
  

 

BOVIDS: A deep learning-based software for pose estimation to 

evaluate nightly behavior and its application to Common Elands 

(Tragelaphus oryx) in zoos 

Jennifer Gübert1*, Max Hahn-Klimroth2, Paul W. Dierkes1 1 

1Faculty of Biological Sciences, Bioscience Education and Zoo Biology, Goethe University, Frankfurt, 2 

Germany 3 

2Faculty of Computer Science, TU Dortmund University, Dortmund, Germany 4 

* Correspondence:  5 

Jennifer Gübert 6 

guebert@bio.uni-frankfurt.de 7 

Keywords: Tragelaphus oryx, nightly behavior, REM sleep, posture estimation, deep learning, 8 

video action classification  9 



BOVIDS: A deep learning-based software for pose estimation to evaluate nightly behavior and 

its application to Common Elands (Tragelaphus oryx) in zoos 

 
2 

 

Abstract 10 

Only a few studies on the nocturnal behavior of African ungulates exist so far, with mostly small 11 

sample sizes. For a comprehensive understanding of nocturnal behavior, this database needs to be 12 

expanded. Zoo animals offer a good opportunity to lay the corresponding foundations. The results can 13 

provide clues for the study of wild animals and furthermore contribute to a better understanding of 14 

animal welfare and better husbandry conditions in zoos. To tackle this open question, we developed a 15 

stand-alone open-source software based on deep learning techniques, named BOVIDS (Behavioral 16 

Observations by Videos and Images using a Deep-Learning Software). This software is used to identify 17 

ungulates in their enclosure and to determine crucial behavioral poses on video material with an 18 

accuracy of 99.4%. A case study on 25 Common Elands (Tragelaphus oryx) out of 5 EAZA zoos with 19 

a total of 11,411 hours video material out of 822 nights is conducted, yielding the first detailed 20 

description of the nightly behavior of Common Elands. Our results indicate that age and sex are 21 

influencing factors on the nocturnal activity budget, the length of behavioral phases as well as the 22 

number of phases per behavioral state during the night. Finally, the results suggest the existence of 23 

species-specific rhythms that open future research directions. 24 

1 Introduction 25 

The nocturnal behavior of many African mammals is poorly studied. It is known that the behavioral 26 

patterns can vary greatly between day and night, as many large herbivorous mammals spend especially 27 

in winter most of their sleeping time during night, while the activity patterns emerge primarily at 28 

daytime (Bennie et al., 2014; Gravett et al., 2017; Davimes et al., 2018; Wu et al., 2018). For a 29 

comprehensive understanding of diurnal rhythms, a behavioral description of the entire diurnal cycle 30 

is necessary. So far, especially the nocturnal behavior is little studied, not only in the free-range but 31 

also in zoos. A major advantage of observing zoo animals at night rather than animals in their natural 32 

habitat (Ryder and Feistner, 1995) is that it is much easier to install observation equipment. In order 33 

not to disturb the animals, camera recordings are a good means of data collection in this case. Thus, 34 

zoos provide a good basis for describing the animals' nocturnal behavior and the results can 35 

subsequently serve as starting information for observations in the field (Burger et al., 2020). In 36 

addition, a deeper knowledge of nocturnal behavior could contribute information to further improve 37 

animal management and husbandry in zoos (Brando and Buchanan-Smith, 2018) and provide 38 

conclusions on animal welfare (Walsh et al., 2019). For example, REM sleep appears to be an important 39 

indicator of stress in giraffes (Sicks, 2016), which can be measured by non-invasive methods. 40 

To describe nocturnal behavior unambiguously, a lot of data is needed, especially because there are 41 

few comparisons in literature. Furthermore, it would not only be useful to examine a lot of individuals 42 

from one species to compensate for the lack of comparable data, but also many nights of every 43 

individual would have to be analyzed to accurately describe the average behavior. Additionally, it is 44 

necessary to obtain data not only on one but many different species to close the existing knowledge 45 

gap. However, the extraction of meaningful information as well as a detailed evaluation of a mass of 46 

recorded data requires modern techniques to automate parts of this data mining process (Norouzzadeh 47 

et al., 2018; Lürig et al., 2021). Fortunately, in the last decade, various computer vision and deep 48 

learning techniques found their way into behavioral biology and ecology (Dell et al., 2014; Valletta et 49 

al., 2017; Eikelboom et al., 2019; Chakravarty et al., 2020; Gerovichev et al., 2021; Norouzzadeh et 50 

al., 2021), providing amazing results and facilitating the task of dealing with a large dataset 51 

dramatically. Unfortunately, automatization of the evaluation of video recordings is challenging if the 52 

video recordings suffer from a low framerate, much background noise or heavy truncation effects, as 53 

is usual in observations in stables as zoo enclosures, or even in free-range installments. Therefore, only 54 
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a few of those computer systems are applicable for the challenging data generated by field studies or 55 

records in a variety of zoo enclosures. 56 

One of the two main objectives of this work tackles this challenge by making BOVIDS (Behavioral 57 

Observations by Videos and Images using a Deep-Learning Software), a stand-alone software based 58 

on deep learning techniques, available. To the best of our knowledge, this is the first fully open-source 59 

software tackling the task of evaluating the nightly behavior of stalled animals that contains 60 

functionalities required for data preparation, training of the deep learning parts, data prediction and 61 

data presentation. More precisely, BOVIDS can be used to evaluate video recordings of stalled 62 

ungulates recorded at 1 fps regarding two classification tasks: “binary classification” and “total 63 

classification” (Hahn‐Klimroth et al., 2021). In the total classification task, BOVIDS predicts one out 64 

of the following poses per seven seconds of video: Standing, Lying - head up (LHU), Lying - head 65 

down (LHD), being out of view (Out). The binary classification task asks only for one label of 66 

Standing, Lying (LHU and LHD) or being out of view (Out) and is useful to study rhythms. The 67 

software can be divided into four components: 68 

BOV 1.  Data collection, 69 

BOV 2.  Object detection (OD), 70 

BOV 3.  Action classification (AC), 71 

BOV 4.  Data prediction. 72 

While one part of BOV 4 is a significantly improved and extended version of work presented in an 73 

earlier contribution (Hahn‐Klimroth et al., 2021), the newly developed components BOV 1 - BOV 3 74 

allow an interested user to apply the complete deep learning prediction system comfortably to their 75 

own data. All discussed software as well as detailed instructions can be found in our GitHub repository: 76 

https://github.com/Klimroth/BOVIDS. 77 

This paper not only extends and improves the previous software but explains how BOVIDS can be 78 

applied by behavioral biologists to their own data. To this end, BOVIDS is applied to data of Common 79 

Elands (Tragelaphus oryx) showing the power of the obtained method. 80 

More precisely, a case study on the nocturnal activity budget of Common Elands is the second main 81 

objective of the present work and has a dual purpose. First, in the case study over 11.000 hours (822 82 

nights) of video material from five different EAZA zoos were evaluated, a task that seems inaccessible 83 

in the absence of automatic evaluation. Second, it shows how BOVIDS can be used to observe and 84 

analyze several important behavioral biological key figures of nocturnal activity. Finally, and at least 85 

as importantly, to the best of our knowledge, the case study provides the first excessive and detailed 86 

description of important aspects of the nocturnal behavior of Common Elands. This description 87 

contains activity budgets, a visualization of the Standing-Lying rhythm as well as an analysis of the 88 

possible influencing factors age, sex, and zoo husbandry. 89 

As mentioned earlier, several computational systems have found their way into behavioral biology and 90 

ecology (Dell et al., 2014; Valletta et al., 2017; Eikelboom et al., 2019; Chakravarty et al., 2020; 91 

Norouzzadeh et al., 2021). Such systems are explicitly designed with respect to the underlying data. In 92 

the easiest tasks, cameras can be installed in a laboratory such that the recordings feature a high contrast 93 

between animals and the background as well as other laboratory conditions like a given steady camera 94 

angle and low background noise. Examples for such systems working with data of Drosophila-flies or 95 

mice are JAABA (Kabra et al., 2013), DeepBehavior (Graving et al., 2019) and SLEAP (Pereira et al., 96 

2020). When data is recorded either in the natural habitat or in different zoo enclosures, it is much 97 
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more challenging due to variations in weather, brightness, and background. Not to forget, different 98 

cameras can rarely be adjusted in a way such that the recording angle matches given requirements or 99 

to ensure that animals are not highly truncated. One approach under varying brightness conditions 100 

distinguishes the poses “lying” and “standing” of cows in free-stall stables (Porto et al., 2013). Finally, 101 

one of the most impressive success stories might be the work by Norouzzadeh et al. (2018; 2021) 102 

whose system is able to automatically detect and count different species and some shown behaviors 103 

using camera trap images of the Serengeti dataset (Swanson et al., 2015). 104 

2 Material and Methods 105 

In the first section Data evaluation methods and material used to collect the data and to evaluate the 106 

findings statistically are presented. Subsequently, the behavioral states of interest are defined properly 107 

in section Ethogram whereas section BOVIDS introduces and describes the software package BOVIDS 108 

which is the main technical contribution of the present paper. 109 

2.1 Data evaluation 110 

The dataset includes nights of 25 Common Elands (Tragelaphus oryx) whereas the number of nights 111 

per individual ranges from 15 to 49. In total, 822 nights with 11,411 hours of video material are present. 112 

The data was collected in winter seasons between 2017 and 2020 in a total of five EAZA zoos in 113 

Germany (Allwetterzoo Münster, Erlebnis-Zoo Hannover, Opel-Zoo Kronberg, Zoo Dortmund and 114 

Zoom Erlebniswelt Gelsenkirchen). A detailed overview about the used data is given in Table 1 in the 115 

appendix. For further analysis the individuals are categorized as follows: ‘young’, ranging from birth 116 

until the time of weaning with about six months, ‘subadult’, older than six months until sexual maturity 117 

with about two years of age and ‘adult’ afterwards. Those categories are chosen accordingly to 118 

information distributed across multiple prior works (Puschmann et al., 2009; Groves and Leslie Jr, 119 

2011; Tacutu et al., 2013; Myers et al., 2021). 120 

All collected data is in the form of video recordings. The cameras used are capable of night vision due 121 

to built-in infrared emitters (Lupus LE139HD or Lupus LE338HD with the recording device 122 

LUPUSTEC LE800HD or TECHNAXX PRO HD 720P). The recordings are made with a frame rate 123 

of 1 fps and the resolution ranges from 704x576 px to 1920x1080 px. Recording takes place in the 124 

stable during night, the time of the absence of animal keepers, which mostly ranges from 17:00 to 125 

07:00 (14 hours). In some cases, the recording time is 18:00 to 07:00 (13 hours). 126 

The data was recorded continuously providing an exact time span for every behavior with a start and 127 

an end time (Martin and Bateson, 2015). The manually annotation was governed by the open-source 128 

program BORIS, Version 7.7.3 (Friard and Gamba, 2016) and consists of 2,374 hours of video material 129 

out of 170 nights. BOVIDS requires the use of multiple deep neural networks for object detection (OD) 130 

and action classification (AC) as explained in Hahn‐Klimroth et al. (2021) and in the following section. 131 

To train an initial object detection network, at least 400 images of every enclosure were annotated 132 

using LabelImg (Tzutalin, 2015) resulting in 11,326 images of Common Elands and 49,437 images of 133 

various African ungulates as already elaborated by Hahn‐Klimroth et al. (2021). Following the 134 

prescribed approach, the initial action classification networks were not only trained using 170 135 

recordings (66,466 images) of Common Elands but also 113,407 images of other African ungulates 136 

with comparable postures. Furthermore, two rounds of offline hard example mining (OHEM) were 137 

conducted using additionally 14,381 images of Common Elands and 50,262 images of other African 138 

ungulates. Finally, the action classifiers used for Common Elands stalled together were fine-tuned by 139 



BOVIDS: A deep learning-based software for pose estimation to evaluate nightly behavior and 

its application to Common Elands (Tragelaphus oryx) in zoos 

 
5 

24,304 images stemming from manually annotated video files and 7,377 images generated through 140 

OHEM. Detailed information can be found in Table 1 in the appendix. 141 

All statistical analysis is conducted with the software R Studio (R Core Team, 2014) and the figures, 142 

which are not given by BOVIDS, are produced using the core functionalities of R and the package 143 

ggplot2 (Wickham, 2016). Statistical tests are performed differently for continuous and ordinal data. 144 

To conduct a two-factor analysis of variance (ANOVA) on continuous data, normality is required 145 

which is tested by Shapiro-Wilk test for any behavior class. In case of significant deviation from 146 

normality (p < 0.05), a normality transformation is applied to the data by R’s “bestNormalize” package 147 

(Peterson and Cavanaugh, 2020). To analyze differences between multiple groups on ordinal data, a 148 

Kruskal-Wallis test is applied. Finally, as post-hoc tests on all pairs of potentially significant factors, a 149 

collection of unpaired t-tests is applied in the continuous case and, respectively, a collection of 150 

Wilcoxon tests in the ordinal case. The alpha level is adjusted by the Bonferroni-Holm adjustment in 151 

each case. 152 

2.2 Ethogram 153 

The focus of this paper is to distinguish between four postures: Standing, Lying – head up (LHU), 154 

Lying – head down (LHD) and out of view (Out). The last category is used if the animal is not present 155 

in the stable and should also be used if only a small part of the animal is visible, from which the 156 

behavior cannot be determined. Furthermore, Lying in the binary classification system is defined as 157 

the union of LHU and LHD. The binary classification is helpful to analyze rhythms over the night as 158 

the categories “activity” and “rest” are the most prominently measured behavior stages to examine 159 

diurnal rhythms (Merrow et al., 2005). In the following ethogram, based on that of Hahn‐Klimroth et 160 

al. (2021), the three behavioral states are defined and shown in Figure 1. 161 

Standing: The animal stands in an upright position on all four hooves. The exact behavior is neglected, 162 

thus the animal could be, for instance, feeding, resting, or ruminating. 163 

Lying – head up (LHU): The animal lies down, and its head is lifted. The behavioral state does not 164 

distinguish if the animal is awake or in non-REM sleep. As before, the precise behavior is neglected. 165 

Lying – head down (LHD): The animal is lying with its head resting on the ground. The head’s position 166 

is beside the body or sometimes in front of it. 167 

It is crucial to notice that LHD is the typical REM (rapid eye movement) sleep posture. REM sleep is 168 

recognized through various behavioral components as the animal is lying with its head resting due to 169 

postural atonia (Lima et al., 2005; Zepelin et al., 2005). This characteristically REM sleep position can 170 

be used to estimate the REM sleep, a common approach in the study of behavior of Common Eland’s 171 

(Zizkova et al., 2013) and cows (Ternman et al., 2014). 172 
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 173 

Figure 1. The three observed behavioral states: Standing, Lying - head up, Lying - head down, from left to right of Common 174 
Elands. 175 

2.3 BOVIDS 176 

BOVIDS is an end-to-end software package which automatically detects the poses of interest in videos. 177 

The detection itself is based on a combination of two deep-learning steps (object detection and action 178 

classification) governed by state-of-the-art deep neural networks. In the following, the single parts of 179 

BOVIDS will be introduced. To this end, it will be first described what the goal and functionality of 180 

BOVIDS are. 181 

2.3.1 Overview 182 

BOVIDS is used to automatically annotate the behavior of ungulates on video recordings. Those 183 

recordings are required to come as appropriately structured and formatted video files and BOV 1 184 

contains python scripts that can generate the necessary video files out of the recordings by the LUPUS 185 

observation system. To annotate new data automatically, the prediction pipeline of BOVIDS (BOV 4) 186 

uses a composition of two stages of deep neural networks, an object detector to find individuals on the 187 

frames of the videos and action classifiers that are responsible for the posture estimation. The prediction 188 

pipeline itself will be discussed in detail later. Before being able to use the prediction pipeline, those 189 

deep neural networks need to be trained on manually annotated data. BOV 2 contains the necessary 190 

ingredients to train an object detector based on a recent yolov4 implementation (Taipingeric, 2020), 191 

while BOV 3 provides the software required to obtain decent action classifiers which are EfficientNet-192 

B3 CNNs (Tan and Le, 2019). Beside the necessary scripts for training the networks, BOVIDS contains 193 

various tools to generate the training sets, organize the data and fine-tune networks like, for instance, 194 

by offline hard example mining (Felzenszwalb et al., 2010). Finally, multiple tools to measure the 195 

accuracy of the prediction and to detect systematic errors by BOVIDS are provided as well as tools to 196 

represent and visualize the data that are a good starting point to apply further statistical methods (BOV 197 

4). Subsequently, components BOV 1 - BOV 4 are described in detail and a description on how to 198 

successfully apply BOVIDS to new data is given. A visualization of the complete process is given in 199 

Figure 2. 200 



BOVIDS: A deep learning-based software for pose estimation to evaluate nightly behavior and 

its application to Common Elands (Tragelaphus oryx) in zoos 

 
7 

 201 

Figure 2. Overview of the System BOVIDS and all its categories. 202 

2.3.2 BOV 1: Data preparation 203 

This step creates a collection of video files, one per night. If a user records the data by the LUPUS 204 

observation system, BOVIDS provides a python script that can concatenate and convert the output of 205 

LUPUS into a collection of avi-files. If some data is missing, the missing frames can be filled with a 206 

sequence of black frames to ensure a joint observation time over all video files. Such sequences of 207 

black frames will be labeled as Out by BOVIDS during prediction and therefore represent reality quite 208 

well. 209 

2.3.3 BOV 2: Object detection (OD) 210 

The final object detector is trained in multiple steps which will be first mentioned shortly and 211 

afterwards described in detail. The procedure goes along as follows: 212 

OD 1. Manual annotation of images. 213 

OD 2. Train a first version of the object detector. 214 

OD 3. Offline hard example mining (OHEM).  215 

a. Automatic annotation of unseen data. 216 

b. Evaluation of the suggested bounding boxes. 217 

c. Retrain the deep neural network. 218 

In the initial annotation task (OD 1), between 400 and 800 images per enclosure should be sampled 219 

stemming from four to six videos over the observation period to increase the data variability. The 220 

number of images sampled in total depends on how much data there is overall, how difficult the 221 

detection appears to be and whether individuals need to be distinguished. Those images are now 222 

annotated manually by a freely available third-party software called LabelImg (Tzutalin, 2015), and 223 

after a few data preparation steps, the initial training can be performed (OD 2). 224 
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To run the so-called “offline hard example mining” (Felzenszwalb et al., 2010), in short OHEM (OD 225 

3), the freshly trained object detector is used to automatically annotate 300 - 600 images out of unseen 226 

videos of the same set of enclosures (OD 3a). The quality of each such automatically drawn bounding 227 

box is evaluated manually by assigning one out of four classes (good, okay, poor, swapped) visualized 228 

in Figure 3 (OD 3b). If the bounding boxes are, overall, satisfyingly accurate, the procedure stops at 229 

this point. Otherwise, the poorly evaluated bounding boxes are corrected manually using LabelImg 230 

again. Those bounding boxes can be seen as “hard examples” as the current version of the object 231 

detector struggles at prediction. The freshly corrected annotations together with the well evaluated 232 

bounding boxes are used to increase the training set of the object detector and the object detector is 233 

trained on this new, extended set. This procedure can, in principle, be repeated until satisfying results 234 

are achieved but our experience shows that, once the used object detector generalizes decently, one 235 

round should be enough to achieve a sufficient accuracy. After having trained an accurately working 236 

object detector, this object detector is one ingredient required to train the action classifiers. 237 

 238 

Figure 3. Example of the four classes that can be given in evaluation, good (green), okay (yellow), bad (red) and swapped 239 
(blue). 240 

2.3.4 BOV 3: Action classification (AC) 241 

The action classifier’s goal is to predict the pose of an individual on a single image (single-frame, SF), 242 

respectively on four subsequent images placed next to each other (multiple-frame, MF). To achieve a 243 

well performing action classifier, the procedure reads as follows: 244 
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AC 1. Annotation of video files. 245 

AC 2. Training of a first version of the ACs. 246 

a. Preparation of an initial training set. 247 

b. Training of the ACs. 248 

AC 3. One or multiple rounds of OHEM 249 

a. Prediction of many new video files. 250 

b. Extracting hard as well as random examples as single images. 251 

c. Manually evaluating the performance on those examples. 252 

d. Retrain the network based on the evaluated images. 253 

When starting from scratch, it is most convenient to annotate the behavior of each single frame of a 254 

video by annotating the whole video (AC 1), for instance using the third-party software BORIS (Friard 255 

and Gamba, 2016). After this initial annotation, the output of BORIS needs to be converted into a 256 

machine-readable labeling of each time-interval of a specific video. Then, equally many images 257 

representing the time-intervals of each posture (Standing, LHU, LHD) are extracted automatically from 258 

the video files using the previously trained object detector. This balancing is necessary as the best 259 

performance of neural networks can only be achieved if all training classes are of approximately the 260 

same size (Japkowicz and Stephen, 2002). Due to this requirement and the underrepresentation of LHD 261 

in the video data, it is possible to extract roughly 500 images per class and per 14-hour video on our 262 

dataset. The collection of all training images needs furthermore to be prepared a bit (AC 2a), so 5% - 263 

10% of all images will be used as a validation set while the remaining 90% - 95% are the actual training 264 

set. Furthermore, to train the action classifiers for the binary classification task, the classes LHU and 265 

LHD need to be randomly merged, keeping in mind that LHU is the much more common posture and 266 

should therefore be overrepresented in the binary task in comparison to LHD. At this point, it is finally 267 

possible to train four EfficientNet-B3 CNNs, namely the single-frame classifier and the multiple-frame 268 

classifier for both (binary and total) classification tasks (AC 2b). 269 

These first versions of the action classifiers are supposed to work quite decently on the videos used for 270 

the training, but it is likely that the classification accuracy is worse on different videos of the same 271 

animal in which the arrangement of the enclosure as well as the light conditions might be quite 272 

different. This turns out to be indeed a challenge as machine learning theory predicts that a deep 273 

learning system performs only well if the images in the training set are an almost uniform sample from 274 

the distribution of all possible images to be predicted and that, furthermore, such deep learning systems 275 

are brittle to distribution shifts (Quiñonero-Candela et al., 2008). For this reason, it seems sensible to 276 

reduce the latter. To this end, we adapt the classical OHEM to the setting at hand (AC 3) as follows. 277 

First, a fairly large number of momentarily not annotated video files will be predicted by BOVIDS 278 

(AC 3a). The accuracy of this prediction is supposed to be quite decent (at least 90%) as Hahn‐Klimroth 279 

et al. (2021) already discussed. Therefore, BOVIDS provides an educated guess on labels of each time-280 

interval of many video files that could not have been annotated manually. Based on those labels, one 281 

samples a decent number of images in almost balanced classes distributed over the whole observation 282 

time (AC 3b). These images are close to a uniform sample of the data on balanced classes and can 283 

therefore be referred to as “random” examples. These examples can now be evaluated by a human 284 

observer in a moderate amount of time (AC 3c). It is to be stressed at this point that a decent classifier 285 

is a critical ingredient: As the classes are highly unbalanced, random sampling without an educated 286 

guess would result in a set of images with almost no LHD, therefore, this simple process would not be 287 

possible to be used for generating a training set. 288 
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Besides mining such random examples, it is also possible to extract “hard” examples easily. In this 289 

contribution, a hard example is defined as an image for which either the certainty of classification by 290 

the single-frame action classifier is small or if it belongs to a time-interval of which the predictions of 291 

the single-frame and multiple-frame action classifier disagree. It is supposed that neural networks can 292 

be finetuned efficiently by hard examples (Felzenszwalb et al., 2010). Therefore, instead of only 293 

generating random samples distributed across the observation time, we can nudge the training set into 294 

a direction such that information from momentarily hard to classify data gets boosted. 295 

Based on the human evaluation of the single images it is now possible to retrain the action classifiers 296 

on a much broader dataset that really represents the distribution to be classified. At this point, the 297 

training classes might get slightly unbalanced if the human annotation deviates strongly from the 298 

automatic one. In this case standard techniques like random upsampling might be considered (Branco 299 

et al., 2016) and are provided by BOVIDS. Once a decent object detector and a well-performing action 300 

classifier are generated, all data can be evaluated once more and the performance of BOVIDS can be 301 

measured. 302 

2.3.5 BOV 4: Data prediction 303 

The data prediction step consists of three major parts (DP 1 - DP 3) that are discussed in this section 304 

and read as 305 

DP 1:  Prediction 306 

P 1. Object detection phase 307 

P 2. Action classification phase 308 

P 3. Post-processing phase. 309 

DP 2:  Data evaluation 310 

DP 3:  Data presentation. 311 

 312 

2.3.5.1 DP 1: The prediction pipeline 313 

The system of Hahn‐Klimroth et al. (2021) predicts a video file in three phases: 314 

P 1. Object detection phase 315 

P 2. Action classification phase 316 

P 3. Post-processing phase. 317 

Those phases must not be confused with BOV 2 and BOV 3 that contain software to train the required 318 

deep neural networks while P 1 - P 3 are phases within the prediction pipeline of Hahn‐Klimroth et al. 319 

(2021) that require the previously trained networks. In the following, those phases are briefly 320 

explained, and improvements and new features provided by BOVIDS in contrast to the original system 321 

are highlighted. 322 

In the object detection phase (P 1), the system will first decompose a video file into so-called ‘time-323 

intervals’. This is a discretization of the continuous data into packages of seven seconds each. More 324 

precisely, for each time-interval the prediction pipeline will collect four images. Then, the object 325 

detector is used to cut-out and identify the animal present in the images or, respectively, declare that 326 

no animal is present. While this step is governed by a Mask-RCNN network by Hahn‐Klimroth et al. 327 

(2021) in the current version the architecture is changed to the much more recent yolov4 network which 328 
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improves the classification accuracy (Bochkovskiy et al., 2020) and significantly speeds up the 329 

complete prediction pipeline by approximately 40% on the same hardware. The merit of this step is 330 

two-fold. First, as pointed out by Yosinski et al. (2014), it increases the similarity between images 331 

taken from different enclosures. This dramatically improves the chance of meaningful learning of the 332 

poses from various videos. Second, it is used to distinguish between distinct individuals within the 333 

same enclosure. This feature is a novelty of the present work, while it was previously reported as 334 

theoretically possible (Hahn‐Klimroth et al., 2021). At the end of the object detection phase, each time-335 

interval is represented in two ways for every individual: As a sequence of single images (single-frame) 336 

and additionally as one image in which these images are placed next to each other (multiple-frame 337 

encoded representation (Ji et al., 2013)). 338 

The subsequent step, the action classification phase (P 2) to determine the behavioral classes, is a 339 

classical image classification task. For both, the single- and multiple-frame representations, this task is 340 

governed by two independently trained EfficientNetB3 CNNs per time-interval. The final prediction 341 

for any time-interval is calculated as the average over both outcomes. Hahn‐Klimroth et al. (2021) 342 

already describe that the so-called “total classification” task (distinguishing Standing, LHU, LHD) 343 

might be much more difficult than the “binary classification” task (distinguishing Standing and Lying) 344 

and gives the possibility to map the final prediction from LHU and LHD to Lying. The approach of 345 

BOVIDS towards this binary task is slightly different. It is necessary to train a set of independent 346 

networks that purely govern this binary classification such that possible features can eventually be 347 

better learned. 348 

To control classification flattering, Hahn‐Klimroth et al. (2021) propose a set of post-processing rules 349 

(P 3) which are applied to the sequence of classifications of time-intervals. Those post-processing rules 350 

dismiss very short sequences of a specific action as those sequences are likely to stem from short 351 

periods of false classifications. In the current setting the set of post-processing rules is extended. It is 352 

now possible to handle flattering between Out and a specific behavior more smoothly to incorporate 353 

short periods in which the object-detector failed to detect or identify the present individual. Of course, 354 

such a post-processing step might dismiss short phases which are present in the data. Therefore, 355 

choosing an appropriate set of rules is a trade-off between a stronger methodological error (errors made 356 

by BOVIDS through misclassification of short events) and a systematic error (errors caused by 357 

dismissing short phases on real data). BOVIDS contains tools for a systematic study of both types of 358 

errors. Basically, it first applies the post-processing rules to the manually annotated data and analyses 359 

the accuracy as well as the number of dismissed short phases. If the systematic error is appropriate for 360 

the application, one can compare BOVIDS’ prediction with the post-processed real data to describe the 361 

methodological error. 362 

In the present work, the chosen set of post-processing rules varies significantly between the binary and 363 

the total classification task. Indeed, as the binary classification task is meant to study longer periods of 364 

Standing and Lying, phases up to 5 minutes are dismissed. Furthermore, in the total classification task, 365 

it is distinguished between adult Common Elands and non-adult Common Elands as the latter show 366 

shorter phases than the adult individuals. A detailed overview over the used post-processing rules can 367 

be found in Table 2 in the appendix. 368 

2.3.5.2 DP 2: Data evaluation 369 

As the prediction of a deep-learning based system works, in the end, as a black-box, it is very important 370 

to assure the quality of the prediction regarding all quantities of interest. Fortunately, a good testing 371 

set is already given by the manually annotated videos per individual. To quantify the accuracy of the 372 
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prediction on the testing set, performance indicators from machine learning theory as well as biological 373 

key figures are evaluated by the following four quality criteria. 374 

QC 1. Analysis of the object detector per night (“detection density”). 375 

QC 2. Accuracy and f-score as well as a comparison of the number of phases, the median phase 376 

length, and the overall percentage per activity class between BOVIDS’ prediction and the 377 

manual annotation. 378 

QC 3. Number, length, and type of misclassified sequences. 379 

QC 4. Visual checking for outliers. 380 

While QC 2 and QC 3 are quality criteria which can be only evaluated with respect to manually 381 

annotated videos, QC 1 and QC 4 can be applied to all predicted data. 382 

In the first step (QC 1), the performance of the object detector should be checked in detail. It may 383 

happen that the object detector fails to detect the individual in certain videos quite often, which could 384 

be due to different light conditions or maybe because of heavy truncation. Of course, it is also possible 385 

that the individuals are Out for a longer period. To check the performance, BOVIDS outputs an 386 

overview that reports the percentage of detections of an individual by the object detector per video. If 387 

this value turns out to be noticeably low, one should check the original data to see if this low “detection 388 

density” can be explained. 389 

Second, if the object detector works satisfactorily well and a good set of post-processing rules was set, 390 

the performance of the classification part of BOVIDS needs to be analyzed. To this end, it might be 391 

necessary to dismiss data with a significantly high amount of Out in the manually annotated nights. 392 

Once a satisfactory testing set is chosen, accuracy as well as f-score (QC 2) are standard tools to 393 

measure the performance of a deep learning system. The accuracy is defined as the percentage of 394 

correctly classified time-intervals by BOVIDS. While this is indeed an important key quantity, it does 395 

not describe BOVIDS’ performance on underrepresented classes (like LHD) sufficiently. A more 396 

sensitive measure is the f-score, the harmonic mean between the positive predictive value (precision) 397 

and the sensitivity (recall) per class. Furthermore, it might be that the accuracy and the f-score are quite 398 

high but there is a lot of prediction flattering increasing the number of phases per activity class 399 

dramatically. Therefore, the latter should be compared between the post-processed manual annotation 400 

and BOVIDS’ prediction. Further highly relevant biological quantities are the median phase length and 401 

the percentage per behavioral class. Thus, BOVIDS’ prediction quality needs to be checked with 402 

respect to those quantities as well. Finally, it is important to understand which kind of 403 

misclassifications occur and to, potentially, derive patterns. To analyze QC 2 and QC 3, BOVIDS 404 

contains a tool that allows to report the accuracy, f-score, deviation in the number of phases as well as 405 

a detailed description of misclassified sequences. 406 

If QC 1 - QC 3 are satisfactorily met, BOVIDS can be used to generate a final prediction of the 407 

unlabeled videos. Of course, QC 1 should be applied to unlabeled videos as well as it is a good indicator 408 

whether the object detector works well on a specific video. But even if the object detector detects an 409 

object quite frequently, it might happen that BOVIDS provides poor quality on a specific night if there 410 

are problems in the original data: for instance, individuals could be heavily truncated in a specific night. 411 

In those cases, it is reasonable to assume that the activity budget of the individual looks significantly 412 

different as in other videos which can be checked rather easily visually by searching for such outliers 413 

(QC 4). To this end, a short graphical representation of the activity budget in a video is generated by 414 

BOVIDS (see Figure 4) which can be used to identify those outliers. If the graphical representation of 415 
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a night is conspicuous, one can check the original data on a sample basis to investigate BOVIDS’ 416 

performance. 417 

 418 

Figure 4. Example of one night of one Common Eland with the plotted phases of the three behavioral states of the total 419 
system given by BOVIDS to look for quality criteria QC 4. 420 

2.3.5.3 DP 3: Data presentation 421 

BOVIDS provides further functionalities to present the produced data elegantly which will be briefly 422 

described in this section and shown in more detail with the data of the case study in the results’ section. 423 

Next to the graphical representation (see QC 4) of each night, BOVIDS produces a document that 424 

contains an overview about the most important statistical key quantities, for instance, the percentages 425 

of the single behaviors in the activity budget. 426 

Finally, BOVIDS can be used to generate an overview about an individual’s behavior over all evaluated 427 

nights or even about a species’ average behavior over all nights of all individuals. The outcome is a 428 

table containing the important statistical key values, all the data of the single individuals and additional 429 

information to make data analysis with standard statistical software packages easy. Furthermore, first 430 

graphical representations of the nightly activity are given as can be seen in Figure 5. 431 
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 432 

Figure 5. Timeline containing the percentage of all behavioral states and their means over all nights of all analyzed 433 
individuals of Common Elands. The visualization is smoothed by a rolling average over 3 minutes. (A) is the binary 434 
classification and contains 822 nights of 25 individuals, (B) is the total classification containing 589 nights of 16 individuals. 435 

3 Results 436 

3.1 BOVIDS’ performance in the case study 437 

This section is devoted to reporting the validity of post-processing rules and the quality criteria QC 1 438 

- QC 4 in the case study. Subsequently, in the next section, the nocturnal behavior of the Common 439 

Elands is presented. 440 
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A set of post-processing rules can be considered as valid if the systematic error induced by these rules 441 

is negligible for the quantities of interest. On the dataset at hand and in both classification tasks, the 442 

accuracy of the post-processed data ranges from 99.6% to 100% and even the f-score of all activity 443 

classes lies constantly over 99.2%. Accordingly, the percentage per night per individual of all 444 

behavioral classes under both classification tasks are approximated up to an error of 0.02% in the worst 445 

case. Moreover, the average median phase length per individual is overshot by 21s of 1796s (Standing), 446 

34s of 1375s (LHU) and 24s of 322s (LHD) in the total classification task while those values are 130s 447 

of 1834s (Standing) and 239s of 4226s (Lying) under binary classification. The number of phases per 448 

activity class is underestimated, more precisely, the mean deviation over all individuals is -0.29 of 8.2 449 

(Standing), -1.02 of 23.0 (LHU) and -0.67 of 14.6 (LHD) in the total classification task while it is -1.4 450 

of 8.9 (Standing) and -0.9 of 8.5 (Lying) in the binary classification system. 451 

To analyze the quality criteria, the predictions of BOVIDS are compared to the manually annotated 452 

and post-processed nights. All nights in which individuals were at least 20% of the time Out, either by 453 

BOVIDS’ prediction, or, if manually annotated by the humans’ prediction, were dismissed as such 454 

nights do not yield good evidence on the individual’s activity budget. Thus, the quality criteria are only 455 

analyzed for the remaining nights. The results of all quality criteria are presented in this section. 456 

In the analysis of the accuracy (QC 2) of BOVIDS’ prediction with respect to the manually annotated 457 

post-processed data, the following results are found. The median accuracy per night lies at 99.4% with 458 

a 0.25-quantile of 99.1% and a 0.75-quantile of 99.4% in the total classification task. Furthermore, the 459 

median f-scores turn out to be 99.6% (Standing), 99.5% (LHU) and 96.3% (LHD) with minima 94.4% 460 

(Standing), 95.4% (LHU) and, respectively, 93.2% (LHD). In the binary classification task, the 461 

corresponding values read as follows. The median accuracy is 99.8% with a 0.25-quantile of 99.4% 462 

and a 0.75-quantile of 99.8% while the f-scores are at least 93.1% (Standing) and 97.1% (Lying) with 463 

a median of 99.5% and, respectively, 99.8%. Furthermore, the percentage of each behavioral class per 464 

individual is approximated up to at most 0.03% in both classification tasks. In the total classification 465 

system, the mean deviation in the number of phases is 0.34 of 7.9 (Standing), 0.53 of 22.0 (LHU) and 466 

0.37 of 13.9 (LHD). The values in the binary classification task are 0.05 of 7.5 (Standing) and 0.03 of 467 

7.6 (Lying). Finally, the median phase length per individual is underestimated by -22.6s of 1817.6s 468 

(Standing), by -117.0s of 1409.9s (LHU) and -1.8s of 345.6s (LHD) in the total classification task. In 469 

the binary classification system, those values turn out to be -2.87s of 1970.9s (Standing) and -14.7s of 470 

4464.5s (Lying). 471 

The next quality criteria to analyze is the number, length, and type of misclassified sequences (QC3). 472 

In the total classification task, we find, overall, 179 misclassified sequences in 62 nights (thus, on 473 

average, 2.9 sequences per night). Out of 179 sequences, 49 sequences are misclassifications between 474 

a real behavior and being Out and in 65 cases, BOVIDS predicted LHD while the actual behavior was 475 

LHU. The remaining 65 sequences were mostly short confusions between Standing and LHU. In 476 

contrast, in the binary classification task, there are 181 misclassified sequences in 170 nights (on 477 

average 1.1 sequences per night) out of which 78 are confusions between a behavioral class and Out, 478 

in 78 cases, BOVIDS predicts Standing while the human label is Lying and in 27 cases vice versa. 479 

Furthermore, out of the 181 sequences, 46 misclassifications are sequences of length at most 1 minute 480 

and 47 additional misclassifications are below 5 minutes. 481 

Quality criteria QC 1 and QC 4 are with respect to all predicted nights. Hereby, QC 1 checks the 482 

performance of the object detector. The detection density per individual ranges from 87.2% to 100% 483 

while its median turns out to be 99.8% with a 0.25-quantile of 97.5% and a 0.75-quantile of 100%. To 484 

analyze the last quality criteria (QC 4), namely, to look for apparent outliers, BOVIDS creates one plot 485 
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per predicted night (for the binary and for the total classification task respectively) representing the 486 

timely course of the behavioral phases (see Figure 4). There are few apparent outliers on data which 487 

was not manually labeled, and the automatic annotation was checked randomly. In most cases, it was 488 

found that BOVIDS’ prediction is correct even if it seemed to be suspicious. The observed 489 

misclassifications during this step fit exactly into the description of the errors in QC 3 and the frequency 490 

is comparable. 491 

3.2 The nocturnal behavior of Common Elands 492 

The data presentation tools of BOVIDS give a first visual result regarding the relative distribution of 493 

the behavioral states, their means over all nights, and the rhythm of phases of behavioral states (see 494 

Figure 5). The underlying data is normalized to the behavioral states excluding Out. The optically 495 

conjectured increase of Lying over the night between 19:00 and 06:00 in the binary classification task 496 

is confirmed by a linear regression (R² = 0.799 and p < 0.0001). In addition to the visual representation, 497 

BOVIDS’ output consists of tables, including a summary table for every individual containing relevant 498 

statistical key values as well as a list of number of phases, durations, and the percentage of behaviors 499 

per night. This significantly facilitates the creation of an activity budget (see Figure 6) and provides a 500 

first insight into the nocturnal behavior of Common Elands. The graphical representation yields to the 501 

conjecture that there might be differences in the total duration of the behaviors per night between 502 

certain groups of individuals which are tested rigorously in the following. 503 
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 504 

Figure 6. Activity budgets of all analyzed Common Elands: (A) in the binary classification with 822 nights of 25 505 
individuals, (B) in the total classification with 589 nights of 16 individuals. T.oryx_01 to T.oryx_05 are male adult 506 
individuals and T.oryx_06 to T.oryx_17 female adult individuals while T.oryx_18 to T.oryx_21 are subadult and T.oryx_22 507 
to T.oryx_25 are young individuals. 508 

The data with respect to Standing and LHU can be assumed to be normally distributed (p_Standing = 509 

0.9524 and p_LHU = 0.2715) while the total duration per night of LHD deviates significantly from 510 

normality (p_LHD = 0.0015) and is transformed. First, adult male and adult female individuals are 511 

compared to investigate sex differences. Afterwards, age specific analyses’ will be conducted within 512 

the group of female individuals as there is only one non-adult male individual in the sample. To 513 

investigate the differences based on sex and to account for possible influences by the housing 514 

conditions, a two-factor ANOVA is conducted with the factors keeping zoo and sex between the adult 515 

animals for each behavior of the total classification system (n = 9 individuals with 328 nights consisting 516 

of 4 males with 151 nights and 5 females with 177 nights). The holding zoo can be withdrawn as a 517 

significant factor (p > 0.37), but the sex has a significant influence on LHD (p = 0.0281) whereby the 518 

males’ values exceed the females’, see Figure 7 (A). Finally, a two-factor ANOVA with factors keeping 519 

zoo and age within all female individuals in the total classification system (n = 11 individuals with 411 520 

nights consisting of 3 young with 118, 3 subadults with 116 and 5 adults with 177 nights) is conducted. 521 

Again, the holding zoo can be withdrawn as a factor (p > 0.58), but the age influences the total duration 522 
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of Standing (p_young-adult = 0.0038) and LHD (p_young-adult = 0.0009; p_subadult-adult = 0.0136) 523 

significantly as a corresponding post-hoc analysis verifies. Hereby, non-adult individuals spend more 524 

time on LHD than adult ones, whereby adult ones spend more time Standing, see Figure 7 (B). While 525 

the age comparison could only be carried out for female individuals, it is an advantageous circumstance 526 

that one individual could be recorded once as the subadult male individual (T.oryx_18) and moved 527 

during the observation phase to a different zoo in which it was observed as an adult male (T.oryx_01). 528 

This allows for a direct comparison of the behavior between the subadult and adult age of this 529 

individual as the husbandry conditions in the zoos studied were already considered negligible. An 530 

unpaired t-test shows that the total amount of Standing (p < 0.0001) and LHD (p = 0.0001) differs 531 

significantly between the two observation periods of this individual, confirming the previously found 532 

results in differences due to age. 533 

 534 

Figure 7. Comparison with respect to the total duration of each behavior per night in the total system. (A) Sex comparison 535 
(with n = 9 individuals with 328 nights, consisting of 4 males with 151 nights and 5 females with 177 nights) in which 536 
significant differences in LHD (p = 0.0281) arise. (B) Age comparison with (n = 11 individuals with 411 nights, consisting 537 
of 3 young with 118, 3 subadults with 116 and 5 adults with 177 nights) that yields to significant differences in Standing 538 
(p_young-adult = 0.0038) and LHD (p_young-adult = 0.0009; p_subadult-adult = 0.0136). 539 

A second variable of interest is the length of each behavioral phase. Regarding this quantity, the binary 540 

classification system (Standing and Lying) was used for the analysis as well as the duration of LHD 541 

from the total classification system as one Lying phase might be interrupted by several events of LHD. 542 

A Wilcoxon test reveals that there are significant differences (p = 0.0003) in the median length of 543 

phases per individual within Lying between males and females (n = 17 individuals with 539, consisting 544 

of 5 males with 179 nights and 12 females with 360 nights). For this reason, these two groups were 545 

analyzed separately. Within the females (n = 19 individuals with 613 nights, consisting of 4 young 546 

with 137 nights, 3 subadults with 116 and 12 adults with 360 nights), a post-hoc analysis shows 547 

significant differences in the median duration of the Standing phases between young and adult 548 
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individuals (p_Standing = 0.0033) and no significant differences between young and subadult animals 549 

(p_Standing = 0.1143, p_Lying = 0.629). Therefore, a detailed analysis is made after splitting into three 550 

categories adult male, adult female, non-adult (young and subadult) individuals. Figure 8 visualizes 551 

the distribution of the phase length regarding these categories. In median, the adult males exhibit the 552 

longest Lying phases with 89.6 minutes, followed by the non-adult animals (78.5 minutes) while the 553 

females show, with 59.3 minutes, the shortest Lying phases. While this is also true for the first and 554 

third quartile, the longest Lying event is achieved by the non-adults with 369.7 minutes. Within 555 

Standing, non-adult individuals seem to show a shorter median phase length (21.2 minutes) than adults 556 

(35.5 female, 30.8 male). With respect to phases of LHD, adult male individuals and non-adult 557 

individuals show, with a median value of 4.6 minutes and, respectively, 4.4 minutes a slightly longer 558 

duration than adult females with a median of 3.7 minutes. Nevertheless, the longest observed phase of 559 

LHD was by non-adult individuals (47.8 minutes) followed by the male adults (32.9 minutes) and the 560 

female adults (14.8 minutes). 561 

 562 

Figure 8. (A) For all 25 Common Elands is the distribution of the length of phases in minutes of Standing and Lying from 563 
the binary classification task plotted and the animals are classified as adult male (n = 5 individuals with 179 nights), adult 564 
female (n = 12 individuals with 360 nights) and non-adult animals (n = 8 with 280 nights). (B) Only the 16 Common Elands 565 
evaluated by the total classification system are used. The length of phases in minutes of LHD are plotted and the animals 566 
are classified as adult male (n = 4 individuals with 151 nights), adult female (n = 5 individuals with 177 nights) and non-567 
adult animals (n = 7 individuals with 261 nights). 568 

Beside the length of the phases, the number of phases per night is also an interesting parameter. Figure 569 

9 visualizes the number of Lying phases (binary classification system) as well as the number of LHD 570 



BOVIDS: A deep learning-based software for pose estimation to evaluate nightly behavior and 

its application to Common Elands (Tragelaphus oryx) in zoos 

 
20 

 

phases (total classification system). Note that the number of Standing phases equals the number of 571 

Lying phases + 1. The above illustration highlights the different age categories of young, subadults and 572 

adults, with sex being distinguished in the adult category. The phases in Lying (see Figure 9 (A)) appear 573 

to be constant across individuals and differences between sex or age groups are not evident. The 574 

situation is different when it comes to LHD, where the young animals have a significantly higher 575 

number of phases than the adults. The subadults tend to have slightly more LHD phases than the adults, 576 

but they are already closer to the values of the adults than to those of the young. 577 

 578 

Figure 9. Number of phases for every individual marked are the groups adult male, adult female, subadult and young for 579 
(A) Lying and (B) LHD. 580 

4 Discussion 581 

4.1 BOVIDS 582 

4.1.1 Performance in the case study 583 

In this section, the validity of the post-processing rules as well as the four quality criteria are discussed. 584 

As can be seen in section BOVIDS’ performance in the case study, only very few activity phases are 585 

dismissed on manually annotated nights when the selected post-processing rules are applied. 586 

Furthermore, both the accuracy and the f-scores are close to 100%, so that overall, the set of post-587 

processing rules seems to be valid from a computer science point of view. Further, the percentage of 588 
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each behavioral class is very well approximated in both classification tasks, so that no mentionable 589 

errors occur. Not very surprisingly, the post-processed data contains few phases less and slightly longer 590 

median phase lengths as very short events are dismissed, so the post-processing rules imply almost no 591 

bias in the real data. These values are of course a bit higher in the binary classification task, since 592 

longer phases up to five minutes are not considered. But firstly, even this choice does not imply much 593 

bias in the data, and secondly, the few short events of Standing and Lying do not significantly affect 594 

the animals’ rhythms. Of course, neglecting the short events also increases the median phase length. 595 

However, this happens only very moderately, by a factor of between 5.6% (Standing) and 7.5% (LHD). 596 

It will be seen later that the methodological error will underestimate those quantities with respect to 597 

the post-processed data slightly. Therefore, the errors partly account for each other. 598 

The object detector seems to work very well (QC 1) as the median object detection density is very high. 599 

On nights with a lower detection density, the video material was checked manually, and it can be 600 

observed that the individuals were mostly Out if the object detector did not find them, or only small 601 

parts are visible at the border of the video recording. 602 

Subsequently, quality criteria QC 2 and QC 3 are discussed. Since the number of phases per activity 603 

class and the phase length analysis refer to Standing and Lying from the binary classification task as 604 

well as LHD from the total classification task, the discussion focuses on the reliability of these 605 

quantities. Overall, the accuracy and the f-score of BOVIDS’ prediction are very high for machine 606 

learning based predictions. Recent studies on comparable hard data, such as that of Porto et al. (2013) 607 

on the discrimination of Standing and Lying behavior on video recordings of cows in stables, achieve 608 

an average accuracy of 92%. Our accuracies of 99.8% in the binary classification task and 99.4% in 609 

the total classification task clearly exceed this value. Furthermore, even the median f-score of the 610 

highly underrepresented class LHD is, with 96.4%, astonishingly high for a deep learning system. 611 

These values directly show that the percentage of each behavioral class is predicted very accurately 612 

and that there is no methodological bias in the expected activity budget. 613 

Moreover, video action classifiers tend, normally, to so-called classification flickering, thus very short 614 

phases of misclassifications which do not really influence the accuracy and the f-score of the prediction 615 

system but have huge influence on the number of phases per activity. The post-processing rules are 616 

meant to take care of this effect (Hahn‐Klimroth et al., 2021). The results show that BOVIDS succeeds 617 

in underestimating or overestimating the number of phases per activity class only very slightly on 618 

average. More precisely, the number of LHD phases is overestimated by 2.7% on average and the 619 

number of Standing and Lying phases is only overestimated by less than 1%. The median phase length 620 

is approximated very accurately as well, as it is only underestimated by at most 0.5% on average. It 621 

can be noted that even in enclosures containing two different individuals, BOVIDS’ prediction does 622 

not become significantly worse. This has two reasons: First, and most importantly, the used object 623 

detector seems to be able to discriminate between two individuals very accurately. Secondly, the action 624 

classifier seems to be very robust against truncation effects when, for example, the bounding boxes of 625 

the two animals overlap. 626 

In summary, the activity budget per night is predicted without any bias, as expected, while the median 627 

phase length per activity class is overestimated due to post-processing rules by a moderate factor of no 628 

more than 7.0%. Thus, the automatic prediction is very precise with respect to the post-processed data. 629 

Furthermore, the overall accurate description of the three poses Standing, LHU and LHD by BOVIDS 630 

can be seen in connection with the types of misclassifications occurring on the testing data. All 631 

misclassifications between Out and a real activity class are due to heavy truncation or occluding effects 632 

in which a human annotator might see hooves or small parts of the animal and is able to safely infer 633 
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the behavior, but a machine cannot. In this case, it is favorable if the object detector does not find the 634 

animal in the first place. Furthermore, almost all misclassifications between LHU and LHD can be 635 

explained by the fact that Common Elands show, from time to time, a grooming behavior at their hind 636 

leg which is, on a single image, hard to distinguish from LHD. Such errors need, of course, to be 637 

considered and analyzed, but do not seem to be fixable by more training data or fine-tuning the 638 

networks if the input data format does not change significantly. As mentioned earlier, the median phase 639 

length as well as the median number of phases per night are only slightly overestimated. In the binary 640 

classification task, there are some short misclassifications with respect to the post-processed data less 641 

than five minutes in length. These errors are just delayed transitions between the behavioral states due 642 

to, for instance, the applied rolling average during post-processing. Therefore, these misclassifications 643 

neither influence the number of phases of Standing and Lying nor the animal’s rhythms, but only 644 

slightly change the total duration of a specific phase. Finally, there are few misclassifications that are, 645 

probably, unavoidable in a deep learning classification task. Of course, accuracy can, in principle, 646 

always be improved by additional rounds of example mining and fine-tuning the action classifiers, but 647 

it is questionable whether an even higher median accuracy as 99.4% can be reached on a three-classes 648 

classification task. 649 

A natural question, of course, is how well the findings from the test series can be generalized to unseen 650 

data of the same enclosures. Recall that the action classifiers are, in the end, trained on a random 651 

collection of images over the whole observation time due to offline hard example mining. Therefore, 652 

the testing set can be considered an almost random sample which includes a few more difficult images 653 

as expected on a random balanced sample. Thus, the analysis of the performance on the manually 654 

annotated nights (the testing set) yields a very good approximation of the overall performance. This 655 

claim is also supported by the analysis of QC 4. The type and frequency of errors on randomly selected, 656 

non-manually annotated nights were found to be comparable to those in the test set. 657 

Finally, even if BOVIDS makes a small number of mistakes that would not occur if a trained observer 658 

manually annotated the data, the very large dataset overcompensates those few errors. Another 659 

approach to generating a large dataset is to have different, probably untrained, human observers 660 

annotate a comparable number of nights. Apart from the much higher cost, it is supposed that the inter-661 

observer reliability might be worse than the reliability of BOVIDS. Overall, our findings show that 662 

BOVIDS performs very accurately in the case study and its predictions can be safely used to generate 663 

a large amount of annotated data, which would not have been easily possible without automation. 664 

4.1.2 Universality, limitations, and extensions 665 

A major strength of BOVIDS might be its adjustability to different settings. If the three positions 666 

Standing, LHU and LHD need to be detected from video files, the system can be used on data of 667 

ungulates. BOVIDS is tested extensively on the data of Common Elands and other African bovids 668 

stemming from various zoo enclosures. It is therefore reasonable to assume that, given sufficient 669 

training material, its performance is equally high under varying conditions. For instance, it is likely to 670 

perform well in the observation of various ungulates of different sizes from multiple continents in zoo 671 

enclosures or the analysis of livestock’s behavior in stables. Since the present data are recorded in very 672 

different enclosures with partly high degrees of truncation and background noise, BOVIDS might 673 

perform well in outdoor enclosures if the camera installment is flawlessly possible in the sense that the 674 

whole outdoor enclosure can be recorded which would be a large step towards observations in the 675 

ungulates’ natural habitat. A further research direction would be the analysis of BOVIDS’ performance 676 

on data of larger groups of ungulates. While technically the detection of individuals works the same, it 677 

is clearly a much more difficult task to distinguish many individuals from each other than it is to 678 
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identify two individuals reliably. Finally, on the technical side, it might be tempting to extend 679 

BOVIDS’ functionality. For instance, if individual detection fails in large groups, one could implement 680 

a scan-sampling method that allows to at least report an average behavior of all the individuals. 681 

4.2 The nocturnal behavior of Common Elands 682 

A first finding is that independent from the factors age, sex, and keeping zoo, all individuals exhibit a 683 

higher percentage of Lying than Standing during the night. As the night progresses, the percentage of 684 

Lying increases significantly. This is in line to findings of similar studies on African Elephants 685 

(Loxodonta africana), Blue Wildebeest (Connochaetes taurinus) or Arabian Oryx (Oryx leucoryx), 686 

where the observed animals also show most of the sleeping behavior or inactivity in the second part of 687 

the night (Gravett et al., 2017; Davimes et al., 2018; Malungo et al., 2021). 688 

When looking at LHD, it should be noted that this most likely corresponds to the typical REM (rapid 689 

eye movement) sleep posture. As mentioned in the ethogram section, a behavioral component to 690 

recognize REM sleep is the head being down due to postural atonia (Lima et al., 2005; Zepelin et al., 691 

2005). In this study, we use this characteristically REM sleep posture to determine REM sleep. This 692 

approach is in line with the study by Zizkova et al. (2013) on Common Elands and the study by 693 

Ternman et al. (2014) on cows, which shows that REM sleep can be detected with sufficient certainty 694 

based on behavioral surveys. This procedure is also supported by a study on Lesser Mouse-deer 695 

(Tragulus kanchil), which shows that REM sleep can be divided into two categories, one of which is 696 

the most common, where the head lies down most of the time, making this a valid indicator to recognize 697 

REM sleep in behavioral studies (Lyamin et al., 2021). 698 

Sex has been found to have an influence on the total amount of LHD during the night. Here, the adult 699 

females sleep slightly longer than the adult males, a fact which is also known across multiple 700 

phylogenetic states, for birds and mammals (Cajochen et al., 2006; Steinmeyer et al., 2010; Rattenborg 701 

et al., 2017). However, other studies show that there are no sex differences when individuals are 702 

similar-sized between the sexes, while dissimilar-sized animals should have differences (Ruckstuhl 703 

and Kokko, 2002). In Common Elands, males are larger than females (Leslie Jr, 2011; Myers et al., 704 

2021), confirming the differences found between the sexes. In addition, Standing was found to increase 705 

with age. Interestingly, this finding is supported by the recording of a male individual at both subadult 706 

and adult age, which shows a significant increase in the total amount of Standing per night. Our results 707 

are in line with previous results on different mammals, as age is known to be an influencing factor for 708 

activity/rest cycles (Siegel, 2005; Ruckstuhl and Neuhaus, 2009; Steinmeyer et al., 2010). Moreover, 709 

age also influences REM sleep behavior in mammals and birds (Ruckstuhl and Kokko, 2002; Cajochen 710 

et al., 2006; Steinmeyer et al., 2010; Rattenborg et al., 2017). This effect was also observed in the 711 

Common Elands in this study, where the extent of LHD differs between the three age classes young, 712 

subadults and adults. A study on Giraffes (Giraffa camelopardalis) also shows that age and sex have 713 

an influence on the behavior Standing, while only age has an influence on REM sleep (Burger et al., 714 

2021). The study by Burger et al. (2021) further reveals that housing conditions can be discarded as an 715 

influencing factor for both behaviors. These results correspond to the results in this study with Common 716 

Elands, where the keeping zoo and thus housing conditions can also be discarded as influencing factors. 717 

Of course, the factor housing condition consists of several factors as, among others, enclosure size, the 718 

presence or not of other types of animals in the vicinity or lighting conditions. While the recorded data 719 

does not allow to evaluate each possibly influencing factor individually, our study reveals that the sum 720 

of those effects is negligible and can be discarded.  721 
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Besides the total amount of time during the night, the duration of the single phases is also of interest. 722 

Here, the males differ from the females within Lying, whereby males show longer Lying phases than 723 

females. This fits with the result that adult males have a higher amount of LHD. Also, the age has an 724 

influence on the lengths of the phases. The non-adult animals show shorter periods of Standing and 725 

longer periods of Lying than the adult ones. This also matches with the results regarding the nocturnal 726 

activity budgets. Within LHD the number of phases vary between the different categories of 727 

individuals. The mean phase length of LHD in all adult Common Elands is 9.5 minutes on average, 728 

with females slightly below this at 8.8 minutes and males slightly above at 10.2 minutes. These phase 729 

lengths are consistent with those of male Arabian Oryx (Oryx leucoryx), which have a mean phase 730 

length of 7 ± 2 minutes in the dark in winter, and 10.5 ± 1.5 minutes over the 24 h cycle (Davimes et 731 

al., 2018). 732 

Finally, also the number of phases is an interesting key figure in behavioral analysis. Within Lying and 733 

Standing it is thrilling that almost all animals show very similar numbers of phases. Here, of the 25 734 

animals observed, 23 have a median between 7 and 9 phases per night with quite little variation per 735 

individual. The other two animals are moderate outliers downwards. Also, the mean lies between 6.6 736 

and 9.1 within 22 individuals and within all individuals the SEM is at most 0.36 indicating a constant 737 

behavior within the single individuals. This suggests that certain rhythms are present and should be 738 

investigated in more detail in further analyses, because the course over the night also suggests certain 739 

rhythms. Within LHD, a different picture of the underlying distributions emerges. Here, the adult 740 

individuals show a lower proportion than the non-adult individuals, and within the non-adult 741 

individuals there are also strong differences between the young ones and the subadult ones. Only a few 742 

exceptions are to be recognized, which are explainable as follows. T.oryx_22 is clearly different from 743 

the veined young and is closer to the values of the subadult individuals. However, T.oryx_22 is also 744 

the oldest animal among the group of young ones. Furthermore, T.oryx_17, which is the oldest animal 745 

in the case study, has a higher median number of phases than the other adult animals, especially the 746 

female ones. Excluding these exceptions, young individuals have a median of 40-42 phases of LHD 747 

and subadults show 13-15 phases. In contrast, adult females have 7-9 phases of LHD and adult males 748 

9-11 phases. This again indicates differences between the sexes and high similarities within each group 749 

of individuals. Again, it seems that certain rhythms are present depending on the sex and the age but 750 

being independent from the specific individual. This observation might be the starting point of a much 751 

more detailed analysis of rhythms in African ungulates’ behavior. 752 
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11 Appendix 922 

11.1 Overview data 923 

A detailed overview about the used data is given in Table 1. Hereby, for every individual the categories 924 

age, sex and the keeping zoo as well as the stabeling conditions are contained. The exact age of the 925 

observed individuals ranges from one month to 16.5 years categorized as follows: ‘young’ ranges from 926 

birth until the time of weaning with about 6 months, then the individuals become ‘subadult’ until sexual 927 

maturity with about 2 years of age and after that they are listed as ‘adult’. 928 

Table 1. The Common Elands observed in this study and their individual factors age (categorical: young, subadult and 929 
adult) and sex. Further, the housing zoo and the given stabeling conditions (standing single or together), are contained. The 930 
duration gives the recording start and end time and the totally recorded number of nights as well as the manually annotated 931 
number of nights are listed, if nights had to be removed because of an object detection density score smaller than 80% the 932 
used number of nights are listed with the real number of nights in parentheses. Finally, the number of pictures describes the 933 
number of annotated images in the object detection training set after OHEM. Observe that T.oryx_01 and T.oryx_18 is the 934 
same individual recorded at different times after moving from one zoo to another. Also, it is marked if the individuals are 935 
evaluated with the total or binary classification system. 936 

Individual Age Sex Keeping Stabeling Nights Duration 
Nights 

per hand 
Pictures Binary Total 

T.oryx_01 adult m Zoo_1 single 49 17-7 h 2 404 x x 

T.oryx_02 adult m Zoo_4 single 29 17-7 h 10 544 x x 

T.oryx_03 adult m Zoo_3 single 38 18-7 h 2 517 x x 

T.oryx_04 adult m Zoo_5 single 28 17-7 h 15 860 x -- 

T.oryx_05 adult m Zoo_2 single 35 17-7 h 4 519 x x 

T.oryx_06 adult f Zoo_1 single 49 17-7 h 2 404 x x 

T.oryx_07 adult f Zoo_4 single 29 17-7 h 10 487 x -- 

T.oryx_08 adult f Zoo_4 single 29 17-7 h 10 519 x -- 

T.oryx_09 adult f Zoo_4 single 29 17-7 h 10 504 x -- 

T.oryx_10 adult f Zoo_4 single 15 17-7 h 10 512 x -- 

T.oryx_11 adult f Zoo_3 single 21 18-7 h 2 550 x x 

T.oryx_12 adult f Zoo_5 single 28 17-7 h 11 513 x -- 

T.oryx_13 adult f Zoo_5 single 28 17-7 h 14 541 x -- 

T.oryx_14 adult f Zoo_2 together 35 17-7 h 2 604 x x 

T.oryx_15 adult f Zoo_2 together 34 17-7 h 2 604 x x 

T.oryx_16 adult f Zoo_4 single 25 17-7 h 10 557 x -- 

T.oryx_17 adult f Zoo_3 single 38 18-7 h 2 511 x x 

T.oryx_18 subadult m Zoo_5 together 27 (28) 17-7 h 17 (18) 502 x x 

T.oryx_19 subadult f Zoo_1 together 49 17-7 h 2 636 x x 

T.oryx_20 subadult f Zoo_2 single 34 17-7 h 4 519 x x 

T.oryx_21 subadult f Zoo_2 single 33 17-7 h 4 519 x x 

T.oryx_22 young f Zoo_1 together 49 17-7 h 2 636 x x 

T.oryx_23 young f Zoo_5 together 22 (28) 17-7 h 15 (18) 502 x -- 

T.oryx_24 young f Zoo_2 together 35 17-7 h 2 604 x x 

T.oryx_25 young f Zoo_2 together 34 17-7 h 2 604 x x 
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11.2 Post-processing rules 938 

This section contains the post-processing rules applied to BOVIDS’ prediction for both classification 939 

tasks. With respect to the total classification task, different sets of rules are applied for adult Common 940 

Elands and non-adult Common Elands, because non-adult individuals show shorter phases. 941 



BOVIDS: A deep learning-based software for pose estimation to evaluate nightly behavior and 

its application to Common Elands (Tragelaphus oryx) in zoos 
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The order of the applied rolling average varies between the three sets of rules. A higher order reduces 942 

flickering but is likely to dismiss (very) short events. Therefore, the order of the rolling average was 943 

set to 3 in the total classification task for non-adult individuals, to 4 in the total classification task for 944 

adult individuals and to 5 in the binary classification task. 945 

Regarding dismissing short phases, the quantity “minimum length” is introduced followed by a three-946 

character code. If this code is XYZ, this is meant to be read as follows. Suppose a phase of behavior Y 947 

lies in between a phase of behavior X and behavior Z, then the event will be dismissed (marked as X) 948 

if it consists of less time-intervals than indicated by the minimum length of XYZ. In those codes, 949 

Standing is abbreviated to “A”, LHU to “L” and LHD to “S” in the total classification task. In the 950 

binary classification task, “A” means Standing and “L” means Lying. “O” stands for Out in both tasks. 951 

*X* is meant to be read as any combination YXZ where Y and Z do not equal X. The applied rules of 952 

dismissing short phases can be found in Table 2. 953 

Regarding the special state Out, the post-processing rules are a bit more elaborated. If flickering 954 

between Out and a real behavioral state occurs, this is very likely due to a failure of the object detector 955 

if an animal is occluded or truncated. Therefore, if a sequence of a specific behavioral state X 956 

(Standing, Lying, LHU or LHD) is interrupted by phases of Out, the Out phases are dismissed under 957 

the following conditions. First, each single phase of Out must be shorter than 27 time-intervals (total) 958 

or 135 time-intervals (binary). Second, the total percentage of X in the sequence needs to exceed 20%. 959 

Table 2. Overview about the minimum length a specific behavioral phase needs to have in order not to be dismissed in the 960 
post-processing step. The value is to be read as time-intervals where 1 time-interval consists of 7 seconds. Standing is 961 
abbreviated to “A”, LHU to “L” and LHD to “S” in the total classification task. In the binary classification task, “A” means 962 
Standing and “L” means Lying. “O” stands for Out in both tasks. 963 

Behavior Code total adult total non-adult binary 

SLS 3 2 --- 

SLA 3 3 --- 

ALS 3 3 --- 

ALA 6 6 45 

OLA 6 6 45 

OLS 6 6 --- 

ALO 6 6 45 

SLO 6 6 --- 

SAS 25 6 --- 

SAL 25 6 --- 

LAS 25 6 --- 

LAL 25 6 45 

LAO 25 6 45 

OAL 25 6 45 

OAS 25 6 --- 

SAO 25 6 --- 

ASA 9 9 --- 

ASL 6 6 --- 

LSA 6 6 --- 

LSL 2 2 --- 

LSO 9 9 --- 

OSL 9 9 --- 

ASO 9 9 --- 

OSA 9 9 --- 

*O* 9 9 45 
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