References
1. Nicola, M. et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery vol. 78 185–193 (2020).
2. Poland, G. A., Ovsyannikova, I. G. & Kennedy, R. B. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates.The Lancet vol. 396 1595–1606 (2020).
3. Vabret, N. et al. Immunology of COVID-19: Current State of the Science. Immunity vol. 52 910–941 (2020).
4. Silva-Cayetano, A. et al. A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice. Med (2020) doi:10.1016/j.medj.2020.12.006.
5. Tillett, R. L. et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis. 21 , 52–58 (2020).
6. Gudbjartsson, D. F. et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 383 , 1724–1734 (2020).
7. Wajnberg, A. et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science (80-. ).370 , eabd7728 (2020).
8. Seow, J. et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 5 , 1598–1607 (2020).
9. Prévost, J. et al. Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Reports Med. 1 , 100126 (2020).
10. Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584 , 437–442 (2020).
11. Solbach, W. et al. Antibody Profiling of COVID-19 Patients in an Urban Low-Incidence Region in Northern Germany. Front. Public Heal. 8 , 575 (2020).
12. Long, Q.-X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. (2020) doi:10.1038/s41591-020-0965-6.
13. Woloshin, S., Patel, N. & Kesselheim, A. S. False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications. N. Engl. J. Med. 383 , e38 (2020).
14. Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5 , (2020).
15. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.Cell 181 , 1489-1501.e15 (2020).
16. Babel, N. et al. Immune monitoring facilitates the clinical decision in multifocal COVID‐19 of a pancreas‐kidney transplant patient.Am. J. Transplant. 20 , 3210–3215 (2020).
17. Thieme, C. J. et al. Robust T Cell Response Toward Spike, Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated with Recovery in Critical COVID-19 Patients. Cell Reports Med.1 , 100092 (2020).
18. Anft, M. et al. COVID-19-induced ARDS is associated with decreased frequency of activated memory/effector T cells expressing tissue migration molecule CD11a++. Mol. Ther. 0 , (2020).
19. Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell (2020) doi:10.1016/j.cell.2020.05.025.
20. Seydoux, E. et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 53 , 98-105.e5 (2020).
21. Wec, A. Z. et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science (80-. ).369 , 731–736 (2020).
22. Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability.Science (80-. ). 369 , 643–650 (2020).
23. Juno, J. A. et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med.26 , 1428–1434 (2020).
24. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584 , 115–119 (2020).
25. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells.Science (80-. ). 298 , 2199–2202 (2002).
26. Seifert, M. & Küppers, R. Human memory B cells. Leukemiavol. 30 2283–2292 (2016).
27. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature407 , 636–642 (2000).
28. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 10 , 871–875 (2004).
29. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (80-. ). eabf4063 (2021) doi:10.1126/science.abf4063.
30. Hartley, G. E. et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci. Immunol. 5 , eabf8891 (2020).
31. Townsend, S. E., Goodnow, C. C. & Cornall, R. J. Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 249 , 137–146 (2001).
32. Boonyaratanakornkit, J. & Taylor, J. J. Techniques to Study Antigen-Specific B Cell Responses. Frontiers in immunology vol. 10 1694 (2019).
33. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 47 , 1584–1797 (2017).
34. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Primary Epstein-Barr virus infection. J. Clin. Virol. 102 , 84–92 (2018).
35. Gattinger, P. et al. Antibodies in serum of convalescent patients following mild COVID-19 do not always prevent virus receptor binding. Allergy (2020) doi:10.1111/all.14523.
36. Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184 , 169-183.e17 (2020).
37. Zhang, Y. et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cellular and Molecular Immunologyvol. 17 768–770 (2020).
38. Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science (80-. ).369 , 818–823 (2020).