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 Abstract
 
Νovel SARS coronavirus 2 (SARS-CoV-2) of the family Coronaviridae starting in China and 
spreading around the world is an enveloped, positive-sense, single-stranded RNA of the genus 
betacoronavirus encoding the SARS-COV-2 (2019-NCOV, Coronavirus Disease 2019. Remdesivir 
drug, or GS-5734 lead compound, first described in 2016 as a potential anti-viral agent for Ebola 
diseade and has also being researched as a potential therapeutic agent against the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus that causes coronavirus disease 
2019 (COVID-19). Computer-aided drug design (CADD), Structure and Ligand based Drug 
Repositioning strategies based on parallel docking methodologies have been widely used for both 
modern drug development and drug repurposing to find effective treatments against this disease. 
Quantum mechanics, molecular mechanics, molecular dynamics (MD), and combinations have 
shown superior performance to other drug design approaches providing an unprecedented 
opportunity in the rational drug development fields and for the developing of innovative drug 
repositioning methods. We tested 18 phytochemical small molecule libraries and predicted their 
synergies in COVID-19 (2019- NCOV), to devise therapeutic strategies, repurpose existing ones in 
order to counteract highly pathogenic SARS-CoV-2 infection. We anticipate that our geometry 
hashing driven quantum deep learing similarity approaches which is based on separated pairs of short
consecutive matching fragments, can be used for the development of anticoronaviral drug 
combinations in large scale HTS screenings, and to maximize the safety and efficacy of the 
Remdesivir, Colchicine and Ursolic acid drugs already known to induce synergy with potential 
therapeutic value or drug repositioning to COVID-19 patients.
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Introduction
In the absence of effective vaccines and drugs to the prevention, treatment and rehabilitation for 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectious, many potential therapies 
including, chemo-immunomodulators, antiviral therapies, supportive interventions, convalescent 
plasma transfusion, and traditional Chinese medicine (TCM), have been used and have shown 
promising clinical outcomes. (1) The TCM has been proved as an effective treatment strategy to 
prevent and control the epidemic, especially in preventing mild symptoms from turning into severe 
ones. Ancient Indian medicinal scriptures including Atherveda, Phyllanthus emblica, Rig-Veda, 
Phyllanthus emblica, Vitis vinifera, and (1) Charka Sanhita have been widely used since ancient times
are and are well known for boosting the immune system. They are a remarkable natural source of (1,2)
high value alkaloids, phenols, flavonoids, coumarines, chalcones, lignans, alkanes, polyketides, 
alkenes, simple aromatics, Emblicanin B, alkynes, Vitilagin, peptides, Chebulanin, terpenes, 
Punigluconin and steroids for the treatment of various human aliments and for the increase of the 
human immunity (1,2) and longevity. Prediction of protein–protein interactions and the structures of 
the resulting complexes is a key task in Computational Structural Biology. Although experimentally 
determined structures of complexes are rapidly accumulating, they are far from being able to cover the
complete interactome. In the current era of computer-aided drug discovery, enormous medicinal drug 
likeness properties of ancient plants allows the pharmacists and researchers to exclusively use them 
for the In-Silico discovery of drug-like natural molecules. Ursolic acid (3-β-3-hydroxy-urs-12-ene-28-



oic-acid) and oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) are pentacyclic triterpenoid 
compounds and have been isolated from diverse plants, such as Chamaedora tepejilote (1), Ledum 
groenlandicum (2), Lantana hispida (3), and Uncaria rhynchophylla (4), with a widespread occurrence
throughout the plant kingdom (1,2). The problem of recognising an image has been extensively
studied in the field of computer vision, pattern recognition, etc. Their antibacterial (1,2,4), 
antiparasitic (2,3,4), antiviral (1,3,4), antitumor, antioxidant, anti-inflammatory (4), and 
hepatoprotective therapeutic properties and biological activities have been reported and in-vitro 
evaluated in human macrophage-models at inhibitory concentrations. Bromodomain protein 4 (BRD4)
is a member of the extraterminal (BET) family proteins that binds to acetylated histones through 
elongation factor b (P-TEFb). The bromodomains act as a reader in cell growth and a writer in cell 
cycle progression of histone acetylation that plays important roles in different biological processes 
including memory formation, replication, mitochondrial oxidative phosphorylation, transcription, 
DNA repair and and DNA damage response (5). In the proposed indexing technique, since each 
feature point is inserted exactly once, both memory and searching cost has been reduced significantly 
Molecular structure can be determined in heterodox interpretations by solving the time-independent 
(11) Schrödinger equation: QM methods, (12) vertex prizes and edge costs including ab initio (13) 
Density Filed Theories (DFT) and semi-empirical in place of the quantum processor and (14) energy 
among other observables, (15) under simulated (16) error as well as (17) to reposition drugs (18) 
about bonding may represent the (19) similarities and dissimilarities (20) between drugs and (21) 
repurposed viral (22) proteins respectively. (23) However, the Schrödinger equation (24) cannot 
actually be solved for any (25) but a one- data-driven (26) electron system methods (the hydrogen 
atom), (27) and approximations (28) need to be made. (29)In this research article (30) we present a 
drug- repositioning strategy and a Quantum (31,32,33,34,35,36,37) Deep Learning SARS-CoV-2 
main protease, Mpro, DPP4 ADABP, ADCP2, CD26, DPPIV, TP103, FURIN, FUR, PACE, PCSK3, 
FURIN-ADAMTS1-ROR-GAMMA-SRRM2-RORγ- NF-κB/RelA-STAT3A-RORγ- NF-κB/RelA-
STAT3B, Nsp15, TCEB2-->ASB8->>TCEB1, ACE2, ACEH angiotensin I converting enzyme 2, 
Remdesivir, Colchicine and Ursolic acid drugs network-based (13,14,15,18-38) prioritization method 
based on a (22,24,25,26,28,27) heterogeneous network (28,29,30,31,32,33,34,35,36) integrating 
similarity to (30,31,32,37,38,39,40,41) combine drugs and herbals that can be used against devastating
diseases such as COVID-19 Structural basis of receptor recognition by SARS-CoV-2. Receptor 
Recognition by the Novel Coronavirus from Wuhan Anti-HCV, nucleotide inhibitors, repurposing 
against COVID-19 Virtual screening of integrase inhibitors by large scale binding free energy 
calculations: the SAMPL4 challenge Quantum Chemical Approaches in Structure-Based Virtual 
Screening and Lead Optimization (30-36). (36,37,38) For indexing, Heterodimer binding scaffolds 
recognition via the analysis of kinetically hot residues classical geometric hashing maps feature points
of an object to hash table with respect to a bases pair points which are selected from the object itself. 
In order to handle all possible rotations without affecting the performance of the recognition algorithm
and without modifying the existing index structures. in this virtuall screening experiment, our 
technique considers all possible bases pair (effectively nC2, where n is the total number of feature 
points in the object) and maps object feature points in the hash table with respect to all the bases pairs.
(38-41) As a result, direct evaluation of thermal fluctuations in Collected motions using a single- 
parameter harmonic potential increases both memory and searching cost. In the proposed technique, in
order to handle all possible rotations in an object, each image object is aligned using principal 
components of the feature points obtained using the PCA. (32,37-41) So the technique effectively 
removes the use of bases pairs extracts the features from a query and preprocessed similar to indexing 
stage and accesses the previously con- structed hash table for recognition. thus reduces the time 
complexity by a factor of nC2. Overhead in the proposed technique is the use of PCA which is 
negligible. (12-42,43,44,45, 46,47,48,49,50) This deep learning drug combination technology by 
ιμπλεμεντινγ a Geometric Hashing type procedure to predict new (17-43) therapeutic indications for 
drugs and novel treatments for diseases (18-44,51,52,53,54) has the potential to infer novel combined 
(2,3,5-17,18,22-45) treatments for COVID-19 diseases (19,21,25,28,30-46) as an evidence-based 
(19,32,33,34,37, 45,46,47,48,49) drug repurposing AI-COVID-19 tool. (50,51) Structure-based drug 
design, virtual screening and high-throughput screening employed in this project to identify antiviral 
leads targeting COVID-19 structural conservations of druggable hot spots in protein-protein 
interfaces. (52,53,54) Anti-SARS coronavirus 3C-like protease effects of this drug combination of the 
Remdesivir, Colchicine aand plant-derived Ursolic acid compounds and analogues as multi-inhibitors 
of viral polymerases. (55,56,57,58) Role of the drug combination of this drug combination of the 
Remdesivir and Colchicine small molecules with the lopinavir/ritonavir was investigated in the 
treatment of SARS associated to the initial virological and clinical findings from molecular docking 
study characterization and inhibition of the main protease of severe acute respiratory syndrome 
coronaviru Coronavirus COVID-19 (formerly known as Wuhan coronavirus and 2019-nCoV).
(59,60,61,62,63,64) In this in-silico drug repurposing and binding free energy comparative analysis 



for SARS-CoV-2 Main Proteinase and Spike Proteins, old drugs such as Ursolic acid and Colchicine 
were categorized as lead compounds for a new disease of SARS coronavirus main proteinase targeting
severe acute respiratory syndrome human coronavirus. In this project we developed drug repurposing 
approaches against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking 
and molecular dynamics with main protease as the target. (66,67,68, 69,70) via Interaction-Energy-
Based Learning and Improved Method of Structure-Based Virtual Screening by using a novel multi-
modal drug repurposing approach for identification of potent Geometric Hashing co-factors as a 
general and efficient model-based Enhanced Geometric Hashing recognition drug repurposing 
scheme. 

Materials and Methods
Sequences retrieval and alignment
All structural alignments were performed using the Dali server (http://ekhidna2.biocenter. 
helsinki.fi/dali/) (Holm, 2020) using clinical and pre-clinical tests (in vitro, in vivo, and in silico) to
the largest amount of chemical data in this in silico drug repurposing article. The nCOVSNVs with 
ID NC_045512 were identified and cross-matched with BLASTp for the COVID-19 virus (SARS-
CoV-2) receptor binding domain (RBD) and subdomain-1 (319th to 591st aa) of the spike 
glycoprotein (bat coronavirus RaTG13) with about 74% sequence identity in the single receptor-
binding domain for the up configuration and the S1 protein partial (SARS coronavirus GD322) 
with 100% sequence identity. Τotal of 1652 SARS-CoV-2 S protein complete sequence alignments
of COVID-19 RBD subdomain-1 (319th to 591st) amino acid available at the (2,3,7-39) NCBI 
Virus portal were retrieved. We then sought to rank the COVID-19 virus RBD subdomain-1 (319th
to 591st) amino acid sequences based on the predicted probability that the RNA folds into the 
MEA structure with 73.96% sequence identity and not other structures (8,9,12-30) according to the
patient’s corresponding sample information, dates of sample collections, and geographical 
locations among others which have shown strong clinical evidence of the presence of SARS-CoV 
by immunohistochemistry, high-resolution oligonucleotide array, electron microscopy, and real-
time reverse transcription-qRT-PCR.

Preparation of the protein structures
Receptor models for the SARS-CoV-2 Mpro were prepared by using the Structure Preparation module
of MOE to correct PDB inconsistencies starting from both the 6LU7 crystal structure and the 
QHD43415 I-Tasser model. This choice was made to take binding site flexibility into account to 
assign the protonation state at pH = 7.0 through an ensemble docking approach (33,34,35,63) but 
without the need to perform time-consuming molecular dynamic (MD) simulations to generate 
reliable conformational ensembles. For this purpose, (1,2,4-6,23) we initially selected the three-
dimensional structures of the non-structural proteins of the Nsp3, Nsp5 (PLpro domain), (1-5,6,7-48) 
Nsp12 (RdRp), the structural Spike proteins, the Nsp15 (endoribonuclease), and the nucleocapsid 
protein (N protein) between the SARS-CoV-2 Mpro structure and the SARS-CoV Mpro, PDB entry 
6LU7 as the best-characterized drug targets among coronaviruses. (2,5,6,7,9-27) For the N protein, we
clustered 31 conformations with (11,13,14,29,32) Glu174 present in an opened residue conformation 
out of a total of 40 ionization states (16,19,21-46,47,48) present in the globular cluster of five protease
helices, which is involved through a salt-bridge interaction in modulating the homodimerization of the
NMR-derived structure of the (PDB code 6YI3 49) Mpro, mainly between the binding cavities of the 
Arg4 of one protomer and the Glu290 domains of other to select a short linear peptide subset 
representative (22,24,26,42,43,46,48) within the protease flexibility. (17,18,21,43,48) The aliphatic 
carbon atoms from the the closed conformation of the Glu174/Glu166 side chain were prepared as a 
part of the phosphate binding site and then minimized by keeping the ligand constrained and applying 
backbone restraints as lead in the binding site to steric clashes with potential inhibitors by removing 
all water molecules using PyMOL software. All minimizations were performed up to a gradient of 0.1
kcal mol–1 Å–2 in order to precisely define the binding site. The receptor and the ligand were then 
saved for future use.

Collecting gold-standard pairwise drug combinations
In this study, we focused on pairwise drug combinations on clinically and FDA-approved 
investigational drugs by assembling the publicly available clinical data sources from the updated 
human interactome and the multiple commonly used small molecule databases. (23,24) Each 
approved drug in combinations was required to have the experimentally screening system (25,26) and 
validated COVID-19 protein target information based on GeneCards and on high-quality PPIs: each 
EC50, IC50, Ki, or Kd ≤ 10 µM. (27,28) Compound name, gene expression data, metabolic 
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associations, evolutionary analysis, commercial name or generic name of each drug and protein-drug 
datasets were included and (29,30) standardized by MeSH and UMLS vocabularies (22,28-47) and 
further transferred to DrugBank ID (30-32) from the DrugBank database (v4.3)40. (21) Chembench 
High Throughput Screening (qHTS) were applied to identify inhibitors and antagonists of the SARS-
CoV Mpro, PDB entry 6LU7signaling pathway by measuring the binding affinities and total docking 
energies controlled by the Remdesivir ligand as the cofactor into these binding domains (30-38, 40) 
Low frequency DockThor molecular dynamics simulations also applied and duplicated drug pairs 
were removed. (40, 42, 44)The Gaussian network cooperative model iGNM 2.0 database was applied 
for biomolecular structural dynamicsto predict the location of hinge sites and free energy localization 
spots on 681 unique inter-residue, inter-domain cross-correlations pairwise drug combinations as 
exctracted from literature-derived low-throughput experiments (46,48) by connecting 362 drugs that 
are retained. We also compiled clinically reported adverse (30,32,37-47,48) drug–drug interactions 
(DDIs) data from the (40,42-48) the Therapeutic Target Database (TTD, v4.3.02)41, the PharmGKB 
database (December 30, 2015) and the FDA approved DrugBank databases using reported binding 
affinity data such as the dissociation constant (Kd), inhibition constant/potency (Ki), median 
inhibitory concentration (IC50) ≤ 10 µM or median effective concentration (EC50). Drug–Protein 
target interactions, (42-48) Chemical similarity analysis and (32,35,36-48) Collecting adverse drug–
drug interactions of (54,58) FDA approved drug pairs were acquired from the publicly available 
DrugBank database (v4.3).

Multi-scale network visualization, analysis and inference based on the gene-drug networks.
(46,47,57) A networkof a large group of viruses using a denormalized tree structure is constructed by 
entering ORF IDs, GI numbers, and KEGG pathway IDs associated with a number of human 
respiratory infections combined to the databases of the SARS patients from Hong Kong (n = 1755), 
Beijing (n = 917) and Taiwan (n = 664) for an arbitrary number of genes, and using data obtained by 
one or any combination of methods of viral therapeutics and biointerventions (48,57). Nodes based on
an integrated dataset with 3,336 SARS patients from Hong Kong, Beijing and Taiwan as 
corresponding to the selected SARS- CoV-2 main protease, Mpro, DPP4 ADABP, ADCP2, CD26, 
DPPIV, TP103, FURIN FUR, PACE, PCSK3,FURIN-ADAMTS1-ROR-GAMMA- SRRM2-RORγ- 
NF-κB/RelA-STAT3A- RORγ- NF-κB/RelA-STAT3B, Nsp15, genes using appropriate software 
functions were expanded into an increasingly complex set of interactions to discover effective 
therapeutic agents. Such multi-scale hypergeometric test-based algorithm VisANT visualization of this 
SARS- CoV-2 schema was used to classify the groups of the TP103, FURIN FUR, PACE,PCSK3, 
FURIN-ADAMTS1-ROR-GAMMA-SRRM2-RORγ- NF-κB/RelA-STAT3A-RORγ- NF-κB/RelA-
STAT3B, Nsp15, TCEB2-->ASB8->>TCEB1 selected genes as biological network modules to allow 
quick identification of the shared functions of the given gene set thereby reducing the size of this 
network to a manageable level, and greatly facilitating the analysis of gene-to-gene, drug-to-drug and 
gene-to-drug relationships (47,48,49).

Gene Ontology (GO) similarity analysis and Clinical similarity of drug pair analysis
The Gene Ontology (GO) annotation for all the drug-gene targets of the SARS- CoV-2 main protease,
Mpro, DPP4 ADABP, ADCP2, CD26, DPPIV, TP103, FURIN FUR, PACE, PCSK3,FURIN-
ADAMTS1-ROR-GAMMA- SRRM2-RORγ- NF-κB/RelA-STAT3A- RORγ- NF-κB/RelA-
STAT3B, Nsp15, TCEB2-->ASB8->>TCEB1 coding genes was downloaded from the website: http://
www.geneontology.org/. We used three types of the experimentally validated or (4,5,7-22,48) 
literature-derived evidences (32,33,36-48) biological processes (BP), (31,32-48) molecular function 
(MF), (37,39,4,42-45) and cellular component (CC), (37-48) excluding annotations inferred (36-
47,48) computationally. The semantic comparison of GO annotations offers quantitative (32,
48) ways to compute similarities between (22,27,45) genes and drug-gene (22,48) combination 
theapy products. The overall GO similarity of the drug target-SARS-CoV-2 main protease, Mpro, 
DPP4 ADABP, ADCP2, CD26, DPPIV, TP103, FURIN FUR, PACE,PCSK3, FURIN-ADAMTS1-
ROR-GAMMA-SRRM2-RORγ- NF-κB/RelA-STAT3A-RORγ- NF-κB/RelA-STAT3B, Nsp15, 
TCEB2-->ASB8->>TCEB1 coding genes binding to the Remdesivir, Colchicine and Ursolic acid 
drugs was determined by Eq. (x˙=f(x,t,η),x(t0)=x0(η) D={(tk,y~k)}k=1nt y~ik=yi(tk)
+εik,εik∼N0,σi2(y~ik−yi(tk))22σi2, p(θ D)=p(D θ)p(θ)p(D) p(D θ)1βlp(θ) σ10 σ20, averaging 
all pairs of protein target-SARS-CoV-2 main protease, Mpro, DPP4, ADABP, ADCP2, CD26, 
DPPIV, TP103, FURIN FUR, PACE, PCSK3, FURIN-ADAMTS1-ROR-GAMMA-SRRM2-
RORγ- NF-κB/RelA-STAT3A-RORγ- FURIN-LRP1-MMP17-MMP2-MMP25-NF-κB/RelA-
STAT3B, Nsp15, TCEB2-->ASB8->>TCEB1 coding genesa and b with ∈ and  ∈ ⟨GO⟩ 
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=1pairs∑{p(D θ)=∏i=1ny∏k=1nt1 σi2πexp},GO(,p(θ D)=p(D θ)p(θ)p(D) p(D θ)1βlp(θ) σ10 
σ20)(6).

Preparation of the datasets with known e-Drug3D drugs
The dataset containing the (5,7,9) FDA-approved drugs and active metabolites was constructed from 
the e-Drug3D commercial small molecule and fragments of 1305 different FDA-approved drugs that 
currently contains 1519 annotated 3D structures of molecular weight <2000 that are represented by a 
single conformation dataset, (10,12,14) a dataset updated annually and freely available for the 
scientific community at https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php (13,15,48). In this In-
Silico effort we prepared mol2 files of the essential dataset of the chemical structures from the two 
supplementary e-Drug3D collections which were carefully constructed and have been shown similar 
inhibition in infectious models and resulting from (i) the generation of multiple conformers of high-
quality and curated structures of FDA-approved drugs with molecular weight less than 2000 for the: 
{(5‐(1lambda4,3lambda4,7lambda4‐purin‐6‐ylsulfanyl)‐1‐methyl‐4H‐1lambda5‐imidazol‐4‐ 
ylidene)(oxo)imino}‐lambda1‐oxidanylidene-heptahydrogen ring systems and (ii) the calculation of
the most probable ionic and tautomeric states at pH 7.4. Smaller drugs (backbone with less than 20 
heavy atoms) were also prepared in the .pdb, .pdbqt and .mol2 format files (27-42,46) present in the e-
Drug3D dataset. (28,30-48) The ensemble of 3D molecule conformations (31,32,45,48) of the larger 
drugs from e-Drug3D were provided on a separated drug library dataset.

Drugs under clinical trials (COVID-19 repurposing dataset)
Our approach was focused on identifying a cluster of (1-8,13) similar chemotypes followed by parallel 
docking grid generation using the advanced to the next MM-PBSA-WSAS, KNIME-HTS-HVS filter, and 
chemical structure preparation wizard as provided by the BiogenetoligandorolTM cluster of algorithms 
that had the potential to target the (2-8,29) FURIN-ADAMTS1-ROR-GAMMA-SARS-COV-2 conserved 
domains and fit the geometric constraints without any restraints or constraints when filling in the open 

valence of the SARS-COV-2-ACE2-RORγ-BRD4-FURIN (30,41) binding pocket residues. These were 
then (6-48) converted into substructure searches of one copy of SARS-CoV-2 main protease (7-45) which 
were used to mine commercially available (8-42) compounds and covalently bonded SARS-COV-2 
inhibitors using the (9,26,27,32) eMolecules database. The dataset of the selected hit drugs followed the 
force field parameters as applied to the partial atomic charges of the selectred ligands which were derived 
using the RESP and collected from published articles (7,38) and approved drugs listed on the (2-39) 
DrugBank database in the "Clinical Trial Summary by Drug" section to fit the HF/6-31G* electrostatic 
potentials generated using the Gaussian 16 software package. (6,18,19,21) We intended to generate these 
from two different branches to model the viral protein using the isotropic position scaling algorithm. 
(16,28) One branch of the selected hit elements was refered to as the “Remdesivir Literature 
Substructures” branch, (8,11,37) which was based on the Remdesivir, Colchicine and Ursolic acid 
substructures using the Antechamber module as extracted (15,26,51) from published bromodomain 
inhibitors.

Structure-Based Pharmacophore, Docking, Machine Learning (QSAR) Methods.
Molecular docking, quantum mechanical LigandorolTM-inspired physarum-prize-collecting Neural 
Matrix Factorizations (7,12,13) and drug repositioning scoring and constrained analysis using the 
SHAKE algorithm were implemented (13-14) to a collection of the (14,15,24) ZINC databases. 
(12,19,21) Protein-molecule complexes, followed by structural relaxation (13-22) for the cocrystal 
ligand of SARS-CoV-2 main protease, N3 were generated through (17,18,25) flexible-ligand:rigid-
receptor (19) The molecular (4) docking in this local energy minimization of the equations of motion 
was conducted at a time step of 1 fs to optimize (15) protein-molecule (22,24,32) interactions for the 
relaxation phase and 2 fs capping (24-27) for the N- and C-terminal of each (26) fragment. i-
GEMDOCK (26-27) software deployed at 298 K, 1 bar for 10 ns for the equilibrium and sampling 
phases through cycles in amino-acids 15-23+ within 4 Å to calculate the full electrostatic energy of 
any (27,28) docked molecule. In addition, following our (37,38) static analysis, we conducted some 
(33,34,39) preliminary molecular dynamics studies (39,40,41) on a potential “latch” for the Down 
state protomer. Ligands were prepared using force field OPLS3e and possible states were generated 
from pH 7.0±2.0. Docking scores are reported in kcal/mol, the more negative the number, the better 
binding. The surface glycoprotein (Wuhan seafood market pneumonia virus) (Sequence ID: 
YP_009724390.1) structure was modeled using ModBase (9) which utilized Modeller (10) for the 
structural modeling. The sequence (NCBI Accession: YP_009724390) was uploaded to the ModBase
interface and was run with the template being SARS spike protein receptor binding domain (PDB: 
6XS6 SARS-CoV-2 Spike SARS-COV-2 Main Protease With Unliganded Active Site (2019-NCOV,



Coronavirus Disease 2019,variant, minus RBD). (38,42,43) Explicit solvent molecular dynamics 
(MD) (28,39,42) in both the minimization and MD simulation stages of novel coronavirus spike 
protein (42-43) were performed (44,45,) using the NAMD2 program (32,45,51). We used the 
CHARMM-Gui (46) with the CHARMM36m force field (47-48) along with TIP3P water molecules 
to explicitly (30-39,44) solvate the proteins of a unit cell in a macroscopic lattice and add any 
(32,43,55) missing residues of repeating images from the experimental structure atom files selected 
from the sampled snapshots. (45) Simulations were carried out (35,45,55) maintaining the number of 
simulated particles, (27,48,56) pressure and temperature (the NPT ensemble) (11,12,41) constant 
with the Langevin piston method (23,39,57) specifically used to maintain a constant pressure of 
1atm. (12,42) We employed periodic (18,44,50) docking boundary conditions to enrich repurposing 
drug candidates (20,43,49) using a more accurate and more efficient method, the Biogeneto-
ligandorolTMQMM-PBSA-WSAS pipeline for a water box simulation (43,49,50) volume as well as 
the particle nanomesh (24,45,46) Ewald (PME) method with a 20 Å cutoff distances (24,46,49) 
between the simulated SARS-COV-2 protein (16,47,48,54) and water box edge since the most 
chemical ligands and herbals comprising antiviral and antibacterial activities are large and consist of 
many rotatable bonds. The integration time entropy step was 2 femtoseconds using a method coined 
WSAS (weighted solvent accessible surface area) with our protein simulations (17,48,55) as 
conducted under physiological conditions (37 C, pH of 7.4, (56,60) physiological ionic strength) 
based on the MM-PBSA-WSAS binding free energies. To emphasize the (8,9,57,60) computational 
efficiency of the method (9,10-46) we would like to mention that the average computing time 
(14,15,58) for one solution was <10 s on a single GPU processor by using solvent assessible surface 
area, 0.054. (47,56) A significant variability in the solutions can be observed. (27,37,38,39). The 
docking calculation (21,23,33) for estimating the nonpolar solvation energy was performed on the 
prepared dataset of 195 SARS-COV-2 receptors and FDA ligands by using the Biogeneto-
ligandorolTM Cluster of docking softwares and workflows based on default parameters.

Filtering, refinement and Hash Table Generation
In this research project the refined binding poses were computed based on local SARS-CoV-2 RBD 
structural alignment in the vicinity of the template binding site, producing potential complexes that 
are physically possible with acceptable steric clashes among SARS-CoV-2, SARS-CoV and RaTG13 
in hACE2 in a clustered pharmacophoric model mapped into the location pl of hash table by placing 
the midpoint of the co-ordinate system at the center of the hash table as follows pl = f l +size(H)(1) 
where size(H) is the number of bins in the hash table from different strains complexed with ACE2 
from different hosts. (30,64) To filter out the undesired results, we test for clashes using a distance 
transform grid, similar to the one applied after mapping, all feature points are inserted into hash table 
as H(pl) = H(pl)∪(Mid,D) where Mid and D are the model identity and the descriptor vector of the 
feature point respectively. (24,31,65) The same process is repeated for each model in the database. B 
If the distance is above a predefined penetration threshold (5 Å), the result is rejected. Searching In 
contrast to classical geometric hashing, the response time in the enhanced geometric hashing is much 
faster because it needs to compare with a smaller number of feature points. (33,64) For a query Q, 
Algorithm 2 gets the top k best matches from the hash table in a two step process, filtering and the 
filtering step, the feature points which are di query’s feature points are filtered out while at re the top 
k matches are found based on the votin1). (53,65) In the filtering ture points of the model which are 
dissimilar feature points were filtered out based on their de D geometric complementarity score is 
calculated It can be noted that the feature points of images of the same model may be missed du 
present in the images favouring shape complementarity and penalizes the remaining steric clashes. In 
order to improve the performance, it considers the feature points not mapped bin but also from its 
nearest bins of si. Let {f1, f2, · · ·, fn} be the n feature points For a feature point, fi, let q be the 
mapped ind table H. As discussed above, it is considered Kof q in H. Let z be such a neighboring bin,
K2, q+K2.(57,66) Note that there may be some fe different models from the database lying in the bc 
be a feature point of a model lying in z. Eucl. between q and c, ∀c ∈ H(z) and z ∈q − K2 During 
indexing, the features f1, f 2, .., fm are extracted for all models using SURFalgorithm (19). (67)There
is a possibility that the model images may appear translated and rotated relative to their original 
positions may not have the same scale. Hence in order to make the proposed indexing technique 
invariant to translation, rotation and scaling, this pharmacophoric model of the selected hit candidates
as exctracted from the screen database was preprocessed. (64,65,66,67) It consists of three steps, 
mean centering, rotation with respect to principal components and normalization were obtained by 
d(c) = ||D (q) − D (c)||A candidate pharmacophoric set of the Remdesivir, Ursolic acid and Colchicine
Ci ligands for the corresponding feat the query Q contains all the model identity Mi d(c) ≤ t, ∀c ∈ 
H(z) and z ∈q − K2, q +is the assigned threshold. The same procedure i all query points f1, f2, · · ·, 
fn. Thus, there ar sets C1, C2, · · ·, Cn for given n feature points In refinement step, these candidate 
sets C1, C (67,68,69,70).



Binding free energy calculation and In silico screening 
Before binding free energy calculation, the Sander module in Amber16 (26) program was used to 
perform the three-step optimization of the ligand-receptor complex. Firstly, only waters, ions and 
hydrogens were allowed to move. Secondly, the backbone atoms of the protein were fixed while 
others were allowed to move. Thirdly, all the atoms of the system were free to move. In the three 
optimization process, 2000 steps steepest descent method followed by 2000 steps conjugated gradient 
method based on their de D geometric complementarity score were used for each ligand-receptor 
binding system. Finally, the binding free enegy (ΔGbind) is calculated by using the MM/PBSA (27, 
28) and X-score methods (29, 30). As for the X-score method, it is assumed that the overall binding 
free energy rotated relative to their original positions in a protein-ligand binding process can be 
divided into several terms (31). Here, ΔGvdw represents the van der Waals interaction between the 
receptor and the ligand; ΔGH-bond represents the hydrogen bonding between the receptor and the 
ligand; ΔGdeformation represents the deformation effect; ΔGhydrophobic represents the hydrophobic
effect; ΔG0 represents a regression constant. (32,33) ΔGbind and absolute binding free energy ΔG∘b 
values between the receptor and the selected hit candidates could be calculated simply by the X-score 
software package in Quantifying Magnetic Sensitivity Radical Pair Based Compass Quantum Fisher 
Information: H=γB⋅(Sˆ1+Sˆ2)+Iˆ⋅A⋅Sˆ2, Sˆi=(σx,σy,σz) Iˆ ρs(t)=TrI(U(t)ρ(0)U†(t)), Uλ(r) = U0(r) + 
λu(r), ρI(0)=I/2 employing a λ-dependent effective potential energy function P(t′)=dΔM(t′) ΔM=f(t
′)dt′,ρ¯s=∫−∞0f(t′)ρs(t′)dt′=∫0∞f(t)ρs(t)dt, where r = (rA, rB) denotes the atomic coordinates U0(r) = 
U(rA) + U(rB) ∫−∞0f(t′)dt′=∫0 u(r) = u(rA, rB) = U(rA, rB) − U(rA) − U(rB) ∞f(t)dt=1 ρ¯s ρ¯s ρ¯s 
ρ¯s (0,π/2)ρ¯sρs(0)ρ¯sQFI≈∑i=01Re(ρi12)2 for each conformation r = (rB, rA) (1ρi11+1ρi22)+
(ρi11−ρi22)2ρi11+ρi22, of the form u′(r)={umaxtanh(u(r)umax),u(r)u(r)>0u(r)≤0,
where umax is some large positive value ρ1ij=〈φi|〈1|ρs(0)|φj〉|1〉 between the effective potential 
energies U(r) with implicit solvation of the form ρ0ij=〈φi|〈0|ρs(0)|φj〉|0〉 |0〉 |1〉 H1=γB0⋅Sˆ1 
Re(ρi12) ρi12 ρs(0) ρ¯s |S〉=12(|10〉−|01〉)2Gdeformation+ΔGhydrophobic+ΔG01 (29,33,34). In 
the MM/PBSA method (32), the free energy of the receptor/protein-inhibitor binding, ∆Gbind, was 
obtained from the difference between the free energies of the receptor/protein-ligand complex (Gcpx) 
and the unbound receptor/protein (Grec) and ligand (Glig). The binding free energy (ΔGbind) was 
evaluated as a sum of the changes in the binding energy (ΔEbind), solvation entropy (−TΔSsol), and 
conformational entropy (−TΔSconf) (shown in Eq. 2) (33,34,59). Where ∆Ebind is interaction 
energies between the three .pdbqt data sets with respect to principal components and normalization 
which were obtained by d(c) = ||D (q) − D (c)||A for the pharmacophoric set of the Remdesivir, 
Ursolic acid and Colchicine Ci small molecules and the SARS-CoV-2 protein targets, which were 
computed using the Sander modules of the Amber16 program. The entropy contribution to the 
binding free energy (−T∆S) was obtained by using a local program developed in our own laboratory 
(33,34). ΔGbind=ΔEbind−TΔSsol−TΔSconf.

Results
In this drug combination In-Silico project, a comparative parallel docking analysis of the S protein has
been performed and the selected ligands that had docking scores better than −60.5 kcal/mol with one 
reference strain were selected as the hit candidates for each CoV type and thereby taking into account 
only the most prevalent residue harbored at the conserved given positions. (Figures1a,1b,2) SARS-
COV-2 Immunity Interaction 3D Map sequence allignement analysis and a Multiple sequence 
alignment of all the HCoV strains (COVID19 genes of (ACBD5, ACE2, ACO2, ACSL3, ADAM9, 
ADAMTS1, ADAR, AGPS, AGT, AGTR1, AGTR2, AKAP8, AKAP8L, AKAP9, ALG11, ALG5, 
ALG8, ANO6, ANPEP, ANTXR1, ANTXR2, ANXA2, 7AAP_D, 7AAP_C, 7AAP_B, 7AAP_A, 
6ZRU_A, 6ZRT_A, 7K40_A, 7K3T_A, 7K1O_C, 7K1O_B, 7K1O_A, 7K1L_B, 7K1L_A, 7JZU_B, 
7JZN_C, 7JZN_B, 7JZN_A, 7JZM_B, 7JZL_B, 7JZL_C, 7JZL_A, 7JX6_B, 7JX6_A, 7JKV_B, 
7JKV_A, 7D1O_A, 7CAK_C, 7CAK_B, 7CAK_A, 7CAI_C, 7CAI_B, 7CAI_A, 7A98_C, 7A98_B, 
7A98_A, 6ZXN_C, 6ZXN_B, 6ZXN_A, 7A97_C,, 7A97_B, 7A97_A, 7A96_C, 7A96_B, 7A96_A, 
7A95_C, 7A95_B, 7A95_A, 7A94_C, 7A94_B, 7A94_A, 7A93_C, 7A93_B, 7A93_A, 7CMD_D, 
7CMD_C, 7CMD_B, 7CMD_A, 7CJD_C, 7CJD_B, 7CJD_A, 7CJD_D, 6ZOK_j, 6ZOJ_j, 6XMK_B,
6XMK_A, 6Z97_C, 6Z97_B, 6Z97_A, 6YOR_A, 6YOR_E, 7JZ0_Dl, 7JZ0_C, 7JZ0_B, 7JZ0_A, 
7JYY_D) in the SARS-COV-2 RdRp sequences were applied to the MEP1B-MEP1A-FN1-MDN1-
UBC-MRPS5-FURIN-ADAMTS1-ROR-GAMMA pathways. To analyze this, we employed the 
conservation analysis using the total number of protein sequences treated for each CoV type using the 
reliable BiogenetoligandorolTMQMM-PBSA-WSAS binding free energy HTS-HVS strategy. The 
Ursolic acid small molecule when combined with the Remdesivir chemical structure generated Salt 
Bridges into the amino acid of the 836 ARG A 18 U P 4.57 Phosphate with the docking energies of 



the 8240,8240,8243,8228,8241,8242 84.767, 82.285, 113.039 88.794, 80.678, 111.585 849Kcal/mol. 
It also interacted with Hydrogen bonds inside the amino acid of the LYS A 17 U P 4.64 with the 
docking energies of the 8220,8220,8205,8222,8223,8221 81.688, 84.935, 117.166 84.063, 86.886, 
120.648Kcal/mol. The Remdesivir, Colchicine and Ursolic acid drugs bind into the SD1 stands the 
most conserved druggable domain among all four Beta-CoVs analyzed. The Remdesivir small 
molecule when combined to the Ursolic acid and Colchicine chemical structures binds inside the 
amino acid 287 LEU A 9000 6Q5 A 3.99 3849 200 -19.472, 23.825, -15.927 -15.959, 22.345, -17.092
+ 323 HIS A 9000 6Q5 A 3.56 3848 516 -25.010, 21.669, -15.561 -24.824, 21.905, -12.016 
(Supp.Material). Each separate analysis returned positive results (Tables1, 3a, 3b, 3c), ( FigureS2, and
FigureSs3a, 3b, 3c, 3d, 3e, 4a, 4b), indicating that the Recomborovir compounds may directly inhibit 
2019-nCoV. The Remdesivir, Colchicine and Ursolic acid small molecules are targeting the PLpro 
(M2, M3, M7, M9, M10, M11 and M13) dinding domains in the amino acids of the 164 HIS A 5 PJE 
C 2.16 3.07 153.73 2408 N3 1266 O2 with the docking energy values of the -12.282, 14.994, 67.123 -
15.161,15.336, 68.144 in the region between the thumb and palm of the amino acid of the 144 SER A 
803 DMS A 3.66 3.99 102.68 1114 O3 4736 O2 with the docking energies of the 35.403, -33.742, -
8.029 37.550, - 32.180, -11.001 , which might interfere with substrate entering this enzyme’s active |
166 GLU A 803 DMS A 5.01 Sulfonium 4735 36.185, -32.686, - 7.387 36.922, -36.568, -4.314 sites, 
located at the bottom of the two domains (29). This molecule combination named Recomborovir 
reported to inhibit the 3CLpro (M1, M2, M3, M4, M5, M7, M8, M10, M11, M12 and M13) mainly 
entered the region between domains 2 and 3, and this 295 ASP A 813, DMS A 5.38 Sulfonium 4739 
35.134, -46.698, -27.502 30.989, -48.448, -24.558 region is important for 3CLpro to form a dimmer 
(30). Recomborovir was reported to inhibit viral entry, accordingly it bound the fusion cone of spike 
protein; this cone structure is important for viral membrane fusion (31) (Tables1a,1b,2). The Ursolic 
acid when in-silico combined with the Remdesivir and Colchicine small molecules generated 
Hydrogen bonds, Salt bridges and Metal complexes inside the POP composite and Diphosphate, 
dihydrogen ION binding sites into the 7bv2 protein targets. This drug combination of the Remdesivir, 
Colchicine and Ursolic acid generated also pi-Cation Interactions inside the A 101 F86 P 3.61 1.61 
binding cavities of the amino acid of the 555 ARG with the docking energy values of the (8618, 8608,
8610, 8621, 8625 90.830, 92.165, 105.289, 93.435, 92.714, 107.732) Kcal/Mol. It also constructed 10 
G P 1005 Metal Complexes targeting the MG atom 8283 with the bond energy values of the (12.33, 
92.442, 84.162, 100.658, 90.927, 83.719, 102.373) Kcal/Mol (Tables3a,3b,3c). This Recomborovir 
drug combination targets the backbone of the Leu278  Gly279  Ile280 loop which is coordinating ‐ ‐
the P+2 (Asp) side chain, while P+1 (Ser) side chain is coordinated by the Ile280 carbonyl. This inter-
action was further strengthened by the backbone interaction between the amide hydrogen-carbonyl of 
the Recomborovir compounds at Gly284 and the P−3 (Ile) carbo-nyl/amide hydrogen. (FigureS5a) 
Hydrophobic interactions of the combination of the Remdesivir, Ursolic acid and Colchicine small 
molecules generated 02J (5-Methylisoxazole-3-carboxylic acid) binding sites into the 6LU7 protein 
targets. The interactions that established after docking the Colchicine small molecule against COVID-
19 02J (5-Methylisoxazole-3-carboxylic acid) RdRp were confirmed the behavior of this drug 
combination inside this hydrophobic surface.(FigureS4d) ZN-A-1002 Ion Metal complexes including 
attractive solute-water interactions were established after docking the Ursolic acid small molecule 
onto the COVID-19 7BV2 Interacting A chains of the amino acid of the 295A, HIS, (FigureS4c) 
inside the ZN-A-1001 Ion 1: Zn, tetrahedral (4)1, binding sites into the 7BV2 protein targets with the 
docking energies of the (8594, 1771, 2.09, 2, 301A, 8594, 1816, 2.31) Kcal Mol. Metal Complexes 
were also observed in the 3, 306A, 645A, CYS, 646A, CYS, that sterically permitted water layer 
binding pockets inside the ZN-A-1002, 1: Zn, tetrahedral (4), 1, 487A, binding domains of the amino 
acid of the 310A, CYS, with the docking energies of the (8594, 1857, 2.31, 4, 8594, 1889, 2.31, 8595,
3297, 2.38, 2, 642, 8595, 4527, 1.87, 3, 8595, 4550, 2.3, 4, 8595, 4556, 2.34)Kcal/Mol. (FigureS4e) 
Idealized -U-U-A-U-A-A-C-U-U-A-A-U-C hydrophobic flat surfaces, were localized to a narrow 
central region between the Ursolic acid ligand and G-A-U-U-A-A-G-U-U-A-U-F86-MG residues, 
with U composites containing Uridine Monophosphate binding sites when docked into the 7BV2 
protein targets. (FigureS4f) Hydrophobic anions associated with G-A-U-U-A-A-G-U-U-A-U-F86-
MG hydrophobic pockets containing Guanosine Monophosphate binding sites were generated when 
the Ursolic acid small molecule combined with the Remdesivir small molecule and reverse docked 
onto the 7BV2 G-A-U-U-A-A-G-U-U-A-U-F86-MG binding pockets inside the (Nam), (O3), 3752 
(O2), 8324 (O2), binding sites of the amino acid of the 4507A, ASN with the docking energies of the 
(2.58, 3.43, 143.55, 3450, 5, 543A, ASN, 3.04, 3.54, 113.10, 8313) Kcal/mol. Studies of hydrophilic, 
hydrophobic interactions of the Remdesivir drug when combined to the Colchicine small molecule 



indicated to us that the combination of these drugs generated self-assembled monolayers of the 1: Mg,
NA (1), 1, 10P, G Metal Complexes inside the 1,553A binding cavities of the amino acid of the ARG 
into the 7bv2 protein targets with the docking energies of the (8606, 8283, 2.33, 5.33, 8596, 8596, 
8597, 8598, 8599, 8600) Kcal/mol. (FigureS5b) Hydrogen bonds, Salt bridges and Metal complexes 
of the Ursolic acid ligand containing POP Phosphate composites were constructed when docked into 
the Diphosphate, dihydrogen ION PJE:C:5, 010:C:6, binding sites when combined with the 
Colchicine drug into the same 6LU7 protein targets at the presence of hydroxy groups at both 
channel-portals means that co-bound waters at exceptionally high docking energies. The Hydrophobic
Interactions that established after docking the Colchicine ligand when computationally combined with
the Remdesivir and Ursolic acid small molecules against the COVID-19 PJE:C:5, 010:C:6, RdRp 
binding sites near both repulsive and attractive hydrophobic surfaces are larger than the 
Lopinavir/Ritonavir molecular complexes at the water-vapor interface inside when docked onto the 
binding cavities of the amino acid of the 25A, THR, with the docking energies of the (3.73, 2415, 
179) Kcal/mol. (FigureS5c) The Remdesivir binding site’s in 5X8S protein targets are more 
entropically favored contribute to a destabilization of water structure when generating Hydrophobic 
Interactions, Hydrogen Bonds, Water Bridges and Salt Bridges within the 6Q5-A-9000 Interacting 
chains. More specifically, the Remdesivir small molecule generated Water Bridges inside the binding 
domains of the 1286A GL (O2), N, (O.co2), with the docking energies of the (3.86, 2.74, 109.20, 
83.72, 3841, 192) Kcal/mol when combined with the Ursolic acid and Colchicine ligands. 
(FigureS5d). Aditionally, Hydrophobic Interactions, Hydrogen Bonds, Water Bridges and Salt 
Bridges constructed when the Remdesivir docked in combination with the Ursolic acid small 
molecule onto the 6Q5-A-9000 Interacting chains into the 5X8S protein targets of the residues of the 
1479B, HIS 3898 (O3), 3684 (N2), with the docking energies of the (1.92, 2.69, 134.37)Kcal/mol.

Discussions
In this research report, we found that the Cluster of the Recomborovir-(Drug Combination) which was
identified during screening of a compound diversity set performed by the Biogeneto- ligandorolTM 
cluster of algorithms on the intersection track of the (Lys711 and Arg355/SARS-CoV2 PLpro and 
Lys711 and Arg355 amino acids. The Remdesivir, Colchicine and Ursolic acid drugs bind into the 
SD1 which stands the most conserved druggable domain among all four Beta-CoVs analyzed. The 
Remdesivir small molecule when combined to the Ursolic acid and Colchicine chemical structures 
binds inside the amino acid 287 LEU A 9000 6Q5 A 3.99 3849 200 -19.472, 23.825, -15.927 -15.959, 
22.345, -17.092 + 323 HIS A 9000 6Q5 A 3.56 3848 516 -25.010, 21.669, -15.561 -24.824, 21.905, -
12.016 (Supp.Material), (FigureSs1a,1b,2,3a,3b,3c,3d,3e). Each separate analysis returned positive 
results (Tables1,3a, 3b, 3c)( FigureS2, and FigureSs3a, 3b, 3c, 3d, 3e, 4a, 4b), indicating that the 
Recomborovir compounds selected may directly inhibit the 2019-nCoV. The Remdesivir, Colchicine 
and Ursolic acid small molecules targeting the PLpro (M2, M3, M7, M9, M10, M11 and M13) 
dinding domains in the amino acid of the 164 HIS A5, PJE C2, with the docking energies of the 16 
3.07 153.73 2408 inside the atoms of the N3 and O2 with the docking energy values of the (-12.282, 
14.994, 67.12315.161,15.336, 68.144) Kcal/mol  in the region between the thumb and palm of the 
amino acid of the 144 SER A 803 DMS A O3, O2 with the docking energies of the (3.66 3.99 102.68 
1114 4736, 35.403, -33.742, -8.029 37.550, - 32.180, -11.001)Kcal/mol which might interfere with 
substrate entering this enzyme’s active binding domains of the amino acid of the 166 GLU A 803 
DMS A 5.01. The Sulfonium sub-surfaces interacted with the combination of the Recomborovir drugs
with the docking energies of the (4735 36.185, -32.686, - 7.387 36.922, -36.568, -4.314)Kcal/mol 
inside the binding sites, located at the bottom of the two domains (29). This molecule combination 
named Recomborovir reported to interact with negatiove docking energy values inside the 3CLpro 
(M1, M2, M3, M4, M5, M7, M8, M10, M11, M12 and M13) mainly entered the region between 
domains 2 and 3, and this 295 ASP A 813 DMS A 5.38. The same drug combination generated 
Sulfonium bondings with energy values of the (4739 35.134, -46.698,-27.502 30.989, -48.448,             
-24.558) Kcal/mol onto the same region which is important for 3CLpro to form a dimmer (30). 
Recomborovir was also reported to interact with the SARS-COV-2 viral invasion pathways, when it 
bound the fusion cone of spike protein, the cone structure which is important for viral membrane 
fusion (31) (Supp.Material). The Ursolic acid when combined with the Remdesivir and Colchicine 
small molecules generated Hydrogen bonds, Salt bridges and Metal complexes of the POP (composite
ligand, containing Diphosphate, dihydrogen) ION binding sites into the 7bv2 protein targets. The 
chemical strucutures of the Remdesivir, Colchicine and Ursolic acid) targeting into the Lys711 and 
Arg355 residues and inside the residues of the Phe19, Trp23, and Leu26, which are located in an 
alpha-helical region of the SARS- CoV2 PLpro N terminus that binds to the N-terminal Lys711 and 
Arg355 hydrophobic pocket (17). The druggable scaffold of this drug combination of the Remdesivir, 



Colchicine and Ursolic acid small molecules target into the binding domaisn of these three critical 
SARS-CoV2 PLpro residues; the combination of the hit compounds therefore competes with 
endogenous SARS-CoV2 PLpro for binding to Lys711 and Arg355. In this In Silico Drug repurposing
project, we created a new track to display the contacts of this drug combination with each of those: 
Lys711 and Arg355, and SARS-CoV2 PLpro. Interestingly, this drug combination consisted of the 
Remdesivir, Colchicine and Ursolic acid chemical structures targets the Lys711 and Arg355 homo-
dimerization site and intersects within the Lys711 and Arg355- Recomborovir-(Drug Combination) 
binding sites, suggesting that they may also interfere within the binding pockets of the Lys711 and 
Arg355 homodimerizations.The key residues of the seven hot spot binding domains that contribute to 
S spike glycoprotein trimerization can be potentially In-Silico dow-regulated by the docking 
combination of the therapeutic agents of the Remdesivir, Colchicine and Ursolic acid drugs in order to
significantly block the quaternary structure assembly of the SARS-CoV-2 replication protein. 
Furthermore, the combination of the drugs of the Remdesivir, Colchicine and Ursolic acid targets the 
BRD4, JQ-1, ISG15, IFN-β, IL-1β, I-BET 151 and OTX-015 exhibited viral inhibition with a short 
hairpin RNA (shRNA; shBRD4) which is involved in the recognition of molecular patterns and 
mediate severe inflammatory responses, may also interact within the binding domains of the S protein 
via 10 active residues located in the S1 subunit. I also suggested that the Recomborovir-(Drug 
Combination of the Colchicine, Remdesivir and Ursolic acid) might interact with this ganglioside- 
binding domain within the S protein (61). Drug repurposing or the chemical optimization of existing 
drugs represent an effective drug discovery approach and Drug Combination therapeutic approach 
which has the potential to reduce the time and costs associated to the de novo drug discovery and 
development of this anti-COVID-19 clinical trial process (59,60,61). This In-silico project 
demonstrated that the combination of the drugs of the Remdesivir, Colchicine and Ursolic acid can 
potentially inhibit the SARS-CoV-2 replication (60), (61). Additionally, the GEMDOCK algorithm 
cannot determine binding free energies or binding orientations of small molecule combinations. For 
that aim, other docking tools and Geometry Hashing driven Mi d(c) ≤ t, ∀c ∈ H(z) and z ∈q − K2, q + 
molecular dynamics studies were applied, as explained above. Therefore, the BiogenetoligandorolTM 
approach that takes a multiple-sequence-conserved alignment (coMSA) in .pdbqt format file as an 
input is mainly aimed at binding residues recognition in cases on QMMM homology modeling 
techniques where the binding partner is a small chemical compound or small peptide. Its druggability 
to predict docking fitness scoring effectiveness allowing us to generate this drug repurposing 
screening approach with the primary goal of identifying some actual binders, by combining its cluster 
free energy ranking output with other chemistry informatics and repositioning In-Silico tools. The 
usefulness of docking methods for binding mode prediction is well documented. The accuracy of our 
structural predictions to validate our free energy protocol on these difficult targets have been key on a 
large scale and in an unbiased fashion to achieve a high level of screening performance. In contrast, 
the reliability and range of applicability of free energy methods, even when applied to known 
structures, remains to be fully established (33,48). Therefore, it can be used as an AI-strategy by 
studying large datasets patterns in complex inverse docking and quantum simulation pipelines. The 
computational cost of classical geometri be reduced by the approaches which are bas bilistic, 
randomization and modified geometri probabilistic approach the computational cost thinning out 
feature points and number of b probabilistic approach of random reduction has been proposed to 
reduce the computation it decreases retrieval accuracy. The theoretic experimental results of the 
Monte Carlo algoritization) proposed in (70) suggest that it is possib worst case behavior of the 
deterministic version and classical geometric hashing, while ensuring probability of a mismatch. In 
(68,69,70) a modified geo has been proposed to reduce the computatio memory in content-based 
image retrieval syst similar shape images from the visual database the memory demand, only a subset 
of image stored in the hash table. The non-uniform distribution of invariants table makes an inefficient
storage of the data slow down of the recognition process. The key problem is the selection of a ”good”
geometric which can redistribute the data uniformly over All combinations of hash functions have 
been (70) to choose the best one. In (69), (70) rehash have been suggested. The basic idea is to find a 
which maps the distribution of invariants to a u bution (33,50,51,60) We envision the Biogeneto-
ligandorolTM quantum thinking procedure which can emerge that can be useful to establish 
advantages and shortcomings as the first step in a ligand parallel and inverse docking and free energy 
simulation pipeline with an increased success rate of identifying repurposing drugs and herbals with 
potential anti-COVID-19 biological activities in order to find robust drug combinations for the 
treatment of the COVID-19 particularly after the virus main protease has developed different enzyme 
variations. The BiogenetoligandorolTM combined drug combination and drug retargeting pipeline can
finish this drug and herbal medicinal plants repurposing virtual screening within 4 to 5 days using a 
reliable HTS-HVS strategy while suggesting an new era on the surface of the target proteins that are 
essential in the life cycle of the SARS-COV-2 viruses where potential drug combinations of novel and
FDA approved selective inhibitors should bind. 



Conclusions
In this study we have found that the Colchicine binds into the pdb:6lu7 SARS-COV-2 proein targets 
with the docking energies of the (-2.06654, -4.97965, -10.4743, -8.98984, -4.03283, -6.24897, -
3.46474, -11.5726, -3.22075, -5.20269) and generates docking energies of the -67,4Kcal/Mol when 
combined with the Ursolic acid and Remdesivir chemical scaffolds which were generating negative 
docking energies of the -54,8 Kcal/Mol and -50,8Kcal/Mol respectively when co-targeting with the 
Colchicine small molecule the same protein targets within the pdb:6lu7 binding cavities. More 
sprecifically, the two chemical structures of the Remdesivir and Ursolic acid small molecules 
generated an inhibitory effect against the sequence of the amino acids of the V-M-GLU-166, V-M-
LEU-167, V-M-PRO-168, V-M-GLN-189, V-S-PRO-168, V-M-THR-190, V-M-ALA-191, V-M-
ALA-2, V-M-VAL-3, V-S-VAL-3, V-M-GLU-166, V-M-LEU-167, V-M-PRO-168, V-S-PRO-168, 
V-M-GLN-189, V-M-THR-190, V-M-ALA-191, V-M-ALA-2, V-M-VAL-3, V-S-VAL-3 with the 
the below docking energy values (-400.794, 329.678, -337.184, -907.342, -52.667, -894.194, -
194.094, -427.299, -425.681, 0.931221) for the Remdesivir and (-236.408, 0.254828, -101.104, -
832.191, -405.854, -74.901, -498.389, 177.232, -269.511, -40.622) for the Ursolic acid chemical 
strucuture. (68,69,70) The present performs Geometric Hashing-based structural alignment of the 
putative docking partners on all the library templates, discards solutions with severe steric clashes 
and, finally, refines the surviving modelled interfaces by allowing side chain and limited backbone 
flexibility of the interacting proteins while ranking them by global energy by aiming to test and 
suggest possible drug combinations in order to stop the infection immediately. We created a new track
to display the contacts with each of those: Lys711 and Arg355, and SARS-CoV2 PLpro. Interestingly,
the Lys711 and Arg355 homo-dimerization site intersects with the Lys711 and Arg355-Remdesivir-
Ursolic acid and Colchicine interfaces, suggesting that the combination of the Urtsolic acid, 
Colchicine and the Remdesivir ligands may also interfere with Lys711 and Arg355 
homodimerization. Conversely, the contacts that Lys711 and Arg355 makes with the drug 
combination of the Remdesivir, Ursolic acid and Colchicine within the SARS-CoV2 PLpro binding 
sites are distinct from the ones with Remdesivir:The Lys711 and Arg355/-Ursolic acid and Lys711-
Remdesivir and Arg355/SARS-CoV2 PLpro –Colcicine interactions may not be affected by other 
ligands, suggesting an edgetic effect of this drug combination. Our prediction that Remdesivir does 
not interfere with the Lys711 and Arg355/SARS-CoV2 PLpro interaction is supported by data 
showing that Lys711 and Arg355 and SARS-CoV2 PLpro co-immunoprecipitate following 
Remdesivir treatment, which is consistent with Darunavir, Azithromycin and Linoleic acid-
stimulated, Lys711 and Arg355-dependant degradation of SARS-CoV2 PLpro (18, 19). Therefore, 
solutions provided by the BiogenetoligandorolTM cluster of AI-Algorithms in this project indicated 
to us that the Colchicine, Remdesivir and Ursolic acid drugs are considered to be <<co-
administered>> which is something more than important and have to be considered as a first 
approximation that may require subsequent parallel refinement and docking analysis using more 
accurate free energy ranking models. by allowing side chain and limited backbone flexibility of the 
interacting proteins while ranking them by global energy. The method is highly efficient due to the 
preprocessing of the template library, which were obtained by d(c) = ||D (q) − D (c)||A for the 
pharmacophoric set of the Remdesivir, Ursolic acid and Colchicine Ci small molecules and the 
SARS-CoV-2 protein targets into a Geometric Hashing table (TablesS3a,S3b). We anticipate that this 
Recomborovir drug combination consisted of the combination of the Remdesivir, Ursolic acid and 
Colchicine small molecules could interact synergistically with the active compounds of the Linoleic 
acid, Opaganib, Daclatasvir, EIDD-2801, Avigan, Azithromycin but not with the GC376, 
Minocycline, Baricitimib, Cobicistat, Darunavir, Hydroxychloroquine,and Ritonavir drugs when 
docked into the SARS-COV2 viruses same protein targets (Tables1a,3b,3c). In conclusion, 
Biogeneto- ligandorolTM LigandorolTM is very efficientand is not just proposed as an alternative 
drug repurposing and computational method, but rather as a combined complementary deep learning 
similarity and quantum mechanics predictive tool to be used in tandem with other In-Silico drug 
retargeting and computational platforms which could led us to the rational design of novel drug 
combinations of small molecules and more effective repositioning experimental methods.
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 Significance Statement
Drug repurposing/repositioning/rescue proposed a computational method to identify potential drug 
indications by integrating various applications of an existing drug to a new disease indication. In this 
paper we filtered out residues with relatively small surface accessible areas, and/or with incompatible
charge and hydrophobic properties to the ligands of the Remdesivir, Colchicine and Ursolic acid 
small molecules which could improve the prediction binding free energies or binding orientations of 
different drug combinations of the Remdesivir, Colchicine and Ursolic acid to treat COVID-19. 
Finally, an comprehensive web platform by applying AI deep learning models was designed based on
our BiogenetoligandorolTM protocol for drug repurposing to significantly reduce user time for data 
gathering and multi-step analysis without human intervention.In conclusion, BiogenetoligandorolTM 
-LigandorolTM is not proposed as an alternative drug repurposing method, but rather as a 
complementary deep learning quantum mechanics tool to be used in tandem with other drug 
retargeting computational and small molecule repositioning experimental methods.
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