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Abstract. Let X and Y be two Banach spaces. A bounded operator T :
X −→ Y is said to be a BS-compact operator whenever T sends Banach-Saks
subsets of X onto norm compact sets of Y ([20]). In this paper, our central fo-
cus is upon introducing the class of almost BS-compact operators. The paper
rests essentially on two parts. The first is devoted to the connection of this
new class of operators with classical notions of operators, such as BS-compact
operators, AM-compact operators, and Dunfort-Pettis operators. The second
part is dedicated to the domination problem within the framework of (almost)
BS-compact operators.
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1. Introduction

Let E and F be Banach lattices. Consider operators 0 ≤ R ≤ T : E −→
F such that T satisfies some property P . The domination problem stands for
finding conditions under which P will be inherited by R. In the particular case
that E = F, it is interesting to investigate whether some power of R inherit P .
This is corresponds to the power domination problem.

Domination properties of operators on Banach lattices have whetted the inter-
est and drawn the attention of multiple researchers. For instance, consult([2, 7,
8, 9, 15, 18, 21]).

As far as we are basically concerned with introducing the class of almost BS-
compact operators. The manuscript relies on two intrinsic parts. The first part
addresses the connection of this new class of operators with classical notions of
operators, such as, BS-compact operators, AM-compact operators, or Dunfort-
Pettis operators. However, the second part tackles the domination problem within
the framework of (almost) BS-compact operators.

2. Preliminaries

Throughout this paper, X and Y will denote Banach spaces and E, F will
denote Banach lattices. The positive cone of E will be expressed by E+ = {x ∈
E; 0 ≤ x}. We will use the term operator, between two Banach spaces, to
indicate a bounded linear mapping.

A bouded subset B of a Banach space X is called Banach-Saks if each sequence
(xn) in B has a subsequence (yn), whose arithmetic means converge in norm. That
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is, there exists x ∈ X such that:

‖ 1

n

n∑
k=1

yk − x‖ −→ 0.

Note that every Banach-Saks set is relatively weakly compact [26, Proposition 2.3].
The converse statement is not true in general ([6]). Recall that a bounded opera-
tor T : X −→ Y is said to be a BS-compact operator whenever T sends Banach-
Saks subsets of X onto norm compact sets of Y ([20]). Clearly, every compact
operator is BS-compact. The identity operator Il1 : l1 → l1 is BS-compact which
is not compact. If X has the Banach-Saks property, these classes coincide .

A bounded subset A of a Banach lattice E is said to be L-weakly compact,
if ‖xn‖ −→ 0 for every disjoint sequence (xn)n in the solid hull of A([27]). The
solid hull of a subset A of a Banach lattice E is the set

Sol(A) = {x ∈ E : ∃a ∈ A with |x| ≤ |a|}.
A characterization of L-weakly compact set is expressed as follows.

Lemma 2.1. [12, Lemma 2.4] For every nonempty bounded subset A ⊂ E, the
following assertions are equivalent.

(1) A is L-weakly compact.
(2) fn(xn) → 0 for every sequence (xn) of A and every disjoint sequence (fn)

of BE′ .

Recall that a Banach lattice E is said to be order continuous if limα ‖xα‖ = 0
for every decreasing net (xα)α in E such that ∧αxα = 0. An element e ∈ E is said
to be a weak unit if for h ∈ E, e∧h = 0 implies h = 0. Note that every separable
Banach lattice has a weak unit.

Departing from Theorem 1.b.14 in [24], we realize that an order continuous
Banach lattice with a weak unit can be assumed to be included in L1(Ω,Σ, µ)
for some probability measure µ. From this perspective, we denote this inclusion
by j : E ↪→ L1(Ω,Σ, µ). Let X be a separable subspace of an order continuous
Banach lattice E. It follows from Proposition 1.a.9 in [24] that EX ( EX being
the ideal generated by X ) has a weak unit. Let (gn) be a sequence of E. Then,
we denote by [gn] the closed subspace spanned by the vectors (gn). In terms
of order continuous Banach lattices, the convergence of a bounded sequence is
characterized as follows.

Lemma 2.2. Let E be a Banach lattice with an order continuous norm, and
(gn)n be a bounded sequence in E. Then,
(gn)n is convergent in E if and only if it is L-weakly compact and ‖.‖1−convergent.

Proof. Since [gn] is a separable subspace of E, it follows from Proposition 1.a.9
in [24] that E[gn] ( E[gn] being the ideal generated by [gn] ) has a weak unit. The
rest of the proof follows from Lemma 1.4.2 in [31]. �

A Banach space E has the weak Banach-Saks property (or it is weakly Banach-
Saks) if every weakly convergent sequence (xn)n in E has a subsequence which is
Cesàro convergent.
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Theorem 2.3. (Szlenk [30]) Let (Ω,Σ, µ) be a probability space. Then, L1(Ω,Σ, µ)
is weakly Banach-Saks.

3. Almost BS-compact operators

Relying upon [22], we state that a Banach lattice has the (W1) property if
for every relatively weakly compact subset A of E, the set |A| := {|a| : a ∈ A}
is again relatively weakly compact. Likewise, we define the (BS1) property as
follows.

Definition 3.1. A Banach lattice E has the property (BS1) if for every Banach-
Saks set A ⊂ E, the set |A| := {|a| : a ∈ A} is also Banach-Saks.

Clearly, every Banach-Saks space has the (BS1) property. An important exam-
ple of a Banach lattice without property (BS1) is c0(L2[0, 1]), where c0(L2[0, 1]),
is the Banach space of all null sequences in L2[0, 1], endowed with the supremum
norm.

Example 3.2. Let E = c0(L2[0, 1]). Referring to the Example page 108 in [28],
there exists a relatively weakly compact subset A of E such that |A| is not Banach-
Saks. On the other side, since L2[0, 1] has the uniform weak Banach-Saks prop-
erty(see Theorem page 109 in [14]), it follows from Theorem 3 in [25] that E has
the weak Banach-Saks property. As a matter of fact, A is Banach-Saks, which
implies that E is not (BS1) space.

The preceding example stands for the impetus urging us to define the class of
almost BS-compact operators.

Definition 3.3. An operator T from a Banach lattice E into a Banach space
Y is said to be almost BS-compact if T carries Banach-Saks subsets of E+ onto
relatively compact subsets of Y .

Note that every BS-compact operator is almost BS-compact. A linear operator
T from a Banach lattice E to a Banach space Y is said to be AM-compact if it
maps order bounded subset of E to a totally bounded subset of Y [15].

Theorem 3.4. Let E be an order continuous Banach lattice and Y be a Banach
space. Then, every almost BS-compact operator T : E → Y is AM-compact.

Proof. It is enough to demonstrate that every order bounded subset of E is
Banach-Saks. For this reason, let (xn)n be a sequence in E satisfying 0 ≤ xn ≤ y
for all n and some y ∈ E+. Since E is order continuous, it follows from Theorem
4.9 in [1] that [0, y] is weakly compact. Thus, there exists a sequence (xφ(n))n of

(xn) such that xφ(n)
σ(E,E′)−−−−→ x for some x ∈ E+. Since X := [xφ(n)] is a separable

subspace of E, it follows from Proposition 1.a.9 in [24] that EX is an order ideal
with a weak order unit. Therefore, it can be represented as a dense order ideal
of L1(Ω,Σ, µ) for some probability measure µ, such that the formal inclusion

j : EX ↪→ L1(Ω,Σ, µ)
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is continuous ( [24], Theorem 1.b.14). Thus, (jxn) converges weakly to jx in
L1(Ω,Σ, µ). At this stage of analysis, Theorem 2.3 combined with the Theorem
in [16] reveals that there exists a subsequence (yn) of (xφ(n)) such that 1

n

∑n
k=1 jyk

converges in norm to jx. On the other side, since E is order continuous and
0 ≤ 1

n

∑n
k=1 yk ≤ y for all n, we infer that A = { 1

n

∑n
l=1 yl, n ∈ N} is an L-

weakly compact subset of E ( see Theorem 4.14 in [1]). According to Lemma
2.2, we have 1

n

∑n
k=1 yk converges to x ∈ E. Which implies that [0, y] is Banach-

Saks. �

Remark 3.5. It is noteworthy that the converse of Theorem 3.4 is not true in
general. For instance, consider the identity operator Idc0 : c0 −→ c0.It is obvious
that Idc0 is AM-compact. On the other side, the standard unit vectors of c0 is
Banach-Saks and has no convergent subsequence on c0. Hence, Idc0 is not Almost
BS-compact.

The preceding theorem combined with Theorem 5.97 in [1] yields:

Corollary 3.6. Let E be a Banach lattice with order continuous norm, and let F
be an AL-space. Then, for a regular operator T : E → Y, the following assertions
are equivalent.

(1) The linear operator T is Dunford-Pettis.
(2) The linear operator T is AM-compact.
(3) The linear operator T is almost BS-compact.
(4) The linear operator T BS-compact.

The notions of Almost BS-and BS-compact operators may coincide. The next
result provides a condition for this to happen.

Theorem 3.7. Let T be an operator from an order continuous Banach lattice E
into a Banach space Y ; if E has the (BS1) property, then the following assertions
are equivalent.

(1) The linear operator T is BS-compact.
(2) The linear operator T is almost BS-compact.

Proof. (2) =⇒ (1). Let A be a Banach-Saks set of E, and let (xn)n be a sequence in
A. Since E has the (BS1) property, it follows that |A| is Banach-Saks. Therefore,
by passing to a subsequence, we can assume that for some x ∈ E+ we have

lim
n
‖ 1

n

n∑
k=1

|xk| − x‖ = 0.

To this extent, resting on our hypothesis, there exists a subsequence (zn) of (xn)n
such that T |zn| converges in norm. Next, let (hn) ⊂ E+ be a disjoint sequence in
the solid hull of {zn, n ∈ N}. The weak compactness of A (by Proposition 2.3 in

[26]) implies (by Theorem 4.34 in [1]) that hn
σ(E,E′)−−−−→ 0. Let’s take a subsequence

(wn) of (hn). Moving to a subsequence, we can assume that 0 ≤ wn ≤ |zn| holds
for all n. In particular, for n ∈ N we have

0 ≤ 1

n

n∑
k=1

wk ≤
1

n

n∑
k=1

|zk|.
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Grounded on Lemma 2.2, we realize that { 1
n

∑n
k=1wk, n ∈ N} is L-weakly

compact. Since 1
n

∑n
k=1wk

σ(E,E′)−−−−→ 0, it follows from Lemma 2.3 and Lemma

2.4 in [12] that 1
n

∑n
k=1wk

‖.‖−→ 0. Without loss of generality, we assume that

Twn
‖.‖−→ 0. Thus, the choice of (wn) guarantees that Thn

‖.‖−→ 0.

Let ε > 0. Based on Theorm 4.36 in [1], there exists some u ∈ E+ satisfying

‖T (|yn| − u)+‖ ≤ ε,

for all n. From |yn| = |yn| ∧ u+ (|yn| − u)+, it follows that

{Tyn, n ∈ N} ⊂ T [−u, u] + εBY .

From this perspective, an easy application of Theorem 3.4 guarantees that {Tyn, n ∈
N} is relatively compact. Hence, TA is relatively compact. �

However, the following problem remains unresolved.

Problem 3.8. Is there an almost BS-compact operator that is not BS-compact?

Other properties of ( Almost)BS-compact operators are provided by the fol-
lowing Theorem.

Theorem 3.9. Let T be a BS-compact (rep. Almost BS-compact) operator from
a Banach lattice E into a Banach space Y.

(1) The class of all BS-compact (rep. Almost BS-compact) operators from E
to Y is a closed subspace of L(E, Y ).

(2) If R is a bounded operator from Y into a Banach space Z, then RT is
BS-compact (rep. Almost BS-compact).

(3) If R is a bounded operator from a Banach space Z into E, then TR is
almost BS-compact(rep. Almost BS-compact).

Proof. (1) Let (Tn)n be a sequence of BS-(resp Almost BS-)compact operators
from E to Y which satisfies Tn → T in L(E, Y ), and let A be a Banach-
Saks subset of E (resp. E+). Fix ε > 0. Therefore, there exists N0 such
that

T (A) ⊂ TN0(A) + εBY .

Since TN0(A) is a norm relatively compact subset of Y , it follows that
T (A) is also a relatively compact subset of Y. This reveals that T is BS-
(resp Almost BS-)compact.

(2) Let A be a Banach-Saks subset of E (resp. E+). Since T is a BS-compact
(rep. Almost BS-compact) operator, it follows that T (A) is a norm rel-
atively compact subset of Y. Thus, RT (A) is a norm relatively compact
subset of Z( the linear operator R is bounded). Hence, RT is BS-(resp
Almost BS-)compact.

�

A significant property of the order bounded disjoint sequence is included in the
next proposition.
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Proposition 3.10. Let E be a normed riesz space and let (wn) be an order
bounded disjoint sequence of E+. Then, limn ‖ 1n

∑n
i=1wi‖ = 0.

Proof. Let (wn)n be a positive disjoint sequence of E and let x ∈ E+ such that
0 ≤ wn ≤ x for all n. Since ∨ni=1wi =

∑n
i=1wi for all n ∈ N, it follows that

0 ≤ 1

n

n∑
k=1

wi =
∨ni=1wi
n

≤ x

n
,

which implies that

‖ 1

n

n∑
k=1

wi‖ ≤
‖x‖
n
−→ 0.

�

An operator T between a Banach lattice E and a Banach space Y is said to be
order weakly compact if T ([−x, x]) is relatively weakly compact for every positive
element x ∈ E. Order weakly compact operators can be characterized as those
operators which fail to be invertible on any sublattice isomorphic to c0 with an
order bounded unit ball (see Corollary 3.4.5 in [28]). The preceding proposition
combined with Theorem 3.4.4 in [28] unveils that an almost BS-compact operator
is order weakly compact.

Corollary 3.11. Let E be a Banach lattice, and let Y be a Banach space. Then
every almost BS-compact operator T : E → Y is order weakly compact.

Proof. Let (wn) be an order bounded disjoint sequence of E+. It follows from
Proposition 3.10 that limn ‖ 1n

∑n
i=1wi‖ = 0. Since T is almost BS-compact, then

limn ‖Twn‖ = 0. The rest of the proof follows from Theorem 5.57 in [1].
�

4. Domination results

Let R : E −→ F be a positive operator between two Banach lattices domi-
nated by a BS-compact operator (respectively, almost BS-compact ) T. Is then
R necessarily BS-compact (respectively, almost BS-compact ) ? The answer is
negative in general. The details are provided below.

Example 4.1. There exist two operators 0 ≤ R ≤ T : L2[0, 1] −→ l∞ such that
T is BS-compact but R is not almost BS-compact.

Proof. Let (rn) denote the sequence of Rademacher functions on [0, 1]. This
means, rn(t) = Sgnsin(2nπt). Let 0 ≤ R ≤ T : L2[0, 1] −→ l∞ be the positive
operators defined in Example 3.1 of [1] by

Rf = (

∫ 1

0

f(x)r+1 (x)dx,

∫ 1

0

f(x)r+2 (x)dx, ...).

T f = (

∫ 1

0

f(x)dx,

∫ 1

0

f(x)dx,

∫ 1

0

f(x)dx, ...).
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Clearly, T is BS-compact. On the other side, referring to Example 2.7 in [5], we
infer that R is not AM-compact. In particular, from Theorem 3.4 it follows that
R is not almost BS-compact. �

4.1. Power domination by BS-compact operators. In this section, we tackle
the power problem for BS-compact operators. To state our main result, we need
the following Theorem.

Theorem 4.2. ([19], Theorem I.2) Let E1 and E2 be Banach lattices and consider
operators 0 ≤ R ≤ T : E1 −→ E2. Then, there exist a Banach lattice G, a lattice
homomorphism φ : E1 −→ G and operators 0 ≤ RG ≤ TG : G −→ E2, with
T = TGφ and R = RGφ, such that G is order continuous if and only if T is order
weakly compact.

In addition, we will need the next lemma.

Lemma 4.3. Let E be an order continuous Banach lattice, and let (xn) be a

sequence of E such that |xn|
σ(E,E′)−−−−→ 0. Then, either limn ‖xn‖ = 0, or there is a

subsequence (yn) of (xn) and a disjoint sequence (wn)n ⊂ E such that

‖yn − wn‖ −→ 0.

Proof. Let (xn) be a sequence of E such that |xn|
σ(E,E′)−−−−→ 0. Since X := [xn] is

separable subspace of E, it follows from Proposition 1.a.9 in [24] that EX is an
order ideal with a weak order unit and Therefore can be represented as a dense
order ideal of L1(Ω,Σ, µ) for some probability measure µ, such that the formal
inclusion

j : EX ↪→ L1(Ω,Σ, µ)

is continuous ( [24], Theorem 1.b.14). Since L1(µ) has the positive Schur prop-
erty, then

‖jxn‖1 −→ 0. (4.1)

According to Theorem 1.2.8 in [26], we have
(1) either ‖jxn‖1 ≥ δ‖xn‖ for some δ > 0,
(2) or there is a subsequence (yn) of (xn) and a disjoint sequence (wn)n ⊂ E such
that

‖yn − wn‖ −→ 0.

If ‖jxn‖1 ≥ δ‖xn‖, for some δ > 0. Referring to (4.1), we deduce that ‖xn‖ −→ 0,
and the proof is complete. �

Theorem 4.4. Let

E1
T1−→
R1

E2
T2−→
R2

E3
T3−→
R3

E4
T4−→
R4

E5

be operators between Banach lattices, such that 0 ≤ Ri ≤ Ti, for i = 1, 2, 3, 4. If
T2, T4 are BS-compact and T1, T3 are order weakly compact, then R4R3R2R1 is
also BS-compact.
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Proof. Since T1, T3 are order weakly compact, according to Theorem 4.2 , there
exist order continuous Banach lattice G, a lattice homomorphism
φ : E1 −→ G and operators 0 ≤ RG

1 ≤ TG1 : G −→ E2, with R1 = RG
1 φ and

T1 = TG1 φ. Furthermore, there exist order continuous Banach lattice F, a lattice
homomorphism ψ : E3 −→ F and operators 0 ≤ RF

3 ≤ T F3 : F −→ E4, with
R3 = RF

3 ψ and T3 = T F3 ψ. The proof will be developed through the following
steps.

Step 1. The positive operator ψR2R1 : E1 −→ F is AM-compact. Indeed,
by Theorem 3.4 we have that T2T

G
1 : G −→ E3 is an AM-compact operator, and

hence ψT2T1 : E1 −→ F is also AM-compact. Since F has an order continuous
norm and

0 ≤ ψR2R1 ≤ ψT2T1 : E1 −→ F,

it follows from Thorem 5.10 in [1] that ψR2R1 : E1 −→ F is AM-compact.

Step 2. Let (xn) be a bounded sequence of E1 such that limn
1
n

∑n
i=1 xi = 0.

Then, there is a subsequence (zn) of (xn) such that {|ψR2R1zn|, n ∈ N} is
Banach-Saks.

Indeed, by Proposition 2.3 in [26], there exists a subsequence (yn) such that

yn
σ(E1,E′

1)−−−−−→ 0. It follows from Theorem 5.96 in [1] that |ψR2R1yn|
σ(F,F ′)−−−−→ 0

(ψR2R1 : AM-compact). Since F is order continuous, it follows from Lemma 4.3
that limn ‖ψR2R1yn‖ = 0 or there is a subsequence (zn) of (yn) and a disjoint
sequence (wn)n such that ‖ψR2R1zn − wn‖ −→ 0. By passing to a subsequence,
we can assume that

+∞∑
n=1

‖ψR2R1zn − wn‖ < +∞.

Since {ψR2R1zn−ψR2R1y, n ∈ N} is Banach-Saks, it follows from Lemma 2.9
in [26] that {wn, n ∈ N} is also Banach-Saks. Note that for any n ∈ N and any
choice of scalars we have

|
n∑
k=1

αkwk| = |
n∑
k=1

|αk|wk| = |
n∑
k=1

αk|wk||.

Then, the basic sequence (wn) is equivalent to the sequence (|wn|), and conse-
quently from Fact 4.22 (ii) in [17] we infer that {|wn|, n ∈ N} is Banach-Saks.
Subsequently, using the fact that

+∞∑
n=1

‖|ψR2R1zn| − |wn|‖ < +∞,

it follows from Lemma 2.9 in [26] that {|ψR2R1zn|, n ∈ N} is Banach-Saks.
Step 3. The positive operator R4R3R2R1 is BS-compact. To demonstrate this,
let A be a Banach-Saks subset of E+ and let (xn) be a sequence of A. Then, there
exist z ∈ E1 and a subsequence (yn) of (xn) such that limn

1
n

∑n
i=1(yi−z) = 0. By

step 2, there exists a subsequence (zn) of (yn) such that {|ψR2R1(zn − z)|, n ∈
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N} is Banach-Saks. Since T4T
G
3 is BS-compact and |ψR2R1zn−ψR2R1z|

σ(F,F ′)−−−−→ 0,
it follows (by passing to a subsequence) that

lim
n
‖T4TG3 |ψR2R1zn − ψR2R1z|‖ = 0.

The inequality 0 ≤ |R4R3R2R1zn − R4R3R2R1z| ≤ T4T
G
3 |ψR2R1zn − ψR2R1z|

implies

lim
n
‖R4R3R2R1zn −R4R3R2R1z|‖ = 0.

Thus, R4R3R2R1(A) is a relatively compact subset of E5, and the proof of the
theorem holds. �

As a consequence, we get what follows

Corollary 4.5. Let E be a Banach lattice, and consider operators 0 ≤ R ≤ T :
E → E. If T is BS-compact, then R4 is also BS-compact. Moreover, if E has an
order continuous norm, then R2 is BS-compact.

Proof. Since T is BS-compact, it follows from Corollary 3.11 that T is order
weakly compact. Thus, it is sufficient to apply Theorem 4.4 to Ei = E,Ri = R
and Ti = T for all i. �

The following question has been left unresolved.

Problem 4.6. Let E be a Banach lattice and 0 ≤ R ≤ T : E → E with T is
BS-compact. Is R3 or R2 BS-compact?

4.2. Domination by almost BS-compact operators. In this section, new
domination results are displayed for almost BS-compact operators between Ba-
nach lattices. For this reason we need the following.

Theorem 4.7. [21] Let E and F be Banach lattices each with a quasi-interior
positive element. Let T be a positive operator T : −→ F and let A ⊂ E,B ⊂ F ′

be solid bounded sets. Suppose that whenever (an)n is disjoint in A+ and (bn)n is
disjoint in B+, then

(1) Tan
σ(F,F ′)−−−−→ 0,

(2) T ′bn
σ(F ′,F )−−−−→ 0,

(3) | < Tan, bn > | → 0.

Suppose further that R, S ∈ Lr(E,F ) satisfy |S| ≤ |R| ≤ T ∈ Lr(E,F ′′). Then,
given ε > 0 there exist central operators M1, ...,Mk ∈ Lr(E) , L1, ..., Lk ∈ Lr(F )
so that if

S0 =
k∑
i=1

LiRMi,

then

< Sa− S0a, b >≤ ε, a ∈ A, b ∈ B.

We shall also need the following lemma.
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Lemma 4.8. Let E be an order continuous Banach lattice and let x ∈ E+. If
{xn, n ∈ N} is a Banach-Saks sequence in E+, then {|xn− x|, n ∈ N} is also
Banach-Saks.

Proof. Let {xn, n ∈ N} be a Banach-Saks subset of E+. By passing to a subse-
quence, we can assume that

lim
n
‖ 1

n

n∑
i=1

xi − y‖ = 0.

From |xn − x| ≤ xn + x, we infer that 1
n

∑n
i=1 |xi − x| ≤

1
n

∑n
i=1(xi + x). Since

( 1
n

∑n
i=1(xi + x))n converges in norm, it follows from Lemma 2.2 that

{ 1

n

n∑
i=1

|xi − x|, n ∈ N},

is L-weakly compact. Arguing as in the proof of Lemma 4.9, E[xn−x] can be
represented as a dense ideal of L1(µ) for some probability measure µ such that
the formal inclusion

j : E[xn−x] ↪→ L1(µ)

is continuous. Applying the Rosenthal’l1 Theorem to the subsequence (|xn −
x|)n,there is a subsequence (zn)n of (|xn − x|)n, such that (1) either (zn) is a
weak Cauchy sequence or (2) (zn) is equivalent to the standard basis (en)n of
l1. Suppose first that (zn) is equivalent to the standard basis (en)n of l1. Since
{ 1
n

∑n
k=1 zk; n ∈ N} is an L-weakly compact subset of E, it follows from Propo-

sition 3.6.5 in [28] that { 1
n

∑n
k=1 ek; n ∈ N} is a relatively weakly compact

subset of l1. Since l1 has the Schur property, it follows that { 1
n

∑n
k=1 ek; n ∈ N}

is a relatively compact subset of l1. Therefore, en converges weakly to zero. From
Theorem 4.32 in [1], we have limn ‖en‖1 = 0 . This contradicts the fact that
‖en‖1 = 1.

Then, (zn) is weak Cauchy. According to Theorem 9.3.1 in [23], there exists

some z′′ such that zn
σ(E′′,E′)−−−−−→ z′′. On the other side, since { 1

n

∑n
k=1 zk; n ∈ N}

is L-weakly compact, it follows from Proposition 3.6.5 in [28] that there is a

subsequence (tn)n of (zn)n such that 1
n

∑n
k=1 tk

σ(E,E′)−−−−→ z ∈ E. Consequently,

z′′ = z ∈ E. Hence, tn
σ(E,E′)−−−−→ z, and thus jtn

σ(L1(µ),L∞(µ)−−−−−−−−→ jz. Since L1(µ) has

the weak Banach-Saks property, then 1
n

∑n
k=1 jtk

‖.‖1−−→ jz ∈ L1(µ). The rest of the
proof follows from Lemma 2.2. �

The main result of this section is the following.

Theorem 4.9. Let E,F be order continuous Banach lattices. If 0 ≤ R ≤ T : E
→ F with T is almost BS-compact, then R is almost BS-compact.

Proof. Let A be a Banach-Saks subset of E+ and let (xn) be a bounded sequence
in A. By Proposition 2.3 in [26], we can assume without loss of generality that
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xn
σ(E,E′)−−−−→ y, for some y ∈ E. Consider a subsequence (yn) of (xn) such that:

‖ 1

n

n∑
k=1

yk − y‖ → 0. (4.2)

Since T is almost BS-compact, by movinging to a subsequence, we can assume
that Tyn converges to Ty. Note that (by Lemma 4.8) the sequence {|yn−y|, n ∈
N} is Banach-Saks. Thus, there exists a subsequence of (yn) (which we shall
denote by (yn) again) such that

1

n

n∑
k=1

|yk − y|

is norm convergent in E. Next, let (hn) be a positive disjoint sequence in the solid
hull of {yn − y, n ∈ N}. Consider an arbitrary subsequence (wn)n of (hn)n. By
moving to a subsequence, we can state that

0 ≤ wn ≤ |yn − y|

holds for all n. In particular,

0 ≤ 1

n

n∑
k=1

wk ≤
1

n

n∑
k=1

|yk − y|,

holds for all n. Since E is order continuous, it follows from Lemma 2.2 that
{ 1
n

∑n
k=1wk, n ∈ N} is L-weakly compact.

Now, Proposition 2.3 in [26] combined with Theorem 4.34 in [1] depicts that

wn
σ(E,E′)−−−−→ 0. Therefore, 1

n

∑n
k=1wk

σ(E,E′)−−−−→ 0. Departing from the L-weak com-

pactness of { 1
n

∑n
k=1wk, n ∈ N}, Lemma 2.3 and Lemma 2.4 in [12], it follows

that 1
n

∑n
k=1wk

‖.‖−→ 0. Hence, grounded on our hypothesis, there exists a subse-

quence (wni
)i of (wn)n such that Twni

‖.‖−→ 0. Since (wn) is an arbitrary subse-

quence of (hn), Thn
‖.‖−→ 0 also holds.

Next, let x =
∑+∞

n=1
1
2n
|yn−y|. Consider that Ix (resp Jx ) is the ideal generated

by x in E (resp Tx in F ). At this level an easy argument demonstrates that
R(Ix) ⊂ Jx for every operators 0 ≤ R ≤ T : E → F.

Consider A =Sol{yn − y; n ∈ N} and B = B(Jx)′ . Let (an) and (bn) be two
normalized positive disjoint sequences in A and B respectively. Based on the

above discussion, we have Tan
‖.‖−→ 0, in particular Tan

σ(E,E′)−−−−→ 0. On the other
side, since F is order continuous, it follows from Corollary 2.4.3 in [28] that

bn
σ(E′,E)−−−−→ 0. Thus, since T is bounded, we have

Tbn
σ(E′,E)−−−−→ 0.

Furthermore, since | < Tan, bn > | ≤ ‖Tan‖‖bn‖ and ‖Tan‖ → 0, then

| < Tan, bn > | −→ 0.
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Note that all hypotheses of Theorem 4.7 are verified. Therefore, for every ε > 0
there exist central operators M1, ...,Mk ∈ L(Ix), L1, ..., Lk ∈ L(Jx) such that

| < Ra−Rεa, b > | ≤
ε

2

for every a ∈ A and b ∈ B, where Rε =
∑k

i=1 LiTMi. In particular, this implies
that

‖R(yn − y)−Rε(yn − y)‖ < ε.

To complete the proof, it is enough to establish that limn ‖Rε(yn − y)‖ = 0.
Note that

|Rε(yn − y)| = |
k∑
i=1

LiTMi(yn − y)|

≤
k∑
i=1

|LiTMi(yn − y)|

≤
k∑
i=1

|Li|T |Mi|(|yn − y|).

Since T is Almost BS-compact, it follows from Lemma 4.8 (by moving to a sub-

sequence) that
∑k

i=1 |Li|T |Mi|(|yn − y|) converges in norm to some f ∈ F. Thus,
by Lemma 2.2, {|Rε(yn − y)|, n ∈ N} is L-weakly compact. On the other side,

since yn − y
σ(E,E′)−−−−→ 0 and T is AM-compact (see Theorem 3.4), it follows from

Theorem 5.96 in [1] that |Rε(yn−y)| σ(F,F
′)−−−−→ 0. Lemma 2.3 and Lemma 2.4 in [12]

are conducive to the conclusion that |Rε(yn − y)| ‖.‖−→ 0. Let N0 ∈ N such that

‖Rε(yn − y)‖ < ε

2
,

holds for all n ≥ N0. Finally, for n ≥ N0 we have

‖R(yn − y)‖ = ‖R(yn − y)−Rε(yn − y) +Rε(yn − y)‖
≤ ‖R(yn − y)−Rε(yn − y)‖+ ‖Rε(yn − y)‖

≤ ε

2
+
ε

2
= ε.

That is, limn ‖Ryn −Rx‖ = 0, and the proof of the theorem is complete. �

As a consequence, we get the following.

Corollary 4.10. Let E be a Banach lattice, and consider operators 0 ≤ R ≤ T :
E → E. If T is almost BS-compact, then R3 is also almost BS-compact.

Proof. Since T is BS-compact, it follows from Corollary 3.11 that T is order
weakly compact. According to Theorem 4.2 , there exist an order continuous
Banach lattice G, a lattice homomorphism φ : E −→ G and operators 0 ≤ RG ≤
TG : G −→ E, with R = RGφ and T = TGφ. Note that

0 ≤ φRRG ≤ φTTG : G→ G.
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Since G is order continuous and φTTG is almost BS-compact, it follows from
Theorem 4.9 that φRRG is almost BS-compact and consequently R3 is almost
BS-compact. �

The following question remains unanswered:

Problem 4.11. Let E be a Banach lattice and 0 ≤ R ≤ T : E → E with T is
almost BS-compact. Is R2 almost BS-compact?
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[11] Beauzamy, B.: Propriété de BanachSaks, ibid. 66, 227− 235 (1980)
[12] Bouras, K., Lhaimer, D., Moussa, M.: On the class of almost L-weakly and almost M-weakly

compact operators. Positivity 22, 1433− 1443 (2018)
[13] Brunel, A., Sucheston, L.: On J-convexity and some ergodic super-properties of Banach

spaces, Proc. Amer. Math. Soc. 204, 79− 90 (1975)
[14] Diestel, J.: Sequences and series in Banach spaces, Springer-Verlag, New York, 1984
[15] Dodds, P,G., Fremlin, D,H.: Compact operators in Banach lattice, Isr. J. Math. 34, 287−

320 (1979)
[16] Erdos, P., Magidor, M.: A note on regular methods of summability and the Banach-Saks

property, Proc. Amer. Math. Soc. 59, 232− 234 (1976)
[17] Fabian, M., Habala, P., HAjek, P., Montesinos, V., Zizler, V.: Banach space theory: basis

for linear and nonlinear analysis, Springer-Verlag, New York. (2011)
[18] Flores, J., Hernandez, F, L., Tradacete, P.: Powers of operators dominated by strictly

singular operators, Proc. Q. J. Math. Soc. 59, 321− 334 (2008)
[19] Ghoussoub, N., Johnson, W. B.: Factoring operators through Banach lattices not contain-

ing C(0, 1). Math. Z. 194, 153− 171 (1987)
[20] Jarosz, K.: Function Spaces: Proceedings of the Third Conference on Function Spaces,

Southern Illinois University at Edwardsville, May. 19− 23 (1998)
[21] Kalton, N., Saab, P.: Ideal properties of regular operators between Banach lattices, Illinois

J. Math. 29, 382− 400 (1985)
[22] G, Groenewegen.: On spaces of Banach lattice valued functions and measures, PhD Thesis,

Nijmegen University, 1982.
[23] Larsen, R.: Functional analysis: An introduction, Marcel Dekker, Inc., New York, 1973.
[24] Lindenstrauss, J., Tzafriri, L.: Classical Banach space II. Function Spaces, Springer, New

york. (1979)



14 MOHAMED HAJJI
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