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1 | INTRODUCTION

Some systems of reaction—diffusion equations have attracted much interest as a prototype model for pattern formation®. In
particular, the Turing instability is mainly observed by numerical researchers. In this paper, we deal with the following reaction
diffusion equations in the whole space R" for n € N:

ou=06Au+r(l—u/k)u—yuv/(u+h),
(LV) 0,0 = dAv + uuv/(u+ h) + aw — v — 1w — fov?,

o,w=v(wuv/(u+ h)+ 0v — aw — Tw.
This is a system of Lotka-Volterra type equations with diffusions. More precisely, this is a prey-predator model with dormancy
of predators4 20 Here, u = u(x, 1), v = v(x, 1), and w = w(x, t), define as the density of prey, the density of active predator, and

the density of dormant predator, respectively, stand for the unknown scalar nonnegative functions at x € R” and ¢ > 0. To avoid
the effects from boundaries, the Cauchy problem is considered, in what follows. We have denoted the nonnegative constants by

6  the diffusion coefficient of prey, h  the constant of foraging efficiency and handling time,
d  the diffusion coefficient of active predator, « the rate of awakening,

the growth rate of prey, f  the mortality rate by competitions of active predators

-~

the capacity of prey, the mortality rate of dormant predator,

the mortality rate of prey, 1 the mortality rate of active predator.

S ]

the rate of sleeping.
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Also, p(u) and v(u) are smooth positive functions of u denoting growth rates of active and dormant predators, respectively. In
some research, e.g. y is given as a sigmoid function u(u) := y(1 + tanh(é(u — 1)))/2 € (0,y) with some constants & and #;
v(u) :=y — pu(u)*. In addition, we have used the notations of differentiation; 9, := d/dt and A :=Y,"_ 97, where 9, :=0d/0x;
fori=1,...,n.

By change of variables and constants, we can replace 6 = 1, k = 1, r = 1 and § = 1. For the simplicity of notations, we put
m :=0+1, p := a+7, in addition, assume that y and v are positive constants independent of u. So, we consider the initial value
problem:

ou=Au+{1—-wu—yuv/(u+h) in R"x(0, 00),
0,0 =dAv+ puv/(u+ h) + aw — (m + v)v in R"X(0, o),

(P) o,w = vuv/(u+ h)+ 6v — pw in R"%(0, ),
(H, v, LU) |t=0 = (Uo, Uo, LUO) in R”.

The bifurcation between stability and instability of stationary solutions to (LV) was concerned with some specific parameters,
associated with numerical investigation”. Furthermore, a numerical study of Turing instability on (LV) was done®. Besides, in
this paper, we focus on the mathematical theory for the existence of time-global nonnegative unique classical solutions to (P),
and the invariant region which includes the trivial solution (0,0,0).

This paper is organized as follows. In Section 2, we will present the main results of this paper, and in the next Section we
will define function spaces, and recall some properties of the heat semigroup and time-evolution operators. Section 4 will be
devoted to the proof of the time-local existence of nonnegative unique classical solutions with nonnegative initial data. We will
discuss the time-global solvability in Section 5, deriving a priori estimates of solutions and their derivatives. In Section 6, some
invariant regions and asymptotic behaviors of solutions to (P) will be argued.

2 | MAIN RESULTS

For the definition of function spaces BUC and BUC 1 see Section

Theorem 1. Letn € N, d, h > 0,andletm, 0, p, a, y, u, v > 0. If uy, vy € BUC(R") and w, € BUC!(R") are nonnegative,
then there exists a triplet (u, v, w) of nonnegative time-global unique classical solutions to (P).

Remark 1. (i) We can find at most five stationary constant states (solutions independent of x and ¢), including the trivial solution
(0,0,0) and (1,0,0). The trivial solution (0, 0,0) is always instable. Besides, the stabilities of non-trivial constant states depend
on parameters; see Remark [4]

(ii) Even if 4 and v are positive smooth functions of u, the same time-global solvability can be proved. In here, we may relax
the condition y = u + v, mathematically.

(iii) When the initial data belong to L*, we can get the same assertion, although there is a lack of continuity of solutions in ¢ at
t=0.

We will explain the strategy of the proof of Theorem [I] briefly. Using the heat semigroups, (P) is written as the forms of
integral equations:

t

0= et R A [OF 1
u(t)y=-e u0+/e ( uu uth (s)ds, (D)
0
t
o(t) = e¥p,y + / (=98 [”—”” +aw— (m+ u)u] (s)ds, )
u+h
0
t
— ,—pt —p(t-s) | YUV ]
w(t) = e w0+/e [u+h+00 (s)ds. 3)

0
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Although we can show the uniqueness and regularity of solutions by these forms, the nonnegativity of solutions are not ensured,
as long as we use the standard successive approximation. In fact, the following standard iteration scheme is often employed:

t

~ . N~ YD,
uf+1(t) c= eZAu0+/e(f $)A [(1 —uf)uf - /}: i_l;l:l(s)ds
u

See, for example, the book of Smoller”. However, it is hard to show the positivity of @i, for # > 2. Thus, we have to look for the
other integral forms for proving the existence of nonnegative solutions. To do so, as the same spirit~, we will construct a triplet
of the solutions (u, v, w) as the limits of the following successive approximations:

t

_ YUpi U
u/+1(t):e’Au0+/e(’ DA 1(1 —uf_,_l)uf—ﬂ ds, )
u,+h
t
_on | HueU
Uiy (1) = e uy + / eA=IM L L g, — (m+ 0,0, | ds, (5)
u, +h
0
t
VU, U
Wy () = e Pwy+ [ 7| —L 4 6u,|ds 6
ra0) = 'y o Hov ©
for # € N. Here and hereafter, we often omit the notation (s) in the integrand. These are corresponding to the abstract equations:
=A YU¢ _
Ohpyy = Btpyy = Uy + ——— J Uiy +up, Upiili=o = tos )
uy+h
o, =dA ki o - 8
WVpp1 = dAVs = (M +0)Vp4y + , Hae Vesili=o = o ®)
Llf +
VUKUK
0Wpyy = —pWpyy + h +0v,, Weiili=o = W ©
Llf +

Our idea is to involve the coefficients of negative terms into the generators. Instead of the formal expression @) — (6)), we rewrite
them using the time-evolution operators:

t

Uppr (1) = U,(t,0)ug + / U,(t,5)|u,]ds, (10)
0
t
ﬂuKUf
Vet = V(0000 + [ Vo(t,9) | ~—— + aw, | ds, an
0 3
t
vu,U
N =ew. + —p(t=s) 70 Lovld 12
Wp (1) =e"w, /e Wt h vy ds (12)
0
for £ € N, starting at
u(t) i=euy,  vy(0) =My, and  w (1) 1= e w,. (13)

Here, {Uf(t, s)} and {Vf (, s)} are time-evolution operators associated with A, := A—u,—yv,/(u,+h)and B, := dA—m—v,
forregarding u,, v, and w, as given nonnegative functions, respectively. The definition and estimates of time-evolution operators
are given in Section 2. These approximations enable us to show nonnegativities of (uf, Uy, wf) for each £ € N, as well as its
limit (u, v, w). We will derive the estimates ||u,, vy, W, ||, by - , inductively, in the fixed point arguments. Besides,
for estimates [|0,u,, 0,0,,0;w, |l ., @) — (6) are used. Once we get uniform bounds of u,, v,, w,, d;u,, 0;v, and 9,w,, we can
easily see that the limit (u v, w) becomes a classical solution.

On the other hand, it is rather standard to extend the obtained solutions time-globally, deriving a priori estimates of solutions.
The key idea is to apply the maximum principle to the classical solutions. We can also investigate asymptotic behaviors of
solutions, more precisely. Via analysis of solutions to the system of corresponding ordinary differential equations, we obtain
invariant regions as follows.
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Theorem 2. Let

vi=u/(l+h)+alv+0+06h)/(p+ ph)—m,

w:=Wv+0+06h)v/(p+ ph)
be a stationary solution to the second and third equations of (P) withu = 1.
(i) If 0 < 0, and if uy # 0, then (u, v, w) — (1,0,0) as r — oo. Besides, if u, = 0, then the solution tends to the trivial solution
(0,0,0) as t — oo.
(ii) If v > 0O, then for 0 < € < 1, there exists a T, > 0 such that

(u,v,w) € R, :=10,1+¢)X[0,0+¢)X[0,w+¢)

for x € R" and 1 > T. Moreover, if (g, vy, wy) € R 1= [0,1] X [0,7] X [0, w], then (u,v,w) € Rfort > 0.
(i) Letu := (1 — h)/2+ /(1 + h)?> — 4yv/2, and let

vi=pu/(u+h)+avu/(pu+ ph)+ab/p—m,

w:=vup/(pu+ph)+0v/p
be a stationary solution to the second and third equations of (P) with u = u. Assume thatv > 0,u > 0, v > 0and w > 0. If u, v,
w>c, forx € R"att =1t, >0 with some ¢, > 0, then for 0 < & < 1, there exists a T/ > 7, such that

(u,v,w)eR; =u-—egl+e)xW—ev+e)X (W—¢€,w+¢)
for x € R" and ¢ > T!. Moreover, if (uo,vo,wo) € Ry 1= [u, 1] X [v, 0] X [w, w], then (u, U,w) € R, fort > 0.

The sets R and Ry are invariant regions. The reader may find another (narrower) invariant regions for each individual
parameter. Theoremimplies that an absorbing set always exists in R or Ry.

Our conjecture is that we can also obtain similar results in several domains with suitable boundary conditions. Throughout
this paper, we denote positive constants by C the value of which may differ from one occasion to another.

3 | SEMIGROUPS AND TIME-EVOLUTION OPERATORS

In this section, we recall the definitions of function spaces and properties of the heat semigroup as well as time-evolution
operators.
Letn € N, 1 < p < oo, and let L” := LP(R") be the space of all p-th integrable functions in R” with the norm || f||, :=

1/p
/ |f(x)]Pdx| . We often omit the notation of the domain (R"), if no confusion occurs. We do not distinguish scalar-valued
Rﬂ
unctions and vector, as well as function spaces. Let L* be the space of all bounded functions with the norm || f|| := || f|l,, :=

€sS.sup, g | f(x)|; BUC as the space of all bounded uniformly continuous functions. For k € N, let W% be a set of all bounded
functions whose k-th derivatives are also bounded. Furthermore, we define

BUCK :={fewr>;d/f e BUC for 1<i<n 0<j<k}.
In the whole space R", for 9, € L*(R"), the heat equation
09=A9 in R"X(0, c0),
H t
0 {19|t:0=190 in R

admits a time-global unique smooth solution
9 1= (1) 1= 9(x,1) 1= ("9)(x) 1= (H, * 9y)(x)
= [ expt-lx = 5P/ a09y 00y
er
in C,((0, 00); L*(R")), that is, & € C([z, 00); L*(R")) for any = > 0. Here, H, := H,(x) := (4xt)™"/? exp(—|x|?/4t) is the

heat kernel. Since || H,||; = 1 for ¢ > 0, by Young’s inequality we have ||8(®)|| < |[H,|; |8 = [[J]] for # > 0. In particular,
if 95(x) > 0 for x € R”", then 9(x,t) > 0 holds true for x € R"” and ¢ > 0; so-called the maximum principle. Furthermore,
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if additionally 9, € BUC(R") and d, # 0, then 9(x,7) > O for x € R" and r > 0 by the strong maximum principle. For
9, € L®(R"), there is a lack of the continuity of solutions to (H) in time at# = 0, in general. Note that e, — 9,in L® ast — 0,
if and only if 9, € BUC(R"). The reader may find its proof in e.g.?. Indeed, if 9, € BUC(R"), then 9 € C([0, c0); BUC(R")).

We can easily see that for j € N, there exists a positive constant C (= z—//? < 1) such that ||d{ Y| < cri/ 2||8,|| for
t>0and1 <i < n So, 9(t) € BUC/(R") for j € Nand ¢ > 0, which implies that 9(r) € C®(R") for # > 0. Moreover,
9 € C*(R" x (0, 00)) by using (H).

In what follows, we recall some properties and estimates for time-evolution operators. Consider the following problem:

{ 0,0 =dAp —y(x,t)p in R"X(0, ),
(Py) _ - n
?li—o = o in R"

Here, y(x, 1) is a given bounded function. We establish the time-local solvability of (P,) with upper bounds of ¢(?).

Lemma 1. Letn € N, d,T > Oand y € L*([0,T]; W'*(R"). If ¢, € BUC(R"), then there exist a T, € (0,T] and a
time-local unique classical solution to (P, ), having ||@(?)|| < 3 l@o || for t € [0, T,]. Moreover, if @, > 0, then ¢ > 0.2

Proof. Although the proof is written, we give it here. The idea is to use the standard iteration”. Let ¢, (7) := e"* ¢, and let

t

P () 1=y — / eI [y, (s)ds
0
for each £ € N, successively. It is easy to see that ||g,(1)]| < ‘3—l||(p0|| for € [0, T,] with some T, > 0 (independent of £) and
¢ € N. We can easily show that {(pf};ozl is a Cauchy sequence in C([0,T,]; BUC(R")). So, the limit ¢ :=lim,_ @, exists
and satisfies (P, ), having the estimate ||@(#)|| < = ||@| for ¢ € [0, T, ]. It is rather straightforward to obtain the uniqueness and

regularity of . Moreover, the nonnegativity of ¢ easily follows from the maximum principle. O

Note that if [|@y|| < L and sup,r|lw(®)|| < L with some L > 0, then we may derive the estimate T, > C /L with C > 0.

The solution to (P,) can be rewritten as @(f) = U(t,0)@,, using time-evolution operators {U(t, s)}t>s>0 associated with
A 1= A(x,1) 1= dA —y(x,1); see e.g. the book of Tanabe®. The boundedness of solutions ¢ implies that ||U(,0)|| je_ ;o < g

4 .
for t € [0,T,], and then ||U(t,$)|| ;o ;e < = for 0 < s <t < T,. Here, we have used the notation of an operator-norm

IOllx_y = Supxexllex”y/”x”)p

4 | TIME-LOCAL SOLVABILITY

We give a proof of the time-local solvability on (P) in this section. Recall || - || := || - || -

Proposition 1. Assume that n € N, d > 0, and those other parameters are nonnegative. Let u,,v, € BUC(R"), w, €
BUC'(R"),and M := max{||up]l, l|vgll, |t I, 110,101} If ug, vy and ww,, are nonnegative, then there exist a positive time T, and
atriplet (u, v, w) of time-local unique classical solutions to (P) in C([0, T;]; BUC(R")), having 0 < u(x, 1), v(x, 1), w(x,t) < 2M
for x € R" and 1 € [0, T;]. Furthermore, T, > C,/(M* + 1) with some C, > 0 independent of M.

Proof. For the sake of simplicity, we assume that all parameter is positive. Making the approximation sequences, we begin with

|b For ¢ € N, we successively define u,, v,,; and w,,, by lh - 1| SO, (Upy1s Vpyys Wpyy ) formally satisfies (7) — @
for x € R" and ¢t > 0 with nonnegative functions u, vy, Wy, t,, v, and w,.

In what follows, we estimate u,, v,, w,, d;u,, 0;,v, and o,w,. Put
K, 1= supogrllu @I, K, 1= supg<rllv Dl
K; = supyg<rllw Il Kyp i= SuPogngtl/ZHaiuf(f)”,

Ks, i=supgger(dD)'210,0,0N, Koy 1= suppgrll0;w @)l
forT > 0,7 € Nand 1 <i < n. To derive uniform estimates, we argue the induction of #, taking T small.
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415 " we easily see that

£ =1 For 0 < uy(x), vy(x), wy(x) < M, by the maximum principle and the fact that /@A~ = ¢=l¢
0<u(x,0) <|lupll, 0=<v1(x,0) < lygll, 0 <w(x,1) < [yl
for x € R" and t > 0 by m, p > 0. In addition, it is also easy to obtain that
12 10,u, 0N < Hlugll, @D N10,0,01 < llwgll, 110,00, < 110,00l

fort > 0and 1 <i < n by the estimate of the heat kernel. Here and hereafter, we replace the constant C = z~'/2 < 1 by 1, for
the sake of simplicity. Thus, we have

K;y<M for T>0, 1<;<6 and 1<i<n (14)

£ =2 Before estimating u, and v,, we will confirm bounds for time-evolution operators U; and V;. By u; > 0 and (14), it holds

that
}/Ul(x’ t)

yMo . .
ln O < M + 5 T ny with  7(x, 1) :=u(x,1) + m

fort > 0. By Lemmafor {Ul(t, s)}t>s>0 with A,(x,1) := A —n;(x,1), we thus see that 0 < U, (¢, s)u, < g||u0|| forx € R"
and 0 < s <t < T with some 7] > 0 depending only on 7,. So, by with # = 1, we have

0 <uy(®) < ||U, (2, Oy || + / U, @, s)C (s)|lds < 2M
0

with ¢, (x,1) 1= u,(x,7) and 0 < &(x,s) <, := M, provided 0 < s <t < T; with T; :=min {7}, 1/2}. Similarly, since
16O <m+M =28 with &(x.0) =m+0v,(x1)

for x € R" and t > 0, if we define that {Vl(t, s)}t

then we see that 0 < V| (¢, s)v, < §||Uo|| for0<s<t< Tzu with some T; > 0 depending only on El. So, by ,

> 530 is the time-evolution operator associated with B (x,?) := dA — &,(x, 1),

t
0<0,0) < IV 0wl + [ Vi1l <20
0

hold with y,(x,?) = pu,(x,t)v,(x,0)/{u;(x,t) + h} + aw,(x,t) and 0 < y(x,s) < x, := (uM/h + a)M, provided if
0<s<t< sz with sz := min {T; T;, h/QCuM + 2ah)}. For the estimate of w,, we obtain
t
0 < w,(t) < |le™ wyll + / e |lvu,v, /(u; + h) + 0v,||ds <2M
0
for0<s<t< T; with T2lq := min {Tb, h/(vM + hO)}. To derive the estimate for d,u,, we use the heat semigroup expression:
1
uy(t) = e®uy + / eli=9A [{,’1 - ’71”2] (s)ds,
0
rewriting (I0). Hence, it holds that

1
2010,u, ) < Nug | + £/ /(r — )12 [Zl +ﬁllluzll] ds <2M
0
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fort € (0, T; ] with Tzv = min{Tu, h/(2h+4hM +4y M)}. As similar way, for 0,v,, we appeal to the heat semigroup expression
again:

t
@)'?)10,0,)|| < (d1)/?||0,e B | + (d1)'/? / 10,6492 [, — &05] llds
0

t
< llugll + 172 / (=97 [7, +E2M ] ds <2m
0

fort € (0, T2°] with T2<> 1= min{Tzv, h/QuM + 2ah + 4hm + 4hM)}. Furthermore,

t

o,w,(1) = e "o,w, + / ) ["h(az‘”l)vl + vu, (0;0,)(u; + h)
i"2 - i"0
0

(u; + h)?

+96i01] ds

holds true, and this implies that
t

18,000l < M + /

0

{vh\/EM MM AR

> } Mds) '\ Pds <2M

fort € [0,T,] with
T, 1= min(TY, dh* /[4vhVdAM + 4vM? + 4hM + 40*0T).

Therefore, it is shown that u,, v,, w, > 0 and
Kj’ZSZM for t€(0,7T,], 1<j<6 and 1<Zi<Zn (15)

¢ =3 We stand for the time-evolution operator {Uz(t, s)}t>s>0 associated with

Ay(x,1) 1= A —ny(x,1) and  7y(x, 1) 1= uy(x, 1) + yu,(x, 1)/ {uy(x, 1) + h}.

By Lemmal|l} U, (t, s)u, > 0 holds and ||U,(2, $)|| ooy feo < g for0 < s <t < T; with some T; > 0, since 0 < n,(x,1) <77 1=
2M + 2y M7 h by (13). So, we get

t
0 < us(x,1) < [1Uy(t, O)ugl + / 10>, )E(5)llds < 2M
0

for x € R" and t € [0, T, ] with T, :=min{T}, 1/4}. Here we have used that
0<&(x0) i=uy(x,1) < :=2M.

Similarly, we denote the time-evolution operator by {Vz(t, s)} associated with B,y(x,f) := dA — &(x,1). Since 0 <

t>5>0
E(x, 1) i=m+ v,y(x,1) < E i=m+2M, we seek that V, (¢, s)vy > 0 and [|[V,o(t, 8)|| oo po0 < ;1 for0 <s<t< Tf with some

Tf > 0 by Lemma Hence, we can see that
t
0 <0y < IVt Ol + [ 1V:00.5)z500)ds < 201
0

for x e R" and t € [0, Tb] with T3b := min {T;,Tf, h/8uM + 4ah)}. Here we have used
0 < xyo(x,1) 1= puy(x, D0y (x, 1) /{uy(x, 1) + R} + aw,(x, 1)
<7 :=4uM?/h+2aM
by (I3). It is also easy to show that

t

0 < ws(x, 1) < [Jwpll +/ lvu,v, /(uy + h) + v, ||ds < 2M
0
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for x € R"and t € [0, Th] with T; !=min {Tb, h/(4vM + 2h9)}. By the heat semigroup expression, we obtain that

t

t2010,us N < Nl + £/ /(r =) 2SN + llnpusll] ds < 2M
0

fort € (0,Ty] with Ty := min{T?, h/(4h + 8hM + 8y M)}. As similar way, we derive

t

@n)'?)10,050)l < Nl +1'/2 / =7 [l + 1&usll] ds < 2M
0

for ¢t € (0, T3°] with T3° = min{Tf, h/(4hm + 8hM + 8uM + 4ah)}. For 0,w5, see

t

0. w;(D| < M / \/h(diuz)u2 + vuz(diUQ)(uz + h)
W3 = +
0

ds <2M
h2

+ 60,0,

for t € (0, T,] with
T, := min{TY, dh*J[8vhVdM + 16VvM? + SvhM + 402072},
Note that the estimate T, > C/(M* + 1) is yielded with some C > 0.
Therefore, we see that us, v3, w; > 0 and

K;3<2M for 1€(0,T,], 1<i<n and 1<;<6.
¢ =4,5,... Let£ > 4. We assume that u,, v,, w, > 0 and
K, <2M for t€(0,T)], 1<j<6 and 1<i<n (16)

hold true. We will compute estimates for u,, |, v,,; and w,, ;. Note that, <7¥, {, < Z, ¢ < & and ¢ < x hold, independently
of Z > 3. So, as the same discussion in the case £ = 3 above, we can see thatu,,;, v,,,, w,,; > 0 and

K1 <2M for 1€(0,T)], 1<j<6 and 1<i<n

The detail is omitted here. Hence, the nonnegativities of approximations and hold true for all £ € N.
We can see that (uf, Uy, wf) are continuous in t € [0,T;] for £ € N. And also, it is easy to see that
{uf, Vg Wy /20, 11/%0,0,, 0, wf};ozl are Cauchy sequences in C([0, T;)]; BU C), choosing T;, small again, if necessary. Let

(u, 0, w,0,0,0) :=t!im (uf,Uf,wf,tl/z()iuf,tl/zaivf,diwf)
—00

in the topology of C([0, T,]; BUC). Obviously, the coincidences & = t'/20,u, & = t'/?0,v and 1 = 9,w hold by construction.
Furthermore, it is also ensured that

0 <u(x,t),v(x,1), w(x,t) <2M for x € R" and 7 € [0, T}].

The uniqueness follows from (1) — (3) and Gronwall’s inequality, directly. If fact, let (u, v, w) and (u*,v*, w*) be solutions to
(P) in [0, T})] with the same initial data, then ¥ = u*, v = v* and w = w* simultaneously hold. Thanks to the boundedness of
the first derivatives, it is easy to control the second derivatives in x of u and v for t € (0, Tj;], as well as the first derivatives in
t of solutions. So, we see that (u, v, w) is a triplet of time-local unique classical solutions to (P). This completes the proof of
Proposition [T} O

Remark 2. (i) If w, is smooth, then (u, v, w) is smooth in x and 7.

(ii) For d = 0, we can also get time-local well-posedness, if v, € BUC 1

(iii) The instability of the trivial solution (0, 0, 0) is easily obtained. Moreover, by strong maximum principle for solutions to
the heat equation, u > 0 for x € R" and ¢t € (0, Ty], if 4, # 0. This means that supp u(f) = R” for any small ¢ > 0, even if supp u,
is compact. That is, the propagation speed of solutions to (P) is infinite, as the same as the heat equation. In addition, v > 0 and
w > 0 for x € R" and ¢ > 0, if either v, # 0 or w, # 0.
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S | TIME-GLOBAL WELL-POSEDNESS

In this section, we will derive a priori bounds of solutions and their derivatives. To do so, our first task is to obtain upper bounds
of solutions to (P) with large initial data. For the case when [|u,|| < 1, we will discuss in Remark (ii) below and Section 5.

Proposition 2. Suppose the assumption of Proposition If ||ugll > 1,then O < u < |luyll, 0 £ v < T0,and 0 < w < w for
x € R" and 1 > 0 with some 7 and @ > 0 depending on |u ||, ||vg|l, and ||wy ||, as long as the classical solutions exist.

Proof. 1f vy = 0 and w;, = 0, then v = w = 0 for £ > 0. Assume either v, # 0 or w # 0. So, as seen in Remark 2| iii), we have
u, v, w > 0. For observing the behavior of u, we consider the following logistic equation:
K'=(0-x), «x(0)= Ko > 1, a7

where k, = ||ugl|-
By maximum principle, u(x, t) < x(¢) holds for x € R" and # > 0, as long as the classical solution u exists. Since

k() = Ko/ (kg + e — k™) < Ky

for t > 0, it is clear that u < k.
Next, we investigate on upper bounds of v and w. Let a pair ¢ = o(f) and @ = () be solutions to

o' =aw—(m, +0)o, 6(0) =0, :=|lvyll,
/ . (18)
o' =0,06—-po, 0(0) = wy 1= ||wyll.
Here, m, :=m — uk,/(ky+ h) and 0, := 0 + vk,/(k, + h). Since (e”’w)’ = 0, e o, we have
t
() =e"wy,+e "0, / e”o(s)ds < wy + (0, /p)supy<,<,0(s)
0
for 1 > 0. Inserting it into the first equation of (I8), it holds that

o' < a{wy+(0,/p)SUPye,,0(s)} —my0 —0*

for t > 0. Therefore, we can see that o(f) < U := max {ao, 6} + 1 for ¢t > 0, where

G:=ab,/2p—m, [2+ \/aa)0+(m9*/p—m*)2/4,

and & satisfies a(w, + (0, /p)5) — m,& — 6% = 0. Indeed, if there exists some 7, > O such that 6(t,) =0 > 6 + 1 and 6(¢) < D
forz € [0,1,), then 6'(¢,) > 0. This contradicts ¢’(z,) < 0. We can similarly deduce w(f) < @ holds for 7 > 0, where

W :=max {wy,0,0/p} + 1.
PutV ;=6 —-vand W := o — w. Hence, V' (0) > 0 and W (0) > 0. Also, we see
0,V =dAV +aW —mV + ukyo/(ky + h) — puv/(u + h) — 6* + v*

_ _ H _
=dAV +aW —(m+c +0v)V + CEYEY [ + )V + ho(y — )

and
oW =0V — pW +vkyo/(ky + h) —vuv/(u+ h)

— — v —_
=0V — pW + T @R [(u + WV + ho(k, u)].

We thus find the fact that V' > 0 and W > 0 for 7 > 0, as the same discussion in the proof of Proposition[I} This implies that

v(x,t) <o), wx,t) <o) 19)
for x and ¢. Therefore, we conclude that 0 < v < vand 0 < w < . ]
Remark 3. (i) By definitions of v and w are given in Theorem it is clear that U > v and @ > w, if |uy|| > 1. Besides, 0 < v
and 0 < w, if |uy|| < 1, ||vpll < 0 and ||w,|| < w; see Section 5.

(ii) Bven if |lug|| < 1, then the uniform bounds on v and w are obtained; v < ¥’ and w < w hold, replacing m, by m; :=
m—uf/(1+h)yand0, by 0, :=0+v/(1+h).
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(iii) Although we can take the maximum values of the solutions to ODEs by the comparison method (finding 7 as ¢’ () = 0
or @' (t) = 0), such critical points do not always give maximum values of solutions to PDEs, in general. So, we have used the
technique of renormalization type above.

In what follows, we will give the a priori estimate for ||0,w(¢)||, which may grow in . As seen in Proposition [2} and by using
definitions of v and w in Theorem we prove that 0 < u, v,w < N as long as the classical solutions exist, if N is chosen as

N :=max {1, lluoll, 0, 0, oo ll, w, o, ||w0||}. (20)

Proposition 3. Let T, N > 0.If 0 < u,v,w < N for x € R" and ¢ € [0, T], then there exists a C > 0 (independent of N and
T) such that
l0,w®l < llo,woll + C(N* + N) (172 + /%), te[0,T], 1 <i<n.

Proof. We first derive the estimate for 0,u. By @), we have

t
o)l < lluo 2 + / (t =512
0

yuv
1 —wu— —1||d
(1 = wu u+hH S

<C(N2+ N)Y¢ 2 +17%)
fort € [0,T] and 1 <i < n with some C. Similarly, by , we seek

ﬂl}h+aw—(m+u)v ds

t
10,0011 < llogll(dry™ > + / (dr~ sy 2 |
0

< C(N? + N)@ /2 41172

with some C. Finally, by (EI) and estimates above, it turns out that
t

“() w(t)” < “() w ” / Vh(a,'u)U + Vu(afl))(u ”)
i - Y0
0

ds
(u+ h)?

+00iv‘

t
< l0,wpll + C(N* + N) /(s—1/2 +5'%)ds
0

< [[0,wyll + C(N* + N)('/? + £3/2)
fort € [0,T] and 1 < i < n with some positive constant C depending on parameters, however, independent of N and T'. O

Note that the proof of Theoremis now complete. In fact, Theorernfollows from Propositions and Ty > C,./(M*+1)
in Proposition[I] since we can extend the obtained unique solutions time-globally, repeating the construction.

6 | INVARIANT REGIONS

This section will be devoted to observing invariant regions. The proof of Theorem (1) is easy, since (1, 0, 0) is only one stable
constant state. So, we skip it here.

We are now in position to give a proof of Theorem [2] (ii). The key step is to deduce a priori bounds of solutions, due to the
maximum principle and comparison with solutions to the system of corresponding ordinary differential equations of x, ¢ and
w given by and (T8). Let us recall the assumptions:

vi=u/(l+h)+alv+0+0h)/(p+ph)—m>0,
w:=W+0+0hv/(p+ph)>0
and R := [0, 1] x [0, 0] X [0, w].

Proof of Theorem[2](ii). We first show that R is an invariant region. Let (uo, Vo, wo) € R. By construction of time-local solu-
tions in Proposition the nonnegativity of solutions is clarified. Note that (0, 0, 0) and (1, 0, 0) are classical solutions in R. If
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uy = 0, then u = 0, in addition, v € [0,v] and w € [0, w], since o= af/p—m < vand w = O(al — m,o)/p2 < w. Also, it
is easy to see that v = 0 and w = 0 hold for ¢ > 0, provided if v, = 0 and w, = 0.

Let u, # 0 and either v, # 0 or w, Z 0. As seen in Remark@] (iii), it is clear that the classical solutions u, v, w never touch
0, as long as they exist. Moreover, with u;, < 1, we observe that u(r) < 1 for small 7 > 0 by the strong maximum principle.
Similarly, it turns out that v(z) < U by v, < v, as well as w(r) < w. So, regarding 7 as the initial time, we can assume
(ug, vy, wy) € R° := R\ AR, without loss of generality.

Put 7 € (0, T,] is the first time when u touches 1 at £ € R”. We may assume |%| < oo by Oleinik’s argument; see e.g.. Since
u(%,7) = 1 is the local maximum, at (%,7) we see that du > 0, Au < 0, (1 —u)u = 0 and —yuv/(u + h) < 0 by v > 0. This
contradicts to that u is a solution to (P). Hence, u never touches 1.

The same argument works on v and w. Indeed, let 0 < u < 1, 0 < w < w, and if there exists (X, 1) € R" X (0, T,] such that 7
is the first time when v touches v at X. So, at (X, f), we see that 0,0>0,dAv < 0and

v v — —
ke +aw—(m+v)v<1/i—h+aw—(m+v)v=0.

u+h
So, v never touches 0. As the same as above, we can confirm that w never touches w as long as classical solutions exist. This
means that the solutions always remains in R° C R.

Next, we show the asymptotic behavior of solutions, briefly. Even if ||uy|| > 1, by u(x,t) < (), then there exists a T: >0
such that |[u(?)|| < 1 + & for # > T*. From this and the comparison v(x, #) < o(#), there exists Tf > T such that [lo(?)|| <v+¢
fort > Tf . Finally, we can also show that there exists T, > Tf such that |Jw(?)|| < w + ¢ for t > T_, by the similar way. This
completes the proof of Theorem 2] (ii). [

The proof of Theorem [2 (iii) is essentially similar to above. So, we omit it here.

Remark 4. The stability of non-trivial constant states to the system of corresponding ordinary differential equations can be easily

obtained. For example, if

Y 1 1
j— j— s _9_0’ j— j— s _h
u=v==-m=0=0,a=p=—,y=h+—

are chosen, then the stability of a constant state (u, v, w) = (1/2,1/2,1/2) is bifurcared in & at 0. Indeed, the constant state
(1 /2,1/2,1/ 2) is stable for any 4 > 0, while this is unstable for any —1/2 < h < 0. The authors believe that such stability is
still valid for solutions to (P). For studying the Turing instability, we need to deal with more complicated situation, e.g. when u
and v are functions of u.
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