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Abstract

In this paper, the anti-plane shear motion of an asymmetric three-layered inhomogeneous elastic
plate has been examined. An asymptotic approach is employed for the present investigation. Both
the generalized and unified dispersion relations within the long-wave low-frequency range have been
determined. The obtained unified dispersion relation is investigated taking into account the recently
analyzed material contrast for layered plate with mixed stiff-soft layers of different material proper-
ties. Finally, we make comparison with symmetric plate being a special case of the asymmetric plate
under consideration in the end.

Keywords:

1 Introduction

The mechanics of multilayered structures is gradually gaining ground due to its various applications in
aerospace and automotive industries, glazing processes, electroplating and coating processes industrially,
and metamaterials among others. The dynamics of multilayered elastic structures such as in plates,
rods, beams and plane-wings has to do with vibrations or typical wave propagation in either the body
or on the surface of the body, popularly known as Rayleigh waves, [1]. Many researchers have published
quite a number of articles with regards to multilayered media including the thin walled elastics bodies
[2], analysis of three-layered plate with thin soft core [3], parametric analysis of inhomogeneous periodic
waveguides [4], long-wave asymptotic approximations in waveguides and periodic media [5], laminated
composites and sandwiches [6-8] and the low-frequency approximations in symmetric three-layered plates
[9-11]. Other similar studies include the low-frequency determination in multi-component elastic structure
[12], asymptotic approach to plates with mixed boundary conditions [13], different investigations on five-
layered plates [14-16]; see also [17-20] and the references therewith for related studies on elastic wave
propagation among other.

However, in the present article, we extend the recent work by Prikazchikova et al. [10] on the low-frequency
anti-plane shear dynamics of a three-layered symmetric inhomogeneous plate to the asymmetric three-
layered version using the same asymptotic approach. The material contrast setup considered in [10] for
a three-layered plate with stiff skin layers and soft core layer will be investigated here for the long-wave
low-frequency dispersion. The paper is arranged as follows: section 2 gives the problem formulation, the
determination of the dispersion relation and cut-off frequency is presented in section 3 for the generalized
case and in section 4 for the unified case. We present the shortened dispersion relation for the unified
case in section 5 and approximate equation of motion in section 6, and give the conclusion in section 7.
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2 Problem Statement

Consider an anti-plane shear stress of an isotropic asymmetric three-layered strongly inhomogeneous plate
with the the lower skin layer of thickness h1, the core layer of thickness h2 and the upper skin layer of
thickness h3 as shown in Fig. 1 below.

Fig. 1: Asymmetric three-layered plate.

We consider the anti-plane equation of motion in (x1, x2, t) given by

∂σi13
∂x1

+
∂σi23
∂x2

= ρi
∂2Ui
∂t2

, i = sl, c, su, (1)

where xn(n = 1, 2) are the spatial variables, t is the temporal variable, Ui the out of plane displacements
for i = sl , i = c and i = su corresponding to the lower skin, core and the upper skin layers, respectively.
The prescribed shear stresses σij3, (j = 1, 2, ) are defined by

σij3 = µi
∂Ui
∂xj

, j = 1, 2, (2)

where µi are the Lame’s elastic constants of motion. More importantly, we remark here that both the
lower and upper skin layers are considered to be of the same materials; thus, µsl = µsu. We also consider
the following interfacial continuity conditions of displacements and stresses:

(a) Uc (x1, x2, t) = Usl (x1, x2, t) , at x2 = h1,

(b) σc23(x1, x2, t) = σsl23(x1, x2, t), at x2 = h1,

(c) Uc (x1, x2, t) = Usu (x1, x2, t) , at x2 = h1 + h2,

(d) σc23(x1, x2, t) = σsu23 (x1, x2, t), at x2 = h1 + h2,

(3)
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and the traction-free conditions on the skin faces as follows

(a) σsl23(x1, x2, t) = 0, at x2 = 0,

(e) σsu23 (x1, x2, t) = 0, at x2 = h1 + h2 + h3.

(4)

However in the present paper, we examine the anti-plane dynamic problem of an asymmetric three-layered
inhomogeneous elastic composite plate that is made perfectly in contact between the layers coupled to
the prescribed traction-free boundary conditions on the outer surfaces. The exact dispersion relation is to
be investigated asymptotically within the zero cut-off frequency estimates in connection to the one of the
material contrasting setups recently examined by Prikazchikova et al. [10] for a symmetric three-layered
plate given by the following asymptotic relation [9]:

µ� 1, h ∼ 1, ρ ∼ µ, (5)

corresponding to a plate with a soft core layer and stiff skin layers.

3 Generalized dispersion relation and cut-off frequency

In this section, we determine the generalized dispersion relation and cut-off frequency of the asymmetric
problem under consideration given in Eqs. (1)-(4).

From Eqs. (1)-(2), we obtain the following classical wave equation

∂2Ui
∂x21

+
∂2Ui
∂x22

=
1

c2i

∂2Ui
∂t2

, i = sl, c, su, (6)

where ci =
√

µi

ρi
are the shear transverse speeds in the respective layers of the plate. Further, with the

harmonic solution assumption of the form

Ui(x1, x2, t) = ui(x2)ei(kx1−ωt),

we get the solutions of Eq. (6) in the the respective layers as follows:

ui(x2) = Am cosh

(√
k2 − ω2

c2i
x2

)
+Bm sinh

(√
k2 − ω2

c2i
x2

)
, i = sl, c, su, (7)

where m = 1, 2, 3 are arbitrary constants in each layer to be determined from the prescribed conditions.
Again ω and k in the above equation are the dimensional frequency and wave number, respectively. More,
we obtain from Eq. (7) and the conditions given in Eqs. (3)-(4) the following generalized dispersion
relation (see Appendix A for the dispersion matrix):

α2
1µ

2 tanh (α1) + α2α1µ (tanh (α2h) + tanh (α2l)) + α2
2 tanh (α1) tanh (α2h) tanh (α2l) = 0, (8)
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where,

α1 =
√
K2 − Ω2,

α2 =

√
K2 − µ

ρ
Ω2,

(9)

with the following dimensionless relations

Ω =
ωh2
cc

, K = kh2,

h =
h1
h2
, l =

h3
h2
,

ρ =
ρc
ρs
, µ =

µc
µs
.

(10)

The cut-off frequency is obtained from the generalized dispersion relation given in Eq. (8) at K = 0 as
follows (

√
µρ− tan(Ω) tan

(
h

√
µ

ρ
Ω

))
tan

(
l

√
µ

ρ
Ω

)
+
√
µρ tan

(
h

√
µ

ρ
Ω

)
+ µρ tan(Ω) = 0. (11)

The predicted single cut-off frequency from Eq. (11) is

Ω ≈
√
ρ(h+ l + ρ)

hl
� 1, (12)

with the low-frequency estimate provided

ρr

l
� h � l

µr
, (13)

where
r = h+ l + ρ.

3.1 Generalized polynomial dispersion relation

The generalized polynomial dispersion relation is obtained from the exact generalized dispersion relation
given in Eq. (8) via the Taylor’s series expansion as follows:

γ1K
2 + γ2K

4 + γ3K
2Ω2 + γ4Ω2 + γ5Ω4 + γ6K

2Ω4 + γ7K
4Ω2 + ... = 0, (14)
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where

γ1 =27hµ+ 27µ2 + 27lµ,

γ2 =− 9h3µ+ 27hl − 9l3µ− 9µ2,

γ3 =
18h3µ2

ρ
− 54hlµ

ρ
+

18l3µ2

ρ
+ 18µ2,

γ4 =− 27hµ2

ρ
− 27µ2 − 27lµ2

ρ
,

γ5 =− 9h3µ3

ρ2
+

27hlµ2

ρ2
− 9l3µ3

ρ2
− 9µ2,

γ6 =− 27h3lµ2

ρ2
− 27hl3µ2

ρ2
− 9hlµ2

ρ2
− 18hlµ

ρ
,

γ7 =
27h3lµ

ρ
+

27hl3µ

ρ
+

18hlµ

ρ
+ 9hl,

...

(15)

The first two modes from the generalized exact dispersion relation given in Eq. (8) are plotted in Fig.
2 for the non-estimated range and Fig. 3 for the estimated range of zero low-frequency, Eq. (13). The
cut-off frequency is not noted in Fig. 2 owing to the selection of parameters outside Eq. (13); while it is
noted in Fig. 3 with parameters within Eq. (13).
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Fig. 2: The first two modes from Eq. (8) for the non-estimated range with
h = 1, µ = 0.43, ρ = 2.21, l = 1.85.
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Fig. 3: The first two modes from Eq. (8) for the estimated range with
h = 1, µ = 0.023, ρ = 0.023, l = 1.85.

3.2 Generalized displacements and stresses

The displacements and stresses in the respective layers pf the plate are found while ignoring the expo-
nential term as

The lower skin layer:

usl =
h2
α2

cosh (α2hξ2sl) ,

σsl13 =iµs
K

α2
cosh (α2hξ2sl) ,

σsl23 =µs sinh (α2hξ2sl) .

(16)

The core layer:

uc =
h2
α2

(cosh (α2h) cosh (α1ξ2c) + ν sinh (α2h) sinh (α1ξ2c)),

σc13 =iµc
K

α2
(cosh (α2h) cosh (α1ξ2c) + ν sinh (α2h) sinh (α1ξ2c)),

σc23 =µc
α1

α2
(cosh (α2h) sinh (α1ξ2c) + ν sinh (α2h) cosh (α1ξ2c)).

(17)

The upper skin layer:

usu =
h2
α2
λ (cosh (α2 (h+ lξ2su + 1))− tanh (α2(h+ l + 1)) sinh (α2 (h+ lξ2su + 1))) ,

σsu13 =iµs
K

α2
λ (cosh (α2 (h+ lξ2su + 1))− tanh (α2(h+ l + 1)) sinh (α2 (h+ lξ2su + 1))) ,

σsu23 =µsλ (sinh (α2 (h+ lξ2su + 1))− tanh (α2(h+ l + 1)) cosh (α2 (h+ lξ2su + 1))) .

(18)

Where in Eqs.(17)-(18)

λ =sech (α2l) cosh (α2(h+ l + 1)) (cosh (α1) cosh (α2h) + ν sinh (α1) sinh (α2h)) ,

ν =
α2

α1µ
,

(19)

with the following scaled variables in Eqs. (16)-(18)

ξ2sl =
x2
h1
, 0 ≤ x2 ≤ h1,

ξ2c =
x2 − h1
h2

, h1 ≤ x2 ≤ h1 + h2,

ξ2su =
x2 − (h1 + h2)

h3
, h1 + h2 ≤ x2 ≤ h1 + h2 + h3.

(20)
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4 Unified dispersion relation and cut-off frequency

In this section, we devise unification procedure to the generalized dispersion relation given in Eq. (8)
owing to the presence of the two dimensionless thickness ratios in Eq. (10); that is, h and l, which
ultimately prevents the contrast setup analysis given in Eq. (5). Thus, since the presence of these
thickness ratios results in no analysis; we systematically relate the varying thicknesses of h1 of the lower
skin layer and h3 of the upper skin layer as shown in Fig. 1 by the following relation h3 = βh1, for
β ∈ R+\{0, 1}; the set of nonnegative real numbers excluding 0 and 1. We therefore obtain from Eq.
(10) the following relation

l = βh, β ∈ R+\{0, 1}. (21)

It is remarkable here that β 6= 0 and β 6= 1. For if β = 0, the problem under consideration reduces to a
two-layered plate problem; and if β = 1, the problem reduces to a symmetric three-layered inhomogeneous
laminate which was recently analyzed by Prikazchikova et al. [10] for antisymmetric vibration mode.

With the present development, a unified dispersion relation is obtained from Eq. (11) as

α2
1µ

2 tanh (α1) + α2α1µ tanh (α2βh) + α2
2 tanh (α1) tanh (α2h) tanh (α2βh) + α2α1µ tanh (α2h) = 0,

(22)

with Eqs. (9) and (10) holding but with h3 = βh1 as explained above. It is remarkable here that all
the results in [10] can be recovered from the present work by simply setting β = 1. However, one should
also note that both the symmetric modes and antisymmetric modes cases of the dispersion relations in
connection to the symmetric three-layered plate are obtained by factorizing the dispersion relation given
in Eq. (22) as posed by the asymmetric three-layered plate under consideration when β = 1.

The cut-off frequency from the unified dispersion relation given in Eq. (22) is given by(
√
µρ− tan(Ω) tan

(
h

√
µ

ρ
Ω

))
tan

(
βh

√
µ

ρ
Ω

)
+
√
µρ tan

(
h

√
µ

ρ
Ω

)
+ µρ tan(Ω) = 0. (23)

The predicted single cut-off frequency from Eq. (11) is

Ω ≈

√
ρ(h+ βh+ ρ)

βh2
� 1, (24)

and over the global low-frequency inequalities

Ω1 =

√
ρ(h+ βh+ ρ)

βh2
� 1,

Ω2 =

√
µ(h+ βh+ ρ)

β
� 1.

(25)

The first two modes from the unified exact dispersion relation given in Eq. (22) is plotted in Fig. 4 for
the non-estimated range and Fig. 5 for the estimated range of zero cut-off frequencies, that is, within
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the global frequency regime, Eq. (25). Additionally, the cut-off frequency is not noted in Fig. 4 owing
to the selection of parameters outside Eq. (25); while the lowest low-frequency is noted in Fig. 5 with
parameters within Eq. (25).

Fig. 4: The first two modes from Eq. (22) for the non-estimated range with
h = 1, µ = 0.43, ρ = 2.21, β = 0.80.

9



Fig. 5: The first two modes from Eq. (22) for the estimated range with
h = 1, µ = 0.023, ρ = 0.023, β = 0.80.

4.1 Unified polynomial dispersion relation

The unified polynomial dispersion relation is obtained from the exact unified dispersion relation given in
Eq. (22) using the same Taylor’s series expansion as follows:

χ1K
2 + χ2K

4 + χ3K
2Ω2 + χ4Ω2 + χ5Ω4 + χ6K

2Ω4 + χ7K
4Ω2 + ... = 0, (26)
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where

χ1 =27βhµ+ 27hµ+ 27µ2,

χ2 =− 9β3h3µ− 9h3µ+ 27βh2 − 9µ2,

χ3 =
18β3h3µ2

ρ
+

18h3µ2

ρ
− 54βh2µ

ρ
+ 18µ2,

χ4 =− 27βhµ2

ρ
− 27hµ2

ρ
− 27µ2,

χ5 =− 9β3h3µ3

ρ2
− 9h3µ3

ρ2
+

27βh2µ2

ρ2
− 9µ2,

χ6 =− 27β3h4µ2

ρ2
− 27βh4µ2

ρ2
− 9βh2µ2

ρ2
− 18βh2µ

ρ
,

χ7 =
27β3h4µ

ρ
+

27βh4µ

ρ
+

18βh2µ

ρ
+ 9βh2,

...

(27)

It is also remarkable here that having unified the varying dimensionless thicknesses h and l, we can
now proceed with the investigation of the aforementioned contrast setup in connection to the formulated
problem. Also it is worth noting here that, the generalized polynomial dispersion relation given in Eqs.
(14)-(15) can be recovered from Eqs. (26)-(27) above upon substituting β = l

h .

4.2 Unified displacements and stresses

The shortened displacements and stresses in the respective layers are also determined as in above as follows

The lower skin layer:

usl =
h2
α2

cosh (α2hξ2sl) ,

σsl13 =iµs
K

α2
cosh (α2hξ2sl) ,

σsl23 =µs sinh (α2hξ2sl) .

(28)
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The core layer:

uc =
h2
α2

(cosh (α2h) cosh (α1ξ2c) + ν sinh (α2h) sinh (α1ξ2c)),

σc13 =iµc
K

α2
(cosh (α2h) cosh (α1ξ2c) + ν sinh (α2h) sinh (α1ξ2c)),

σc23 =µc
α1

α2
(cosh (α2h) sinh (α1ξ2c) + ν sinh (α2h) cosh (α1ξ2c)).

(29)

The upper skin layer:

usu =
h2
α2
λ (cosh (α2 (h+ βhξ2su + 1))− tanh (α2(h+ βh+ 1)) sinh (α2 (h+ βhξ2su + 1))) ,

σsu13 =iµs
K

α2
λ (cosh (α2 (h+ βhξ2su + 1))− tanh (α2(h+ βh+ 1)) sinh (α2 (h+ βhξ2su + 1))) ,

σsu23 =µsλ (sinh (α2 (h+ βhξ2su + 1))− tanh (α2(h+ βh+ 1)) cosh (α2 (h+ βhξ2su + 1))) .

(30)

Where in Eqs.(29)-(30)

λ =sech (α2βh) cosh (α2(h+ βh+ 1)) (cosh (α1) cosh (α2h) + ν sinh (α1) sinh (α2h)) ,

ν =
α2

α1µ
,

(31)

with the following scaled variables in Eqs. (28)-(30)

ξ2sl =
x2
h1
, 0 ≤ x2 ≤ h1,

ξ2c =
x2 − h1
h2

, h1 ≤ x2 ≤ h1 + h2,

ξ2su =
x2 − (h1 + h2)

βh1
, h1 + h2 ≤ x2 ≤ (1 + β)h1 + h2.

(32)

4.3 Asymptotic formulae for unified displacements and stresses

To determine the asymptotic formulae for unified displacements and stresses presented in Eqs. (28)-(30);
we make use of the normalised frequency and wave number of the form

K2 = µK2
∗ and Ω2 = µΨ2,

and obtain at the leading-order for the setup given in Eq. (5) as follows:

The lower skin layer:

usl =
h2

√
µ
√
K2

∗ −Ψ2
,

σsl13 =iµs
K∗√

K2
∗ −Ψ2

,

σsl23 =µs
√
µ
√
K2

∗ −Ψ2ξ2sl .

(33)
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The core layer:

uc =
h2

√
µ
√
K2

∗ −Ψ2
(1 + (K2

∗ −Ψ2)ξ2c),

σc13 =iµc
K∗√

K2
∗ −Ψ2

(1 + (K2
∗ −Ψ2)ξ2c),

σc23 =
µc√
µ

√
K2

∗ −Ψ2.

(34)

The upper skin layer:

usu =
h2

√
µ
√
K2

∗ −Ψ2
(1 +K2

∗ −Ψ2),

σsu13 =iµs
K∗√

K2
∗ −Ψ2

(1 +K2
∗ −Ψ2),

σsu23 =βµs
√
µ
√
K2

∗ −Ψ2(1 +K2
∗ −Ψ2)(ξ2su − 1).

(35)

It is remarkable here that the following inference can be deduced for the present setup given in Eq. (5)

σi13
µi
∼ σi23
βµi
√
µ
∼
√
µ

h2
ui, i = sl, su,

σi13
µi
∼
√
µ

µi
σi23 ∼

√
µ

h2
ui, i = c,

(36)

where β = 1 for i = c, sl in the above equation; where sl and su stand for the lower skin and upper skin
layers, respectively.

5 Shortened unified polynomial dispersion relations

In this section, we approximate the exact unified polynomial dispersion relation determined in Eq. (26)
in relation to the contrasting setup earlier given in Eq. (5). However, since β ∈ R+\{0, 1}, it means that
β ∈ (0, 1) ∪ (1,∞); which in relation to the asymmetric three-layered plate means that when β ∈ (0, 1)
then the thickness of the lower skin layer is higher than that of the upper skin layer, and when β ∈ (1,∞)
the reverse is the case. Thus, we consider β to be greater than one for convenience, say β ∈ (1, 3) to
study the asymptotic behaviour in the present setup.

However, considering the setup given in Eq. (5) that describes a three-layered plate (asymmetric) with
a core layer made of a soft material and the outer skin layers of hard or rather stiff material, from Eq.
(26) the following asymptotic behaviour

χ1 ∼ χ4 ∼ µ, χ2 ∼ χ3 ∼ χ5 ∼ β and χ6 ∼ χ7 ∼ β3, (37)
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is deduced at the leading orders, where

χ1 =27βµ+ 27µ2 + 27µ,

χ2 =− 9β3µ+ 27β − 9µ2 − 9µ,

χ3 =18β3µ− 54β + 18µ2 + 18µ,

χ4 =− 27βµ− 27µ2 − 27µ,

χ5 =− 9β3µ+ 27β − 9µ2 − 9µ,

χ6 =− 27β3 − 54β,

χ7 =27β3 + 54β,

...

(38)

Thus, we obtain the shortened unified polynomial dispersion relation as follows

χ1K
2 + χ2K

4 + χ3K
2Ω2 + χ4Ω2 + χ5Ω4 = 0, (39)

where χj = for j = 1, 3, 4, 5 are given in Eq. (38). Thus, we give in Fig. 6 the first two modes for the
exact (black solid line) and the shortened polynomial (dashed red line) dispersion relations (23) and (39)
for the set of parameters h = 1, µ = 0.023, ρ = 0.023, β = 0.80.

14



Fig. 6: The first two modes for the exact (black solid line) and shortened polynomial
(dashed red line) dispersion relations Eq. (23) and Eq. (39).

6 Equations of motions approximations

In this section, we further ascertain the approximate unified equations of motion by incorporating the
asymptotic material contrast given in Eq. (5). It is also worth mentioning here that we have utilised the
upper skin layer as a basis of the computations in this section since the lower skin layer happened to be
a special case of the upper one; revisit the preamble of Section 4.

More, to derive the approximate equations of motion, we make use of the following rescaling for x1 and
t variables as follows

x1 =
h2√
µ
ξ1, t =

h2
c2c
√
µ
τ, (40)

alongside the definitions given in Eq. (32) for x2 coupled to the following normalized functions encouraged
by Eq. (36)

ui =
h2√
µ
wi σi13 = µiθ

i
13, σi23 = βµi

√
µθi23, i = sl, su,

ui =
h2√
µ
wi σi13 = µiθ

i
13, σi23 =

µi√
µ
θi23, i = c,

(41)
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with β = 1 for i = sl. Further, putting Eqs. (32), (40)-(41) into Eqs. (1)-(4) we get for the core and skin
layers, respectively via Eq. (5) the following

µ
∂θc13
∂ξ1

+
∂θc23
∂ξ2c

= µ
∂2wc
∂τ2

,

θc13 =
∂wc
∂ξ1

, θc23 =
∂wc
∂ξ2c

,

(42)

and

∂θs13
∂ξ1

+
∂θs23
∂ξ2s

=
∂2ws
∂τ2

,

θs13 =
∂ws
∂ξ1

, β2µθs23 =
∂ws
∂ξ2s

,

(43)

for s = sl, su, with β = 1 for i = sl; and h ∼ 1 ∼ µ
ρ . We also get the following continuity and boundary

conditions

wc|ξ2c=0 = ws|ξ2sl=1,

θc23|ξ2c=0 = θs23|ξ2sl=0,

wc|ξ2c=1 = ws|ξ2su=0,

θc23|ξ2c=1 = θs23|ξ2su=0,

(44)

and

θs23|ξ2sl=0 = 0,

θs23|ξ2su=1 = 0.
(45)

We further adop the asymptotic series expansion in both the displacemets and stresses as follows

wi = wi,0 + µwi,1 + ...,

θij3 = θij3,0 + µθij3,1 + ..., i = c, s j = 1, 2.
(46)

Substituting Eq. (46) into Eqs. (42)-(45), we get at the leading order the following

∂θc23,0
∂ξ2c

= 0, θc13,0 =
∂wc,0
∂ξ1

, θc23,0 =
∂wc,0
∂ξ2c

, (47)

and

∂θs13,0
∂ξ1

+
∂θs23,0
∂ξ2s

=
∂2ws,0
∂τ2

,

θs13,0 =
∂ws,0
∂ξ1

,
∂ws,0
∂ξ2s

= 0,

(48)
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together with the following continuity and boundary conditions

wc,0|ξ2c=0 = ws,0|ξ2sl=1,

θc23,0|ξ2c=0 = θs23,0|ξ2sl=0,

wc,0|ξ2c=1 = ws,0|ξ2su=0,

θc23,0|ξ2c=1 = θs23,0|ξ2su=0,

(49)

and

θs23,0|ξ2sl=0 = 0,

θs23,0|ξ2su=1 = 0.
(50)

It is easy to obtain the following from Eq. (47) that

θc23,0 = p(ξ1, τ), wc,0 = p(ξ1, τ)ξ2c , θc13,0ξ2c
∂p

∂ξ1
, (51)

and from Eq. (48)

ws,0 = p(ξ1, τ), θs13,0 = ξ2c
∂p

∂ξ1
, θs23,0 =

(
∂2p

∂τ2
− ∂2p

∂ξ21

)
ξ2s , (52)

with θs23,0 in Eq. (52) suitably constructed. However, the missing of the constant parameter β in Eq.
(52) prompts us to move to the next asymptotic order which gives

∂θs13,1
∂ξ1

+
∂θs23,1
∂ξ2s

=
∂2ws,1
∂τ2

,

θs13,1 =
∂ws,1
∂ξ1

, β2θs23,0 =
∂ws,1
∂ξ2s

,

(53)

with the continuity and boundary conditions

wc,1|ξ2c=0 = ws,1|ξ2sl=1,

θc23,1|ξ2c=0 = θs23,1|ξ2sl=0,

wc,1|ξ2c=1 = ws,1|ξ2su=0,

θc23,1|ξ2c=1 = θs23,1|ξ2su=0,

(54)

and

θs23,1|ξ2sl=0 = 0,

θs23,1|ξ2su=1 = 0.
(55)

Therefore with the help of θs23,0 from Eq. (52), we get the following relations

ws,1 = β2

(
∂2p

∂τ2
− ∂2p

∂ξ21

)
, θs13,1 = β2

(
∂3p

∂ξ1∂τ2
− ∂3p

∂ξ31

)
, θs23,1 = 3

(
∂2p

∂τ2
− ∂2p

∂ξ21

)
ξ2s , (56)
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which from Eq. (53) (first line ) satisfies the following equation

1

3

(
∂4p

∂ξ41
− 2

∂4p

∂ξ21∂τ
2

+
∂4p

∂τ4

)
− 1

β2

(
∂2p

∂τ2
− ∂2p

∂ξ21

)
= 0. (57)

Expressing Eq. (57) using the skin displacement notation, being us(x1, t) ≈ p(ξ1, τ), we get

1

3

(
∂4us
x41
− 2

∂4us
∂x21∂t

2
+
∂4us
∂t4

)
− 1

β2

(
∂2us
∂t2

− ∂2us
∂x21

)
= 0. (58)

Now with the help of the formula us = ei(kx1−ωt), we get from Eq. (58) the following dispersion relation

1

β2
k2 − 1

3
k4 +

2

3
k2ω2 − 1

β2
ω2 − 1

3
ω4 = 0, (59)

which indeed coincides with Eq. (39) at the higher-order terms of β in χj(j = 1, 2, ..., 5).

7 Conclusion

In this paper, the anti-plane dynamic problem of an asymmetric three-layered inhomogeneous elastic
plate has been investigated successfully via the asymptotic approach. The asymmetric layered plate
considered is made perfectly in contact between the three layers, while traction-free boundary conditions
are prescribed on the outer surfaces. Furthermore, due to the varying lengths of the outer layers, a new
parameter β is introduced to relate the two lengths and thus make it possible for the material contrast
investigation. The long-wave low-frequency generalized and unified dispersion relations have been de-
termined and examined via the polynomial dispersion relation in connection to the recently analyzed
material contrast for a plate with mixed stiff-soft layers of different material properties in the composites.
In comparison with setup (a) of the symmetric three-layered plate [10], the present study also shows that
the obtained dispersion relation is valid over the whole cut-off frequency range as depicted in figure 6.
However, approximate equations of motion obtained in the case of symmetric three-layered plate are bet-
ter than those of the asymmetric case in the sense of simplicity. We finally recommend that an extension
in the contrast setups be made to be able to analyze such problems with more than one dimensionless
parameters in µ, h, and ρ directly without the proposed unification. Also, the corresponding inverse
problem of the formulated problem will be an interesting one.
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The 5× 5 dispersion matrix generated by the problem in Section 3 is given here as:



cosh (p1Rs) sinh (p1Rs) − cosh (p1Rc) − sinh (p1Rc) 0

0 0 cosh (h1Rc) sinh (h1Rc) − cosh (h1Rs)

sinh (p1Rs) cosh (p1Rs) −q sinh (p1Rc) −q cosh (p1Rc) 0

0 0 q sinh (h1Rc) q cosh (h1Rc) − sinh (h1Rs)

sinh (p2Rs) cosh (p2Rs) 0 0 0


,

with the following shortend terms

p1 = h1 + h2, p2 = h1 + h2 + h3, q =
Rcµc
Rsµs

, Rs =

√
k2 − ω2

c2s
, Rc =

√
k2 − ω2

c2c
.
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