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ABSTRACT. Let X and Y be two Banach spaces. A bounded operator T :
X — Y is said to be a BS-compact operator whenever T' sends Banach-Saks
subsets of X onto norm compact sets of Y ([20]). In this paper, our central fo-
cus is upon introducing the class of almost BS-compact operators. The paper
rests essentially on two parts. The first is devoted to the connection of this
new class of operators with classical notions of operators, such as BS-compact
operators, AM-compact operators, and Dunfort-Pettis operators. The second
part is dedicated to the domination problem within the framework of (almost)
BS-compact operators.
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1. INTRODUCTION

Let EF and F' be Banach lattices. Consider operators 0 < R < T : £ —
F such that T satisfies some property P. The domination problem stands for
finding conditions under which P will be inherited by R. In the particular case
that £ = F| it is interesting to investigate whether some power of R inherit P.
This is corresponds to the power domination problem.

Domination properties of operators on Banach lattices have whetted the inter-
est and drawn the attention of multiple researchers. For instance, consult([2, 7,
8,9, 15, 18, 21]).

As far as we are basically concerned with introducing the class of almost BS-
compact operators. The manuscript relies on two intrinsic parts. The first part
addresses the connection of this new class of operators with classical notions of
operators, such as, BS-compact operators, AM-compact operators, or Dunfort-
Pettis operators. However, the second part tackles the domination problem within
the framework of (almost) BS-compact operators.

2. PRELIMINARIES

Throughout this paper, X and Y will denote Banach spaces and E, F' will
denote Banach lattices. The positive cone of E will be expressed by F, = {z €
E; 0 < z}. We will use the term operator, between two Banach spaces, to
indicate a bounded linear mapping.

A bouded subset B of a Banach space X is called Banach-Saks if each sequence

(x,) in B has a subsequence (y,,), whose arithmetic means converge in norm. That
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is, there exists x € X such that:

1 n
- — || — 0.
I ;;:1 yr — |

Note that every Banach-Saks set is relatively weakly compact [26, Proposition 2.3].
The converse statement is not true in general ([6]). Recall that a bounded opera-~
tor T': X — Y is said to be a BS-compact operator whenever T' sends Banach-
Saks subsets of X onto norm compact sets of Y ([20]). Clearly, every compact
operator is BS-compact. The identity operator [;, : [y — [; is BS-compact which
is not compact. If X has the Banach-Saks property, these classes coincide .

A bounded subset A of a Banach lattice E is said to be L-weakly compact,
if ||z,|| — 0 for every disjoint sequence (z,), in the solid hull of A([27]). The
solid hull of a subset A of a Banach lattice F is the set

Sol(A) ={z € F:Ja € A with |z| < |a|}.
A characterization of L-weakly compact set is expressed as follows.

Lemma 2.1. [12, Lemma 2.4] For every nonempty bounded subset A C E, the
following assertions are equivalent.

(1) A is L-weakly compact.

(2) fu(zn) — 0 for every sequence (x,,) of A and every disjoint sequence (f,)
Of BE/ .

Recall that a Banach lattice E' is said to be order continuous if lim, ||z,|| = 0
for every decreasing net (x,), in E such that A,z, = 0. An element e € E is said
to be a weak unit if for h € E, e Ah = 0 implies h = 0. Note that every separable
Banach lattice has a weak unit.

Departing from Theorem 1.b.14 in [24], we realize that an order continuous
Banach lattice with a weak unit can be assumed to be included in L1(€, X, )
for some probability measure p. From this perspective, we denote this inclusion
by j: E — Li(€,%,u). Let X be a separable subspace of an order continuous
Banach lattice E. It follows from Proposition 1.a.9 in [24] that Ex ( Ex being
the ideal generated by X ) has a weak unit. Let (g,) be a sequence of E. Then,
we denote by [g,] the closed subspace spanned by the vectors (g,). In terms
of order continuous Banach lattices, the convergence of a bounded sequence is
characterized as follows.

Lemma 2.2. Let E be a Banach lattice with an order continuous norm, and
(gn)n be a bounded sequence in E. Then,
(gn)n is convergent in E if and only if it is L-weakly compact and ||.||;— convergent.

Proof. Since [g,] is a separable subspace of E, it follows from Proposition 1.a.9
in [24] that E}, ) ( El,) being the ideal generated by [g,] ) has a weak unit. The
rest of the proof follows from Lemma 1.4.2 in [31]. O

A Banach space E has the weak Banach-Saks property (or it is weakly Banach-
Saks) if every weakly convergent sequence (z,), in E has a subsequence which is
Cesaro convergent.
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Theorem 2.3. (Szlenk [30]) Let (2, X, u) be a probability space. Then, Ly (€2, %, 1)
1s weakly Banach-Saks.

3. ALMOST BS-COMPACT OPERATORS

Relying upon [22], we state that a Banach lattice has the (W1) property if
for every relatively weakly compact subset A of E, the set |A| := {|a| : a € A}
is again relatively weakly compact. Likewise, we define the (BS1) property as
follows.

Definition 3.1. A Banach lattice E has the property (BS1) if for every Banach-
Saks set A C E, the set |A| := {]a|] : a € A} is also Banach-Saks.

Clearly, every Banach-Saks space has the (BS1) property. An important exam-
ple of a Banach lattice without property (BS1) is c¢o(L2[0, 1]), where ¢o(L2[0, 1]),
is the Banach space of all null sequences in Ls[0, 1], endowed with the supremum
norm.

Example 3.2. Let E = ¢y(L2[0,1]). Referring to the Example page 108 in [28],
there exists a relatively weakly compact subset A of E such that |A| is not Banach-
Saks. On the other side, since L»[0, 1] has the uniform weak Banach-Saks prop-
erty(see Theorem page 109 in [14]), it follows from Theorem 3 in [25] that E has
the weak Banach-Saks property. As a matter of fact, A is Banach-Saks, which
implies that E is not (BS1) space.

The preceding example stands for the impetus urging us to define the class of
almost BS-compact operators.

Definition 3.3. An operator 7' from a Banach lattice E into a Banach space
Y is said to be almost BS-compact if T carries Banach-Saks subsets of E, onto
relatively compact subsets of Y.

Note that every BS-compact operator is almost BS-compact. A linear operator
T from a Banach lattice E' to a Banach space Y is said to be AM-compact if it
maps order bounded subset of E to a totally bounded subset of Y[15].

Theorem 3.4. Let E be an order continuous Banach lattice and Y be a Banach
space. Then, every almost BS-compact operator T : E — 'Y is AM-compact.

Proof. 1t is enough to demonstrate that every order bounded subset of E is
Banach-Saks. For this reason, let (x,), be a sequence in E satisfying 0 < x,, <y
for all n and some y € E,. Since F is order continuous, it follows from Theorem

4.9 in [1] that [0,y] is weakly compact. Thus, there exists a sequence (z4(n)), of

(7,,) such that x4, TEED, & for some € E,. Since X := [x4(y)] is a separable

subspace of E, it follows from Proposition 1.a.9 in [24] that Ex is an order ideal
with a weak order unit. Therefore, it can be represented as a dense order ideal
of Ly(€, 3, u) for some probability measure p, such that the formal inclusion

j :E_X;) LI(QJZa/'L>
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is continuous ( [24], Theorem 1.b.14). Thus, (jx,) converges weakly to jz in
L1(92,%, ). At this stage of analysis, Theorem 2.3 combined with the Theorem
in [16] reveals that there exists a subsequence (y,) of (z4(n)) such that £ "7 jy;
converges in norm to jz. On the other side, since E is order continuous and
0< 230 uye <y forall n, we infer that A = {£>" 4y, n € N}isan L-
weakly compact subset of E ( see Theorem 4.14 in [1]). According to Lemma
2.2, we have %2221 yr converges to x € E. Which implies that [0, y] is Banach-
Saks. O

Remark 3.5. It is noteworthy that the converse of Theorem 3.4 is not true in
general. For instance, consider the identity operator I/d., : c¢ — ¢o.It is obvious
that Id., is AM-compact. On the other side, the standard unit vectors of ¢ is
Banach-Saks and has no convergent subsequence on ¢y. Hence, Id,, is not Almost
BS-compact.

The preceding theorem combined with Theorem 5.97 in [1] yields:

Corollary 3.6. Let E be a Banach lattice with order continuous norm, and let I
be an AL-space. Then, for a reqular operator T : E — Y, the following assertions
are equivalent.

(1) The linear operator T is Dunford-Pettis.

(2) The linear operator T is AM-compact.

(3) The linear operator T is almost BS-compact.
(4) The linear operator T" BS-compact.

The notions of Almost BS-and BS-compact operators may coincide. The next
result provides a condition for this to happen.

Theorem 3.7. Let T' be an operator from an order continuous Banach lattice E
into a Banach space Y; if E has the (BS1) property, then the following assertions
are equivalent.

(1) The linear operator T is BS-compact.
(2) The linear operator T is almost BS-compact.

Proof. (2) = (1). Let A be a Banach-Saks set of F, and let (z,), be a sequence in
A. Since E has the (BS1) property, it follows that |A| is Banach-Saks. Therefore,
by passing to a subsequence, we can assume that for some z € E, we have
1 n
lim || — x| — x|l = 0.
AESEIR

To this extent, resting on our hypothesis, there exists a subsequence (z,) of (z,),
such that T|z,| converges in norm. Next, let (h,) C E; be a disjoint sequence in
the solid hull of {z,, n € N}. The weak compactness of A (by Proposition 2.3 in
[26]) implies (by Theorem 4.34 in [1]) that h,, TEF) ). Let’s take a subsequence
(wy,) of (h,). Moving to a subsequence, we can assume that 0 < w,, < |z,| holds
for all n. In particular, for n € N we have

1 & 1l &
OSE;U&SE;M&L
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Grounded on Lemma 2.2, we realize that {1 >} wy, n € N} is L-weakly

. E,E’ .
compact. Since %22:1 W M 0, it follows from Lemma 2.3 and Lemma

2.4 in [12] that >0 wy Ll 0. Without loss of generality, we assume that

Tw,, H—”> 0. Thus, the choice of (w,) guarantees that Th,, H—”> 0.

Let € > 0. Based on Theorm 4.36 in [1], there exists some u € F satisfying
|17 (lyn] — w)¥Il <e,
for all n. From |y,| = |yn| A u+ (Jyn| — uw)™, it follows that
{Ty,, neN}CT[—u,u]+ eBy.

From this perspective, an easy application of Theorem 3.4 guarantees that {7y,
N} is relatively compact. Hence, T'A is relatively compact. 0

However, the following problem remains unresolved.
Problem 3.8. Is there an almost BS-compact operator that is not BS-compact?

Other properties of ( Almost)BS-compact operators are provided by the fol-
lowing Theorem.

Theorem 3.9. Let T be a BS-compact (rep. Almost BS-compact) operator from
a Banach lattice E into a Banach space Y.

(1) The class of all BS-compact (rep. Almost BS-compact) operators from E
to Y is a closed subspace of L(E,Y).

(2) If R is a bounded operator from Y into a Banach space Z, then RT is
BS-compact (rep. Almost BS-compact).

(3) If R is a bounded operator from a Banach space Z into E, then TR is
almost BS-compact(rep. Almost BS-compact).

Proof. (1) Let (7),), be a sequence of BS-(resp Almost BS-)compact operators
from E to Y which satisfies T,, — T in L(FE,Y), and let A be a Banach-
Saks subset of £ (resp. Fy). Fix € > 0. Therefore, there exists Ny such
that

T(A) C TNO (A) + eBy.

Since Tn,(A) is a norm relatively compact subset of Y, it follows that
T(A) is also a relatively compact subset of Y. This reveals that 7" is BS-
(resp Almost BS-)compact.

(2) Let A be a Banach-Saks subset of E (resp. Ey). Since T is a BS-compact
(rep. Almost BS-compact) operator, it follows that T'(A) is a norm rel-
atively compact subset of Y. Thus, RT'(A) is a norm relatively compact
subset of Z( the linear operator R is bounded). Hence, RT is BS-(resp

Almost BS-)compact.
0J

A significant property of the order bounded disjoint sequence is included in the
next proposition.

n e
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Proposition 3.10. Let E be a normed riesz space and let (w,) be an order
bounded disjoint sequence of Ey. Then, lim, ||+ 3" w;|| = 0.

Proof. Let (w,), be a positive disjoint sequence of F and let x € E, such that
0 < w, <z for all n. Since VI jw; = Y ", w; for all n € N, it follows that

] — VI w; x
OS—ZUJZ: =1 ZS—,
n e n

n

which implies that

A

RS ]
HEZWH_ — —0.
k=1
O

An operator T between a Banach lattice E' and a Banach space Y is said to be
order weakly compact if T'([—z, x]) is relatively weakly compact for every positive
element x € E. Order weakly compact operators can be characterized as those
operators which fail to be invertible on any sublattice isomorphic to ¢y with an
order bounded unit ball (see Corollary 3.4.5 in [28]). The preceding proposition
combined with Theorem 3.4.4 in [28] unveils that an almost BS-compact operator
is order weakly compact.

Corollary 3.11. Let E be a Banach lattice, and let Y be a Banach space. Then
every almost BS-compact operator T : E — 'Y is order weakly compact.

Proof. Let (w,) be an order bounded disjoint sequence of E,. It follows from
Proposition 3.10 that lim,, [|[£ > | w;|| = 0. Since T is almost BS-compact, then
lim,, ||Tw,|| = 0. The rest of the proof follows from Theorem 5.57 in [1].

0J

4. DOMINATION RESULTS

Let R : E — F be a positive operator between two Banach lattices domi-
nated by a BS-compact operator (respectively, almost BS-compact ) 7. Is then
R necessarily BS-compact (respectively, almost BS-compact ) 7 The answer is
negative in general. The details are provided below.

Example 4.1. There exist two operators 0 < R < T : L3[0,1] — [, such that
T is BS-compact but R is not almost BS-compact.

Proof. Let (r,) denote the sequence of Rademacher functions on [0, 1]. This
means, 7, () = Sgnsin(2"7t). Let 0 < R < T : Ly[0,1] — [ be the positive
operators defined in Example 3.1 of [1] by

ri=([ ot [ @)
Tf = (/01 F(a)da, /01 f(x)dx,/ol F@)dz, ).
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=

Clearly, T is BS-compact. On the other side, referring to Example 2.7 in [5], we
infer that R is not AM-compact. In particular, from Theorem 3.4 it follows that
R is not almost BS-compact. O

4.1. Power domination by BS-compact operators. In this section, we tackle
the power problem for BS-compact operators. To state our main result, we need
the following Theorem.

Theorem 4.2. ([19], Theorem 1.2) Let Ey and Ey be Banach lattices and consider
operators 0 < R < T : Ey — F5. Then, there exist a Banach lattice G, a lattice
homomorphism ¢ : By — G and operators 0 < RY < T¢ : G — E,, with
T =T%p and R = R, such that G is order continuous if and only if T is order
weakly compact.

In addition, we will need the next lemma.

Lemma 4.3. Let E be an order continuous Banach lattice, and let (z,) be a

E,E' . . .
sequence of E such that |x,| AEE, . Then, either lim,, ||x,| = 0, or there is a

subsequence (y,) of (x,) and a disjoint sequence (wy), C E such that

[y = wn]| — 0.

Proof. Let (z,,) be a sequence of E such that |z, 2B, 0, Since X = [2,] is
separable subspace of E, it follows from Proposition 1.a.9 in [24] that Ey is an
order ideal with a weak order unit and Therefore can be represented as a dense
order ideal of L;(€,3, 1) for some probability measure p, such that the formal
inclusion

j :E_X(_> L1(9727M>
is continuous ( [24], Theorem 1.b.14). Since L;(x) has the positive Schur prop-
erty, then
lljznlli — 0. (4.1)
According to Theorem 1.2.8 in [26], we have
(1) either ||jz,||1 > &]|z,|| for some 6 > 0,

(2) or there is a subsequence (y,,) of (z,,) and a disjoint sequence (wy), C E such
that

[y = wn]| — 0.

If |[jznlls > d||zn||, for some § > 0. Referring to (4.1), we deduce that ||z,| — 0,
and the proof is complete. O

Theorem 4.4. Let
Ei 2 By 25 By 24 By 5 By
Ry Ry R3 Ry

be operators between Banach lattices, such that 0 < R; < T;, fori=1,2,3,4. If
Ty, Ty are BS-compact and Ty,Ts are order weakly compact, then R4R3RsR; is
also BS-compact.
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Proof. Since T, T3 are order weakly compact, according to Theorem 4.2 | there
exist order continuous Banach lattice GG, a lattice homomorphism

¢ : By — G and operators 0 < RY < T¢ : G — E,, with B} = RY¢ and
Ty = T¢ ¢. Furthermore, there exist order continuous Banach lattice F, a lattice
homomorphism ) : E3 — F and operators 0 < R < T} : F — E,, with
R3 = R4 and T3 = T¥1). The proof will be developed through the following
steps.

Step 1. The positive operator Y RyR; : By — F is AM-compact. Indeed,
by Theorem 3.4 we have that ToTC : G — Ej is an AM-compact operator, and
hence YT5T, : 4 — F is also AM-compact. Since F' has an order continuous
norm and

0 <yYRyRy <YILT, : By — F,
it follows from Thorem 5.10 in [1] that ¥ ReRy : Ey — F is AM-compact.

Step 2. Let (x,) be a bounded sequence of Fy such that lim, £ Y%  x; = 0.
Then, there is a subsequence (z,) of (z,) such that {|¢)RyR12,|, n € N} is
Banach-Saks.

Indeed, by Proposition 2.3 in [26], there exists a subsequence (y,) such that

yn ZEED 0 It follows from Theorem 5.96 in [1] that [¢RsRiya] 2555 0

(Y RoRy : AM-compact). Since F is order continuous, it follows from Lemma 4.3
that lim, ||¢)RaR1y,|| = 0 or there is a subsequence (z,) of (y,) and a disjoint
sequence (wy,), such that || ReRyz, — w,|| — 0. By passing to a subsequence,
we can assume that

+oo

Z ||1/1R2R12n — wn|| < +00.

n=1
Since {YRyRyz, — »RoR1y, n € N} is Banach-Saks, it follows from Lemma 2.9
in [20] that {w,, n € N} is also Banach-Saks. Note that for any n € N and any
choice of scalars we have

n n n
|Zakwk’ = \Z | vk wi| = |Zak\wkH-
k=1 k=1 k=1

Then, the basic sequence (w,) is equivalent to the sequence (|w,|), and conse-
quently from Fact 4.22 (ii) in [17] we infer that {|w,|, n € N} is Banach-Saks.
Subsequently, using the fact that

—+00

> [ RaRyza| — w,l|] < 400,
n=1

it follows from Lemma 2.9 in [26] that {|¢)R2R1z,|, n € N} is Banach-Saks.
Step 3. The positive operator RyR3Rs R, is BS-compact. To demonstrate this,
let A be a Banach-Saks subset of F, and let (x,) be a sequence of A. Then, there
exist z € Ey and a subsequence (y,) of (z,,) such that lim, £ Y%  (y;—z) = 0. By
step 2, there exists a subsequence (z,,) of (y,) such that {|tpRaRy(z, — 2)|, n €
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N} is Banach-Saks. Since T,T¥ is BS-compact and |¢) Ry Ry 2, — Ro R, 2| U(F—F/)> 0,
it follows (by passing to a subsequence) that

lifln ||T4T3G|¢RQR12n — YRy Ry2||| = 0.

The inequality 0 S |R4R3R2R12’n — R4R3R2R12’| S T4T??|¢R2R12n — ¢R2R12’|
implies

lim ||R4R3R2R12’n — R4R3R2R12|H = 0.

Thus, RyR3R2R1(A) is a relatively compact subset of Ej5, and the proof of the
theorem holds. 0

As a consequence, we get what follows

Corollary 4.5. Let E be a Banach lattice, and consider operators 0 < R < T :
E — E. If T is BS-compact, then R* is also BS-compact. Moreover, if E has an
order continuous norm, then R? is BS-compact.

Proof. Since T is BS-compact, it follows from Corollary 3.11 that T is order
weakly compact. Thus, it is sufficient to apply Theorem 4.4 to E; = E,R; = R
and T; = T for all i. O

The following question has been left unresolved.

Problem 4.6. Let E be a Banach lattice and 0 < R < 7T : F — E with T is
BS-compact. Is R? or R? BS-compact?

4.2. Domination by almost BS-compact operators. In this section, new
domination results are displayed for almost BS-compact operators between Ba-
nach lattices. For this reason we need the following.

Theorem 4.7. [21] Let E and F be Banach lattices each with a quasi-interior
positive element. Let T be a positive operator T : — F and let AC E,B C F’
be solid bounded sets. Suppose that whenever (ay,), is disjoint in Ay and (b,), is
disjoint in B, then

(1) Ta, 255 0,
2) T'b, 21 0,
(3) | < Tan,by > | — 0.

Suppose further that R,S € L.(E,F) satisfy |S| < |R| <T € L.(E,F"). Then,
given € > 0 there exist central operators My, ..., My € L.(E) , Ly, ...,Ly € L,.(F)
so that if

k
So = LiRM;,
i=1

then
< Sa— Spa,b><e, a€ AbeB.

We shall also need the following lemma.
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Lemma 4.8. Let E be an order continuous Banach lattice and let x € E.. If
{z,, n €N} is a Banach-Saks sequence in E, then {|x, —z|, n € N} is also
Banach-Saks.

Proof. Let {x,, n € N} be a Banach-Saks subset of E,. By passing to a subse-
quence, we can assume that

R
117{11”55 zi —y| = 0.
=1

From |z, — z| < x, 4+ «, we infer that =37 | |z; — x| < 237" (2; + x). Since

(£ 370 (2 + x)), converges in norm, it follows from Lemma 2.2 that

1 n
- i ) GN,
G2 kel, nemy

is L-weakly compact. Arguing as in the proof of Lemma 4.9, Ej,, _, can be
represented as a dense ideal of Ly (u) for some probability measure p such that
the formal inclusion

J i Elgy—a) = Lyi(p)

is continuous. Applying the Rosenthal’l; Theorem to the subsequence (|z, —
x|)n,there is a subsequence (z,), of (|z, — x|)n, such that (1) either (z,) is a
weak Cauchy sequence or (2) (z,) is equivalent to the standard basis (e,), of
l1. Suppose first that (z,) is equivalent to the standard basis (e,), of l;. Since
{% Y r_i 2k, n € N}isan L-weakly compact subset of E, it follows from Propo-
sition 3.6.5 in [28] that {+ >} ;ex; n € N} is a relatively weakly compact
subset of [;. Since [; has the Schur property, it follows that {% Yor_i€ek; neN}
is a relatively compact subset of ;. Therefore, e,, converges weakly to zero. From
Theorem 4.32 in [1|, we have lim, |le,|[y = O . This contradicts the fact that
leall = 1.

Then, (z,) is weak Cauchy. According to Theorem 9.3.1 in [23], there exists

B E' : :
some z” such that z, 2ELED 1 On the other side, since {7 | z; n e N}

is L-weakly compact, it follows from Proposition 3.6.5 in [28] that there is a

subsequence (t,), of (z,), such that =37 "EE), e B Consequently,
7" = z € E. Hence, t, LASSON z, and thus jt, oLl Looles), jz. Since L;(u) has

the weak Banach-Saks property, then % Y ori Itk M jz € Li(p). The rest of the

proof follows from Lemma 2.2. O

The main result of this section is the following.

Theorem 4.9. Let E, F be order continuous Banach lattices. [f0 < R<T : E
— F with T is almost BS-compact, then R is almost BS-compact.

Proof. Let A be a Banach-Saks subset of E, and let (x,,) be a bounded sequence
in A. By Proposition 2.3 in [26], we can assume without loss of generality that
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z, ZEE), y, for some y € E. Consider a subsequence (y,,) of (z,) such that:

1 n
— = . 4.2
I3 =l 0 (42)

Since T is almost BS-compact, by movinging to a subsequence, we can assume
that T'y,, converges to T'y. Note that (by Lemma 4.8) the sequence {|y,—y|, n €
N} is Banach-Saks. Thus, there exists a subsequence of (y,) (which we shall
denote by (y,) again) such that

1 n
- E ka - ?J|
n

k=1

is norm convergent in E. Next, let (h,,) be a positive disjoint sequence in the solid
hull of {y,, —y, n € N}. Consider an arbitrary subsequence (wy), of (h,),. By
moving to a subsequence, we can state that

ngng‘yn_m

holds for all n. In particular,

1 « 1 —
OSEZwkSEZ‘yk—?/’,
k=1 k=1

holds for all n. Since E is order continuous, it follows from Lemma 2.2 that
{3 i wy, neN}is L-weakly compact.
Now, Proposition 2.3 in [26] combined with Theorem 4.34 in [1] depicts that

Wy, M 0. Therefore, %2221 Wy ﬂ 0. Departing from the L-weak com-

pactness of {237 w;, n € N}, Lemma 2.3 and Lemma 2.4 in [12], it follows
that %22:1 W, M> 0. Hence, grounded on our hypothesis, there exists a subse-
quence (wy,); of (wy,), such that Tw,, L0, Since (wy,) is an arbitrary subse-
quence of (h,), Th, I 0 also holds.

Next, let z = "% 2 |y, —yl. Consider that I, (resp J, ) is the ideal generated

by z in E (resp Tz in F' ). At this level an easy argument demonstrates that
R(I,) C J, for every operators 0 < R<T : E — F.

Consider A =Sol{y, —y; n € N} and B = B,,y. Let (a,) and (b,) be two

normalized positive disjoint sequences in A and B respectively. Based on the
above discussion, we have Ta,, M) 0, in particular T'a,, ﬂ 0. On the other
side, since F' is order continuous, it follows from Corollary 2.4.3 in [28] that
b, o(&.E) 0. Thus, since T' is bounded, we have

Tbn o(E'\E)

0.
Furthermore, since | < Tay, b, > | < ||Ta,||||bs] and ||Ta,| — 0, then

| < Tap, b, >| — 0.
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Note that all hypotheses of Theorem 4.7 are verified. Therefore, for every € > 0
there exist central operators My, ..., My € L(I,), Ly, ..., Ly € L(J,) such that

|<Ra—R6a,b>|§§

for every a € A and b € B, where R, = . | L;TM;. In particular, this implies
that

To complete the proof, it is enough to establish that lim, ||R.(y, — y)|| = 0.
Note that

k
[Re(yn — )| = 1> LiTMi(yn — v)|
=1
k
< Z | LT M;(yn — v)|
=1

k
<Y LT M| (Jyn = y1).
i=1
Since T' is Almost BS-compact, it follows from Lemma 4.8 (by moving to a sub-
sequence) that Y% | | Li| T| M| (|yn — y|) converges in norm to some f € F. Thus,

by Lemma 2.2, {|Rc(y, —y)|, n € N} is L-weakly compact. On the other side,

since y, — y TEED 0 and T is AM-compact (see Theorem 3.4), it follows from

Theorem 5.96 in [1] that |Rc(y, —v)| 2B, 0. Lemma 2.3 and Lemma 2.4 in [12]

are conducive to the conclusion that |R.(y, — v)| Lo, Let Ny € N such that

€
a)

1Be(yn = 9)l < 3
holds for all n > Ny. Finally, for n > Ny we have

[R(Yn — I = [[B(Yn — y) = Be(yn — y) + Re(yn — )|
< NRWn —y) = Re(Wn — 9| + [ Re(yn — 9)|

<€ €
—4+-=ec

-2 2
That is, lim,, | Ry, — Rz|| = 0, and the proof of the theorem is complete. O

As a consequence, we get the following.

Corollary 4.10. Let E be a Banach lattice, and consider operators 0 < R < T :
E — E. If T is almost BS-compact, then R? is also almost BS-compact.

Proof. Since T is BS-compact, it follows from Corollary 3.11 that 7' is order
weakly compact. According to Theorem 4.2 , there exist an order continuous
Banach lattice G, a lattice homomorphism ¢ : E — G and operators 0 < R <
T : G — E, with R = RS¢p and T = T%¢. Note that

0 < ¢RRY < ¢TTY : G — G.
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Since G is order continuous and ¢T'T¢ is almost BS-compact, it follows from
Theorem 4.9 that ¢RRY is almost BS-compact and consequently R® is almost
BS-compact. O

The following question remains unanswered:

Problem 4.11. Let E be a Banach lattice and 0 < R < T : EF — E with T is
almost BS-compact. Is R? almost BS-compact?
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