 + S−(3+α)∥∇u∥2(3+α)
2

)
, ∀ u ∈ H1(R3). (2.32)

From (2.17), we get ∫
|tx|≥R

V (tx)u2dx ≥ V∞

2

∫
|tx|≥R

u2dx, ∀ u ∈ H1(R3), t > 0. (2.33)

It follows from Hölder inequality and Sobolev inequality that

∫
|tx|≤R

u2dx ≤
(
ω3R

3

t3

)(2∗−2)/2∗
(∫

|tx|≤R

u2∗dx

)2/2∗

≤ ω
2/3
3 R2S−1t−2∥∇u∥22, ∀ u ∈ H1(R3), t > 0. (2.34)
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Set

δ0 = min{V∞, aω
−2/3
3 R−2S} (2.35)

and

tn =

(
δ0
3C3

)1/α

∥un∥−2/3
2 . (2.36)

From (2.31), one has that {tn} is bounded. Hence, from (2.7), (2.10), (2.31), (2.32), (2.33), (2.34), (2.35)

and (2.36), it yields that

o(1) +m = Φ(un) ≥ Φ((un)tn)

=
atn
2

∥∇un∥22 +
t3n
2

∫
R3

V (tnx)u
2
ndx+

bt2n
4

∥∇un∥42 −
t3+α
n

2

∫
R3

(Iα ∗ F (un))F (un)dx

≥ aSt3n

2R2ω
2/3
3

∫
|tnx|≤R

u2
ndx+

V∞t3n
4

∫
|tnx|≥R

u2
ndx+

bt2n
4

∥∇un∥42

−C3

2
t3+α
n ∥un∥2(3+α)/3

2 − C3t
3+α
n

2S3+α
∥∇un∥2(3+α)

2

≥ δ0
4
t3n∥un∥22 −

C3

2
t3+α
n ∥un∥2(3+α)/3

2 + o(1)

=
1

4
t3n∥un∥22

(
δ0 − 2C3t

α
n∥un∥2α/32

)
+ o(1)

=
δ0
12

(
δ0
3C3

)3/α

+ o(1). (2.37)

It follows from Case 1) and Case 2) that m = infu∈M Φ(u) > 0.

Lemma 2.12. Suppose that (V1), (V2) and (S1)-(S3) hold. Then m ≤ m∞.

Proof. Arguing indirectly, assume that m > m∞. Let ϵ := m−m∞. Then there exists u∞
ϵ such that

u∞
ϵ ∈ M∞ and m∞ +

ϵ

2
> Φ∞(u∞

ϵ ). (2.38)

According to Lemma 2.6 and Lemma 2.7, there exists tϵ > 0 such that (u∞
ϵ )tϵ ∈ M . Hence, from (V1), (V2),

(1.8), (1.10), (2.9) and (2.38), we have

m∞ +
ϵ

2
> Φ∞(u∞

ϵ ) ≥ Φ∞((u∞
ϵ )tϵ) ≥ Φ(u∞

ϵ ) ≥ m.

This is a contradiction, which shows that the conclusion of Lemma 2.12 is true.

Lemma 2.13. Suppose that (V1), (V2) and (S1)-(S3) hold. Then m is achieved.

Proof. From Lemma 2.11, one has m > 0. Let {un} ⊂ M be such that Φ(un) → m. Since P (un) = 0, from

(2.5) with t → 0, we have

m+ o(1) = Φ(un) ≥
a(1− θ)(2 + α)

2(3 + α)
∥∇un∥22 +

b(1 + α)

4(3 + α)
∥∇un∥42. (2.39)
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It follows from (2.39) that {∥∇un∥2} is bounded. In the following, we will prove that {∥un∥2} is also

bounded. Arguing indirectly, assume that ∥un∥2 → ∞. From Sobolev inequality and (1.7) , we have∫
R3

(Iα ∗ F (u))F (u)dx ≤ δ0
4

(
δ0
24m

)α/3

∥un∥2(3+α)/3
2 + C4∥un∥2(3+α)

2∗

≤ δ0
4

(
δ0
24m

)α/3

∥un∥2(3+α)/3
2 + C4S

−(3+α)∥∇u∥2(3+α)
2 , ∀ u ∈ H1(R3),(2.40)

where δ0 is given in (2.35). Let

ťn =

(
24m

δ0

)1/3

∥un∥−2/3
2 . (2.41)

Then it is easy to see that ťn → 0 as n → ∞. From (2.7), (2.10), (2.33), (2.34), (2.35), (2.40) and (2.41), we

get

o(1) +m = Φ(un) ≥ Φ((un)ťn)

=
aťn
2

∥∇un∥22 +
ť3n
2

∫
R3

V (ťnx)u
2
ndx+

bť2n
4

∥∇un∥42 −
ť3+α
n

2

∫
R3

(Iα ∗ F (un))F (un)dx

≥ aSť3n

2R2ω
2/3
3

∫
|ťnx|<R

u2
ndx+

V∞ť3n
4

∫
|ťnx|≥R

u2
ndx+

bť2n
4

∥∇un∥42

−δ0
8

(
δ0
24m

)α/3

ť3+α
n ∥un∥2(3+α)/3

2 − C4ť
3+α
n

2S3+α
∥∇un∥2(3+α)

2

≥ δ0
4
ť3n∥un∥22 −

δ0
8

(
δ0
24m

)α/3

ť3n∥un∥2(3+α)/3
2 + o(1)

=
δ0
4
ť3n∥un∥22

[
1− 1

2

(
δ0
24m

)α/3

ťαn∥un∥2α/32

]
+ o(1)

= 3m+ o(1), (2.42)

a contradiction, which implies the boundedness of {∥un∥2}. Therefore, {un} is bounded in H1(R3). Going

to a subsequence, one has un ⇀ ũ in H1(R3). Then un → ũ in Ls
Loc(R3) for s ∈ [2, 2∗) and un → ũ a.e. in

R3. We have two possible cases: i) ũ = 0 and ii) ũ ̸= 0.

Case i). ũ = 0, i.e. un ⇀ 0 in H1(R3). Then un → 0 in Ls
Loc(R3) for s ∈ [2, 2∗) and un → 0 a.e. in R3.

From (V1) and (V2), we can show that

lim
n→∞

∫
R3

[V∞ − V (x)]u2
ndx = lim

n→∞

∫
R3

∇V (x) · xu2
ndx = 0. (2.43)

By (1.8), (1.10), (1.11), (1.13) and (2.43), we have

Φ∞(un) → m, P∞(un) → 0. (2.44)
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By Lemma 2.11(i), (1.11) and (2.44), we have

min{a, 3V∞}ρ2 ≤ min{a, 3V∞}∥un∥2 + b∥∇un∥42
≤ a∥∇un∥22 + b∥∇un∥42 + 3V∞∥un∥22

= (3 + α)

∫
R3

(Iα ∗ F (un))F (un)dx+ o(1). (2.45)

By (1.7), (2.45) and Lion’s concentration compactness principle [46, Lemma 2.1], one can show that there

are δ > 0 and a sequence {yn} ⊂ R3 such that
∫
B1(yn)

|un|2dx > δ. Let ǔn(x) = un(x+ yn). Then one has

∥ǔn∥ = ∥un∥ and

P∞(ǔn) = o(1), Φ∞(ǔn) → m,

∫
B1(0)

|ǔn|2dx > δ. (2.46)

Hence, there exists ǔ ∈ H1(R3)\{0} such that, passing to a subsequence,
ǔn ⇀ ǔ, in H1(R3);

ǔn → ǔ, in Ls
Loc(R3), ∀ s ∈ [1, 2∗);

ǔn → ǔ, a.e. on R3.

(2.47)

Let wn = ǔn − ǔ. Then from Lemma 2.10 and (2.47), we have

Φ∞(ǔn) = Φ∞(ǔ) + Φ∞(wn) +
b

2
∥∇ǔ∥22∥wn∥22 + o(1) (2.48)

and

P∞(ǔn) = P∞(ǔ) + P∞(wn) + b∥∇ǔ∥22∥wn∥22 + o(1). (2.49)

Let

Ψ∞(u) := Φ∞(u)− 1

3 + α
P∞(u) =

αV∞∥u∥22 + a(2 + α)∥∇u∥22
2(3 + α)

+
b(1 + α)∥∇u∥42

4(3 + α)
. (2.50)

By (1.10), (1.11), (2.46), (2.48) and (2.49), we have

P∞(wn) = −P∞(ǔ) + o(1), Ψ∞(wn) = m−Ψ∞(ǔ) + o(1). (2.51)

If there is a subsequence {wni} of {wn} such that wni = 0, then after passing to this subsequence, one has

P∞(ǔ) = 0, Φ∞(ǔ) = m. (2.52)

Next, assume that wn ̸= 0. Now, we prove that P∞(ǔ) ≤ 0. Else, if P∞(ǔ) > 0, then, for large n, it follows

from (2.51) that P∞(wn) < 0. It follows from Lemma 2.6 and Corollary 2.8 that there is tn > 0 such that

(wn)tn ∈ M∞ for large n. Thanks to (1.10), (1.11), (2.9), (2.50) and (2.51), it yields that

o(1) +m−Ψ∞(ǔ) = Ψ∞(wn) = Φ∞(wn)−
1

3 + α
P∞(wn)

≥ Φ∞((wn)tn)−
t3n

3 + α
P∞(wn)

≥ m∞ − t3n
3 + α

P∞(wn) ≥ m∞, (2.53)
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which implies that P∞(ǔ) ≤ 0 due to m ≤ m∞ and Ψ∞(ǔ) > 0. Since ǔ ̸= 0 and P∞(ǔ) ≤ 0, it follows from

Lemma 2.6 and Corollary 2.8 that there exists ť > 0 such that ǔť ∈ M∞. By (1.10), (1.11), (2.9), (2.44),

(2.46), (2.50) and the weak semicontinuity of norm, we obtain

m = lim
n→∞

[
Φ∞(ǔn)−

1

3 + α
P∞(ǔn)

]
= lim

n→∞
Ψ∞(ǔn) ≥ Ψ∞(ǔ)

= Φ∞(ǔ)− 1

3 + α
P∞(ǔ)

≥ Φ∞(ǔť)−
ť3

3 + α
P∞(ǔ)

≥ m∞ − ť3

3 + α
P∞(ǔ)

≥ m− ť3

3 + α
P∞(ǔ) ≥ m. (2.54)

From (2.54), we know that (2.52) also holds. By Lemma 2.6 and Lemma 2.7, there exists t̄ > 0 such that

ǔt̄ ∈ M , moreover, from (V1), (V2), (1.8), (1.10), (2.52) and Corollary 2.3, we have

m ≤ Φ(ǔt̄) ≤ Φ∞(ǔt̄) ≤ Φ∞(ǔ) = m,

which implies that m is achieved at ǔt̄ ∈ M .

Case ii). ũ ̸= 0. Let vn = un − ũ. Then from Lemma 2.10, we have

Φ(un) = Φ(ũ) + Φ(vn) +
b

2
∥∇ũ∥22∥∇vn∥22 + o(1) (2.55)

and

P (un) = P (ũ) + P (vn) + b∥∇ũ∥22∥∇vn∥22 + o(1). (2.56)

Set

Ψ(u) =
a(2 + α)

2(3 + α)
∥∇u∥22 +

1

2(3 + α)

∫
R3

[αV (x)−∇V (x) · x]u2dx+
b(1 + α)

4(3 + α)
∥∇u∥42. (2.57)

From (2.6) and (2.12), we have∫
R3

[αV (x)−∇V (x) · x]u2dx+ a(2 + α)

∫
R3

|∇u|2dx+
b(1 + α)

2

(∫
R3

|∇u|2dx
)2

≥ −aθ(2 + α)

4

∫
R3

u2

|x|2
dx+ a(2 + α)∥∇u∥22 +

b(1 + α)

2
∥∇u∥42

≥ a(1− θ)(2 + α)∥∇u∥22 +
b(1 + α)

2
∥∇u∥42, ∀ u ∈ H1(R3). (2.58)

By (1.8), (1.13), (2.55), (2.56), (2.57), P (un) = 0 and Φ(un) → m, we have

P (vn) = −P (ũ) + o(1), Ψ(vn) = m−Ψ(ũ) + o(1). (2.59)
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If there is a subsequence {vni} of {vn} such that vni = 0, then after passing to this subsequence, one obtains

P (ũ) = 0, Φ(ũ) = m, (2.60)

which shows that the conclusion of Lemma 2.13 is true. Next, suppose that vn ̸= 0. Now, we prove that

P (ũ) ≤ 0. Else, if P (ũ) > 0, then from (2.59), we know that that P (vn) < 0 for large n. From Lemma 2.6

and Lemma 2.7, for large n, there is tn > 0 such that (vn)tn ∈ M . By (1.8), (1.13), (2.5), (2.57) and (2.59),

one gets

o(1) +m−Ψ(ũ) = Ψ(vn) = Φ(vn)−
1

3 + α
P (vn)

≥ Φ((vn)tn)−
t3n

3 + α
P (vn)

≥ m− t3n
3 + α

P (vn) ≥ m, (2.61)

which implies that P (ũ) ≤ 0 due to Ψ(ũ) > 0. Since ũ ̸= 0 and P (ũ) ≤ 0, it follows from Lemma 2.6

and Lemma 2.7 that there is t̃ > 0 such that ũt̃ ∈ M . By (1.8), (1.13), (2.5), (2.57), (2.58) and the weak

semicontinuity of norm, we obtain

m = lim
n→∞

[
Φ(un)−

1

3 + α
P (un)

]
= lim

n→∞
Ψ(un) ≥ Ψ(ũ)

= Φ(ũ)− 1

3 + α
P (ũ)

≥ Φ(ũt̃)−
t̃3

3 + α
P (ũ)

≥ m− t̃3

3 + α
P (ũ) ≥ m,

which implies that (2.60) also holds.

Lemma 2.14. Suppose that (V1), (V2) and (F1)-(F3) hold. If ũ ∈ M and Φ(ũ) = m, Then ũ is critical

point of Φ.

Proof. Following the ideas of [13, Lemma 2.14] and [42, Lemma 2.15], we can use the intermediary theorem

and deformation lemma to show this lemma. Suppose that Φ′(ũ) ̸= 0. Then, there are δ > 0 and σ > 0 such

that

∥u− ũ∥ ≤ 3δ ⇒ ∥Φ′(u)∥ ≥ σ.

It follows from [35, equation (2.47)] that limt→1 ∥ũt − ũ∥ = 0. Hence, there is δ1 > 0 such that

|t− 1| < δ1 ⇒ ∥ũt − ũ∥ < δ.

From (2.25), there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that

P (ũT1) > 0, P (ũT2) < 0.
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The rest of the proof is similar to the proofs of [13, Lemma 2.14] and [42, Lemma 2.15]. In fact, the desired

conclusion can be obtained by using

Φ(ũt) ≤ Φ(ũ)− a(1− θ)g(t)

2(3 + α)
∥∇ũ∥22 −

bi(t)

4(3 + α)
∥∇ũ∥42

= m− a(1− θ)g(t)

2(3 + α)
∥∇ũ∥22 −

bi(t)

4(3 + α)
∥∇ũ∥42, ∀ t > 0 (2.62)

and

ε := min

{
a(1− θ)g(T1)

6(3 + α)
∥∇ũ∥22 +

bi(T1)

12(3 + α)
∥∇ũ∥42,

a(1− θ)g(T2)

6(3 + α)
∥∇ũ∥22 +

bi(T2)

12(3 + α)
∥∇ũ∥42, 1,

σδ

8

}
instead of [13, (2.56) and ε], respectively.

Proof of Theorem 1.1. According to Lemma 2.9, Lemma 2.13 and Lemma 2.14, there is ũ ∈ M such that

Φ(ũ) = m = inf
u∈Υ

max
t>0

Φ(ut) > 0, Φ′(ũ) = 0

which implies that ũ is a nontrivial solution of problem (1.1).

Proof of Theorem 1.3. Set m̄∞ := infu∈Λ∞ Φ∞(u), where Λ∞ := {u ∈ H1(R3)\{0} : (Φ∞)′(u) = 0}. From
Corollary 1.2, we know that there is ũ ∈ M∞ such that Φ∞(ũ) = m∞ and (Φ∞)′(ũ) = 0, which implies that

m̄∞ ≤ m∞ and Λ∞ ̸= ∅. Besides, if v ∈ Λ∞, then, by (1.11) (i.e. [1, Theorem 3]), we have v ∈ M∞. Hence,

for all v ∈ Λ∞, we have Φ∞(v) ≥ m∞, which implies that m̄∞ ≥ m∞. Hence, m̄∞ = m∞. The proof is

completed.

3. The least energy solutions

We will use the following proposition to prove Theorem 1.5.

Proposition 3.1. [44] Let X be a Banach space and let J ⊂ R+ be en interval, and

Iλ(u) = A(u)− λB(u), ∀ λ ∈ J,

be a family of continuously differential functional on X such that

(i) either A(u) → +∞ or B(u) → +∞, as ∥u∥ → ∞;

(ii) B maps every bounded set of X into a set of R bounded below;

(iii) there are two points v1 and v2 in X such that

c̃λ := inf
x∈Γ

max
t∈[0,1]

Iλ(x(t)) > max{Iλ(v1), Iλ(v2)},

where

Γ = {x ∈ C([0, 1], X) : x(0) = v1, x(1) = v2}.
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Then, for almost every λ ∈ J , there exists a sequence {un(λ)} such that

(1) {un(λ)} is bounded in X;

(2) Iλ(un(λ)) → c̃λ;

(3) I ′λ(un(λ)) → 0 in X∗, where X∗ is the dual of X.

Moreover, c̃λ is nonincreasing and left continuous on λ ∈ [1/2, 1].

Similar to [1, 39], we have the following lemma.

Lemma 3.2. Suppose that (V1), (S1) and (S2) hold. Let u ∈ H1(R3) be a critical point of Φλ, then one has

the following Pohožaev type identity:

Pλ(u) :=
a

2
∥∇u∥22 −

(3 + α)λ

2

∫
R3

(Iα ∗ F (u))F (u)dx+
1

2

∫
R3

[3V (x) +∇V (x) · x]u2dx+
b

2
∥∇u∥42 = 0. (3.1)

The following lemma can be obtained easily from Corollary 2.3.

Lemma 3.3. Suppose that (S1) and (S2) hold. Then for all t > 0, λ ≥ 0 and u ∈ H1(R3), the following

equality holds

Φ∞
λ (u) := Φ∞

λ (ut) +
1− t3

3 + α
P∞
λ (u) +

ag(t)∥∇u∥22 + V∞h(t)∥u∥22
2(3 + α)

+
bi(t)

4(3 + α)
∥∇u∥42. (3.2)

By Corollary 1.2, we know that Φ∞
1 = Φ∞ has a minimizer u∞

1 ̸= 0 on M∞
1 = M∞, that is

u∞
1 ∈ M∞

1 , m∞
1 = Φ∞

1 (u∞
1 ) and (Φ∞

1 )′(u∞
1 ) = 0. (3.3)

Since problem (1.9) is autonomous, from (V1), there are x̃ ∈ R3 and r̃ > 0 such that for almost every

|x− x̃| ≤ r̃, one has

V∞ − V (x) > 0, |u∞
1 (x)| > 0. (3.4)

From (V1), one has Vmax := maxx∈R3 V (x) ∈ (0,∞). Set

Φ∗
λ(u) =

1

2

∫
R3

(a|∇u|2 + Vmaxu
2)dx+

b

4

(∫
R3

|∇u|2dx
)2

− λ

2

∫
R3

(Iα ∗ F (u))F (u)dx. (3.5)

By (2.7) and (3.3), there is T > 0 such that

Φ∗
1/2((u

∞
1 )t) < 0 for all t ≥ T. (3.6)

Lemma 3.4. [13] Suppose that (V1) and (S1)-(S3) hold. Then

(i) Φλ((u
∞
1 )T ) < 0 for all λ ∈ [0.5, 1];

(ii) there exists a positive constant k0 independent of λ such that for all λ ∈ [0.5, 1],

cλ := inf
y∈Γ̃

max
t∈[0,1]

Φλ(y(t)) ≥ k0 > max{Φλ(0),Φλ((u
∞
1 )T )},

where

Γ̃ = {y ∈ C([0, 1],H1(R3)) : y(0) = 0, y(1) = (u∞
1 )T };
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(iii) cλ is bounded for λ ∈ [0.5, 1];

(iv) m∞
λ is non-increasing on λ ∈ [0.5, 1];

(v) lim supλ→λ0
cλ ≤ cλ0 for λ0 ∈ [0.5, 1].

Lemma 3.5. Suppose that (V1) and (S1)-(S3) hold. Then there is λ̃ ∈ [0.5, 1] such that cλ < m∞
λ for

λ ∈ (λ̃,1].

Proof. It is easy to see that Φλ((u
∞
1 )t) is continuous for t ∈ (0,+∞). Hence, for any λ ∈ [0.5, 1], we can

choose tλ ∈ (0, T ) such that Φλ((u
∞
1 )tλ) = maxt∈[0,T ] Φλ((u

∞
1 )t). Set

y0(t) =

{
(u∞

1 )(tT ), for t > 0,

0, for t = 0.
(3.7)

Then y0 ∈ Γ̃ defined by Lemma 3.4(ii). Moreover

Φλ((u
∞
1 )tλ) = max

t∈[0,1]
Φλ(y0(t)) ≥ cλ. (3.8)

It follows from P∞(u∞
1 ) = 0 that 0 <

∫
R3(Iα ∗ F (u∞

1 ))F (u∞
1 )dx. Set

ζ0 := min{1/4, 3r̃/8(1 + |x̃|)}. (3.9)

Hence, by (3.4) and (3.9), one obtains

|x− x̃| ≤ r̃

2
and s ∈ [1− ζ0, 1 + ζ0] ⇒ |sx− x̃| ≤ r̄. (3.10)

Set

λ̃ := max

{
1

2
, 1−

(1− ζ0)
3 mins∈[1−ζ0,1+ζ0]

∫
R3 [V∞ − V (sx)]|u∞

1 |2dx
T 3+α

∫
R3(Iα ∗ F (u∞

1 ))F (u∞
1 )dx

,

1− amin{g(1− ζ0), g(1 + ζ0)}∥∇u∞
1 ∥22 + V∞ min{h(1− ζ0), h(1 + ζ0)}∥u∞

1 ∥22
(3 + α)T 3+α

∫
R3(Iα ∗ F (u∞

1 ))F (u∞
1 )dx

− bmin{i(1− ζ0), i(1 + ζ0)}∥∇u∞
1 ∥42

2(3 + α)T 3+α
∫
R3(Iα ∗ F (u∞

1 ))F (u∞
1 )dx

}
. (3.11)

By (2.1), (2.2), (2.3), (3.4) and (3.11), we have 1/2 ≤ λ̃ < 1. We have the following two cases to distinguish:

Case i): tλ ∈ [1− ζ0, 1+ ζ0]. By (1.16), (1.17), (3.2)-(3.8), (3.10), (3.11) and Lemma 3.4(iv), one obtains

m∞
λ ≥ m∞

1 = Φ∞
1 (u∞

1 ) ≥ Φ∞
1 ((u∞

1 )tλ)

= Φ∞
λ ((u∞

1 )tλ) +
t3λ
2

∫
R3

[V∞ − V (tλx)]|u∞
1 |22dx−

(1− λ)t3+α
λ

2

∫
R3

(Iα ∗ F (u∞
1 ))F (u∞

1 )dx

≥ cλ +
(1− ζ0)

3

2

∫
R3

[V∞ − V (tλx)]|u∞
1 |22dx− (1− λ)T 3+α

2

∫
R3

(Iα ∗ F (u∞
1 ))F (u∞

1 )dx

> cλ, ∀ λ ∈ (λ̃, 1]. (3.12)
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Case ii): tλ ∈ (0, 1− ζ0)∪ (1+ ζ0, T ]. By (1.16), (1.17), (2.1)-(2.3), (3.2), (3.3), (3.8), (3.11) and Lemma

3.4(iv), one has

m∞
λ ≥ m∞

1 = Φ∞
1 (u∞

1 ) = Φ∞
1 ((u∞

1 )tλ) +
ag(tλ)∥∇u∞

1 ∥22 + V∞h(tλ)∥u∞
1 ∥22

2(3 + α)
+

bi(tλ)

4(3 + α)
∥∇u∞

1 ∥42

= Φ∞
λ ((u∞

1 )tλ) +
t3λ
2

∫
R3

[V∞ − V (tλx)]|u∞
1 |22dx−

(1− λ)t3+α
λ

2

∫
R3

(Iα ∗ F (u∞
1 ))F (u∞

1 )dx

+
ag(tλ)∥∇u∞

1 ∥22 + V∞h(tλ)∥u∞
1 ∥22

2(3 + α)
+

bi(tλ)

4(3 + α)
∥∇u∞

1 ∥42

≥ cλ − (1− λ)T 3+α

2

∫
R3

(Iα ∗ F (u∞
1 ))F (u∞

1 )dx+
bmin{i(1− ζ0), i(1 + ζ0)}

4(3 + α)
∥∇u∞

1 ∥42

+
amin{g(1− ζ0), g(1 + ζ0)}∥∇u∞

1 ∥22 + V∞ min{h(1− ζ0), h(1 + ζ0)}∥u∞
1 ∥22

2(3 + α)

> cλ, ∀ λ ∈ (λ̃, 1]. (3.13)

From (3.12) and (3.13), we can see that cλ < m∞
λ for λ ∈ (λ̃, 1] in both cases.

Lemma 3.6.[47] Suppose that (V1) and (S1)-(S3) hold. For λ ∈ [1/2, 1], let {un} be a bounded (PS)-

sequence for Φλ. Then there are a subsequence of {un}, still denoted by {un}, an integer l ∈ N ∪ {0}, a
sequence {ykn} and wk ∈ H1(R3) for 1 ≤ k ≤ l, such that

(i) un ⇀ u0 with Φ′
λ(u0) = 0;

(ii) wk ̸= 0 and (Φ∞
λ )′(wk) = 0 for 1 ≤ k ≤ l;

(iii) ∥un − u0 −
∑l

k=1 w
k(·+ ykn)∥ → 0;

(iv) Φλ(un) → Φλ(u0) +
∑l

i=1 Φ
∞
λ (wi).

We agree that the above holds without wk if l = 0.

Lemma 3.7. Suppose that (V1) and (V3) hold. Then there exists z3 > 0 such that

a(2 + α)∥∇u∥22 +
∫
R3

[αV (x)−∇V (x) · x]u2dx ≥ z3∥u∥2, ∀ u ∈ H1(R3). (3.14)

Proof. By (V1), (V3) and (2.6), we obtain

a(2 + α)∥∇u∥22 +
∫
R3

[αV (x)−∇V (x) · x]u2dx

= a(2 + α)∥∇u∥22 −
a

2

∫
R3

u2

|x|2
dx+

∫
R3

[
αV (x)−∇V (x) · x+

a

2|x|2

]
u2dx

≥ aα∥∇u∥22 + α(1− θ′)

∫
R3

V (x)u2dx

≥ z3∥u∥2,

where z3 > 0 is a positive constant.
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Lemma 3.8. Suppose that (V1), (V3) and (S1)-(S3) hold. Then for almost every λ ∈ (λ̃, 1], there is

uλ ∈ H1(R3)\{0} such that

Φλ(uλ) = cλ, Φ′
λ(uλ) = 0. (3.15)

Proof. Let X = H1(R3), J = (λ̃, 1] and Φλ = Iλ, then it follows from Lemma 3.4, (V1) and (S1)-(S3) that

Φλ(u) satisfies all the assumptions of Proposition 3.1. Hence, for almost every λ ∈ (λ̃, 1], there is a bounded

sequence {un(λ)} ⊂ H1(R3) denoted by {un} such that

Φλ(un) → cλ, Φ′
λ(un) → 0. (3.16)

From Lemma 3.2 and Lemma 3.6, there exist a subsequence of {un}, for simplicity, still denoted by {un},
uλ ∈ H1(R3), an integer l ∈ N\{0}, and w1, . . . , wl ∈ H1(R3)\{0} such that

un ⇀ uλ in H1(R3), Φ′
λ(uλ) = 0. (3.17)

(Φ∞
λ )′(wk) = 0, Φ∞

λ (wk) ≥ m∞
λ , 1 ≤ k ≤ l (3.18)

and

cλ = Φλ(uλ) +

l∑
i=1

Φ∞
λ (wi). (3.19)

Since Φ′
λ(uλ) = 0, from Lemma 3.2, we have

Pλ(uλ) :=
1

2
∥∇uλ∥22 +

1

2

∫
R3

[3V (x) +∇V (x) · x]u2
λdx

− (3 + α)λ

2

∫
R3

(Iα ∗ F (uλ))F (uλ)dx+
b

2
∥∇uλ∥42 = 0. (3.20)

It follows from (3.18), (3.19) and ∥un∥ ̸→ 0 that if uλ = 0, then l ≥ 1 and

cλ = Φλ(uλ) +
l∑

i=1

Φ∞
λ (wi) ≥ m∞

λ ,

which is a contradiction due to Lemma 3.5. Hence, uλ ̸= 0. Thanks to (1.16), (3.14) and (3.20), it yields

that

Φλ(uλ) = Φλ(uλ)−
1

3 + α
Pλ(uλ)

=
a(2 + α)

2(3 + α)
∥∇uλ∥22 +

b(1 + α)

4(3 + α)
∥∇uλ∥42 +

1

2(3 + α)

∫
R3

[αV (x)−∇V (x) · x]u2
λdx

≥ z3
2(3 + α)

∥uλ∥2 +
b(1 + α)

4(3 + α)
∥∇uλ∥42

≥ z3
2(3 + α)

∥uλ∥2 > 0. (3.21)

On the one hand, it follows from (3.19) and (3.21) that

cλ = Φλ(uλ) +
l∑

i=1

Φ∞
λ (wi) ≥ lm∞

λ . (3.22)
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On the other hand, it follows from Lemma 3.5 that

cλ < m∞
λ for λ ∈ (λ̃, 1]. (3.23)

Hence, from (3.22) and (3.23), we can know that l = 0 and Φλ(uλ) = cλ. The proof is completed.

Lemma 3.9. Suppose that (V1) and (S1)-(S3) hold. Then there is ũ ∈ H1(R3)\{0} such that

0 < Φ(ũ) ≤ c1, Φ′(ũ) = 0. (3.24)

Proof. It follows from Lemma 3.4(iii) and Lemma 3.8 that there are two sequences {λn} ⊂ (λ̄, 1] and

{uλn} ⊂ H1(R3)\{0}, denoted by {un}, such that

Φλn(un) = cλn , Φ′
λn

(un) = 0, λn → 1, cλn → c∗. (3.25)

By Lemma 3.2 and (3.25), we have Pλn(un) = 0. By Lemma 3.4(iii), (1.16), (3.14), (3.20) and (3.25), we

obtain

C4 ≥ cλn = Φλn(un)−
1

3 + α
Pλn(un)

=
a(2 + α)

2(3 + α)
∥∇un∥22 +

b(1 + α)

4(3 + α)
∥∇un∥42 +

1

2(3 + α)

∫
R3

[αV (x)−∇V (x) · x]u2
ndx

≥ z3
2(3 + α)

∥un∥2 +
b(1 + α)

4(3 + α)
∥∇un∥42

≥ z3
2(3 + α)

∥un∥2,

which implies that {∥un∥} is bounded in H1(R3). From Lemma 3.4(v), we have limn→∞ cλn = c∗ ≤ c1.

Thus, by (1.16) and (3.25), we have

Φ(un) → c∗, Φ′(un) → 0,

which implies that {un} satisfies (3.16) with cλ = c∗. From the proof of Lemma 3.8, one can prove that

ũ ∈ H1(R3)\{0} such that (3.24) is true. The proof is completed.

Proof of Theorem 1.5. Let m̌ := infu∈Λ Φ(u). Therefore, from Lemma 3.9, we have m̌ ≤ c1 and Λ ̸= ∅. For
any u ∈ Λ, it follows from Lemma 3.2 that P (u) = P1(u) = 0. Therefore, by (3.21), we have Φ(u) = Φ1(u) >

0 for all u ∈ Λ, and so m̌ > 0. Let {un} ⊂ Λ be such that

Φ(un) → m̌, Φ′(un) = 0.

From Lemma 3.5, we have m̌ ≤ c1 < m∞
1 . By a similar argument as that in Lemma 3.8, one can show that

there is ũ ∈ H1(R3)\{0} such that

Φ(ũ) = m̌, Φ′(ũ) = 0,

which implies that ũ is a least energy solution of (1.1).
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