References
Castanheira, N., Dourado, A.C., Kruz, S., Alves, P.I.L.,
Delgado-Rodríguez, A.I., Pais, I., Semedo, J., Scotti-Campos, P.,
Sánchez, C., Borges, N., Carvalho, G., M.T. Barreto, C., Fareleira, P.,
2016. Plant growth-promoting Burkholderia species isolated from annual
ryegrass in Portuguese soils. J. Appl. Microb. 120(3): 724-739. DOI:
https://doi.org/10.1111/jam.13025
Ciccarelli, F.D., Doerks, T., Mering, V., Christopher, Creevey, J.,
Snel, B., Bork, P., 2006. Toward automatic reconstruction of a highly
resolved tree of life. Sci. 311(5765): 1283-1287. DOI: DOI:
10.1126/science.1123061
Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt,
E., 2006. The Prokaryotes || introduction to the
Proteobacteria. Prokaryotes. 5:3-37. DOI: 10.1007/0-387-30745-1_1
Ferreira, D.S., Pallone, J.A.L., Poppi, R.J., 2015. Direct analysis of
the main chemical constituents in Chenopodium quinoa grain using Fourier
transform near-infrared spectroscopy. Food Control 48: 91-95. DOI:
10.1016/j.foodcont.2014.04.016
Fiehn, O., Kopka, J., Dörmannet, P., Altmann, T., Trethewey, R.N.,
Willmitzer, L., 2000. Metabolite profiling for plant functional
genomics. Nat. Biotechnol. 18(11): 1157-61. DOI: 10.1038/81137.
Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil
bacterial communities. PNAS 103(3): 626-631. DOI:
https://doi.org/10.1073/pnas.0507535103
Fontecave, M., Atta, M., Mulliez, E., 2004. S-adenosylmethionine:
nothing goes to waste. Trends Biochem. Sci.. 29(5): 243-249. DOI:
https://doi.org/10.1016/j.tibs.2004.03.007
Fujimoto, T., Tomitaka, Y., Abe, H., Tsuda, S., Futai, K., Mizukubo, T.,
2011. Expression profile of jasmonic acid-induced genes and the induced
resistance against the root-knot nematode (Meloidogyne incognita) in
tomato plants (Solanum lycopersicum) after foliar treatment with methyl
jasmonate. J. Plant Physiol. 168(10): 1084-1097. DOI:
https://doi.org/10.1016/j.jplph.2010.12.002
Goehring, N., Verburg, P., Saito, L., Jeong, J., Meki, N., 2019.
Improving modeling of quinoa growth under saline conditions using the
enhanced agricultural policy environmental extender model.
Agronomy-Basel 9(10): 592. DOI: https://doi.org/10.3390/agronomy9100592
Gong, B., Wang, X.F., Wei, M., Yang, F.J., Li, Y., Shi, Q.H., 2016.
Overexpression of S-adenosylmethionine synthetase 1 enhances tomato
callus tolerance to alkali stress through polyamine and hydrogen
peroxide cross-linked networks. Plant Cell Tiss. Org. 124:377-391. DOI:
10.1007/s11240-015-0901-5
Hall, R., 2011. Plant metabolomics in a nutshell: potential and future
challenges. J. Biology of Plant Metabolomics. pp. 1-24
Hartmann, A., Schmid, M., Tuinen, D.V., Berg, G., Hartmann, A., Schmid,
M., Tuinen, D.V., Berg, G., 2008. Plant-driven selection of microbes.
Plant and Soil 321:235-257. DOI: 10.1007/s11104-008-9814-y
Haspel, J.A., Chettimada, S., Shaik, R.S., Chu, J.H., Raby, B.A.,
Cernadas, M., Carey, V., Process, V., Hunninghake, G.M., Ifedigbo, E.,
A.Lederer, J., Englert, J., Pelton, A., Coronata, A., E.Fredenburgh, L.,
M.K.Choi, A., 2014. Circadian rhythm reprogramming during lung
inflammation. Nat. Commun. 5(1):4753. DOI:10.1038/ncomms5753
Heischmann, S., Quinn, K., Cruickshank-Quinn, C., Liang, L.P.,
Reisdorph, R., Reisdorph, N., Patel, C., 2016. Exploratory Metabolomics
Profiling in the Kainic Acid Rat Model Reveals Depletion of
25-Hydroxyvitamin D3 during Epileptogenesis. Sci. Rep-UK. 6:31424.
DOI:10.1038/srep31424
Herbert, S.J., 2009. Temporal and spatial dynamics of bacterial
community in the rhizosphere of soybean genotypes grown in a black soil.
Pedosphere. 19(06): 808-816. DOI:10.1016/S1002-0160(09)60176-4
Hinojosa, L., Leguizamo, A., Carpio, C., Muoz, D., Murphy, K., 2021.
Quinoa in Ecuador: Recent Advances under Global Expansion. Plants 10(2):
298. DOI: https://doi.org/10.3390/plants10020298
Iglesias-Puig, E., Monedero, V., Haros, M., 2015. Bread with whole
quinoa flour and bifidobacterial phytases increases dietary mineral
intake and bioavailability. LWT- Food Sci. Tech. 60(1): 71-77. DOI:
10.1016/j.lwt.2014.09.045
Jacobsen, S.E., Mujica, A., Jensen, C.R., 2003. The resistance of quinoa
(Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int.
19(1-2): 99-109. DOI: 10.1081/FRI-120018872
Kozioł, M.J., 1992. Chemical composition and nutritional evaluation of
quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 5(1): 35-68.
DOI: 10.1016/0889-1575(92)90006-6
Lambers, H., Mougel, C., Jaillard, B., Hinsinger, P., 2009.
Plant-microbe-soil interactions in the rhizosphere: an evolutionary
perspective. Plant Soil. 321:83-115. DOI 10.1007/s11104-009-0042-x
Lan P., Li, W., Wen, T.N., Shiau, J.Y., Wu, Y.C., Lin, W., Schmidt, W.,
2011. ITRAQ protein profile analysis of arabidopsis roots reveals new
aspects critical for iron homeostasis. J. Plant Physiol. 155(2):
821-834. DOI: https://doi.org/10.1104/pp.110.169508
Li, N., Shao, T.Y., Zhou Y.J., Cao Y.C., Hu H.Y., Sun Q.K., Long X.H.,
Yue Y., Gao X.M., Rengel Z., 2020. Effects of planting Melia azedarach
L. on soil properties and microbial community in saline-alkali soil.
Land Degrad. Dev. 32(10): 2951-2961.
DOI:https://doi.org/10.1002/ldr.3936
Liphschitz, N., Waisel, Y., 1982. Adaptation of plants to saline
environments: salt excretion and glandular structure. A, In: Sen D N,
Rajpurohit K S. Contributions to the Ecology of Halophytes. Springer
Netherlands. pp.197-214.
Liu, X., Li, X.T., Jing, X., Wang, S.S., Gong, B., Wei, M., Shi, Q.H.,
2018. Effect of S-adenosylmethionine on Growth and Physiological
Metabolism of Cucumber Cutting Seedlings. Acta Horticulturae Sinica.
45(08): 1513-1522. (Chinese)DOI: 10.16420/j.issn.0513-353x.2018-0022
Liu, Y., Kong, Z., Liu, J., Zhang, P., Qin, P., 2020. Non-targeted
metabolomics of quinoa seed filling period based on liquid
chromatography-mass spectrometry. Food Res. Inter. 137: 109743. DOI:
10.1016/j.foodres.2020.109743
Llanesa, A., Andradea, A., Alemano, S., Luna, V., 2018. Metabolomic
approach to understand plant adaptations to water and salt stress. Plant
Metabolites and Regulation Under Environmental Stress. pp. 133-144. DOI:
https://doi.org/10.1016/B978-0-12-812689-9.00006-6
Lueders, T., Kindler, R., Miltner, A., Friedrich, M.W., Kaestner, M.,
2006. Identification of bacterial micropredators distinctively active in
a soil microbial food web. Appl. Environ. Microb. 72(8): 5342. DOI:
https://doi.org/10.1128/AEM.00400-06
Marschner, P., Timonen, S., 2005. Interactions between plant species and
mycorrhizal colonization on the bacterial community composition in the
rhizosphere. App. Soil Eco. 28(1): 23-36. DOI:
10.1016/j.apsoil.2004.06.007
MAYNE, M.B., COLEMAN, J.R., Blumwald, E., 1996. Differential expression
during drought conditioning of a root-specific S-adenosylmethionine
synthetase from jack pine (Pinus banksiana Lamb.) seedlings. Plant Cell
Environ. 19(8): 958-966. DOI:
https://doi.org/10.1111/j.1365-3040.1996.tb00460.x
Ogungbenle, H. N., 2003. Nutritional evaluation and functional
properties of quinoa (Chenopodium quinoa) flour. Int. J. Food Sci. Nutr.
54(2): 153-158.
Owiti, J., Grossmann, J., Gehrig, P., Dessimoz, C., Laloi, C., Maria
B.H., Gruissem, W., Vanderschuren, H., 2011. ITRAQ-based analysis of
changes in the cassava root proteome reveals pathways associated with
post-harvest physiological deterioration. Plant J. 67(1): 145-156. DOI:
https://doi.org/10.1111/j.1365-313X.2011.04582.x
Pan, T.T., Li, W.H., Chen, Y.P., 2011. The Influence of salt stress on
the accumulation of Na+ and K+ in Tamarix Hispida. Procedia Environ.
Sci. 10(Part B):1445-1451. DOI:10.1016/j.proenv.2011.09.231
Razzaghi, F., Ahmadi, S.H., Jacobsen, S.E., Jensen, C.R., Andersen,
M.N., 2012. Effects of salinity and soil–drying on radiation use
efficiency, water productivity and yield of quinoa (Chenopodium quinoa
Willd.). J. Agron. Crop Sci. 198(3): 173-184. DOI:
10.1111/j.1439-037X.2011.00496.x
Repo-Carrasco, R., Espinoza, C., Jacobsen, S.E., 2003. Nutritional value
and use of the Andean crops quinoa (Chenopodium quinoa) and kaiwa
(Chenopodium pallidicaule). Food Rev. Int. 19(1-2): 179-189. DOI:
10.1081/FRI-120018884
Rodrigue,s J.L.M., Pellizari, V.H., Mueller, R., Baek, K., Jesus,
E.D.C., Paula, F.S., Mirza, B., Hamaoui, G.S., Tsai, S.M., Feigl, B.,
2013. Conversion of the Amazon rainforest to agriculture results in
biotic homogenization of soil bacterial communities. P. Natl. Acad. Sci.
USA 110(3): 988-993. DOI: 10.1073/pnas.1220608110
Segata, N., Izard, J., Waldron, L., Gevers, D., 2011. Metagenomic
biomarker discovery and explanation. Genome Biol. 12(6): R60. DOI:
10.1186/gb-2011-12-6-r60
Shao, T.Y., Zhao, J.J., Zhu, T.S., Chen, M.X, Wu, Y.W., Long, X.H., Gao,
X.M., 2018. Relationship between rhizosphere soil properties and
blossom-end rot of tomatoes in coastal saline-alkali land. J. Appl. Soil
Ecol. 127: 96- 101.
Song, J., Yan, Y., Wang, X., Li, X., Li, W., 2020. Characterization of
fatty acids, amino acids and organic acids in three colored quinoas
based on untargeted and targeted metabolomics. LWT- Food Sci. Tech.
140(1): 110690. DOI: 10.1016/j.lwt.2020.110690
Sosa-Zuniga, V., Brito, V., Fuentes, F., Steinfort, U., 2017.
Phenological growth stages of quinoa (Chenopodium quinoa) based on the
BBCH scale. Ann. Appl. Biol. 171(1): 117-124. DOI:
https://doi.org/10.1111/aab.12358
Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q.,
Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., 2009.
Metabolomic profiles delineate potential role for sarcosine in prostate
cancer progression. Nat. 457(7231):910-914. DOI:10.1038/nature07762
Vandamme, P., Henry, D., Coenye, T., Nzula S., Vancanneyt M., J. LiPuma
J., P.Speert D., R.W. Govan, J., Mahenthiralingam E., 2002. Burkholderia
anthina sp. nov. and Burkholderia pyrrocinia, two additional
Burkholderia cepacia complex bacteria, may confound results of new
molecular diagnostic tools. FEMS immunology and Medical Microbiology.
33(2): 143-149. DOI: https://doi.org/10.1111/j.1574-695X.2002.tb00584.x
Vishnivetskaya, T.A., Mosher, J.J., Palumbo, A.V., Yang, Z.K., Poda,r
M., Brown, S.D., Brooks, S.C., Gu, B., Southworth, G.R., Drake, M.M.,
2011. Mercury and other heavy metals influence bacterial community
structure in contaminated tennessee streams. Appl. Environ. Microb.
77(1): 302-311. DOI: 10.1128/AEM.01715-10
Wang, J., Sun, B., Cao, R.T., 2019. Bioactive Factors and Processing
Technology for Cereal Foods. pp. 207-216.
DOI:10.1007/978-981-13-6167-8_15
Want, E.J., Masson, P., Michopoulos, F., Wilson, I.D., Theodoridis, G.,
Plumb, R.S., Shockcor, J., Loftus, N., Holmes, E., Nicholson, J.K.,
2013. Global metabolic profiling of animal and human tissues via
UPLC-MS. Nat. Protoc. 8(1): 17-32. DOI: 10.1038/nprot.2012.135
Wright, K.H., Pike, O.A., Fairbanks, D.J., Huber, C.S., 2002.
Composition of atriplex hortensis, sweet and Bitter Chenopodium quinoa
Seeds. Food Sci. 67(4): 1383-1385. DOI:
10.1111/j.1365-2621.2002.tb10294.x
Zelles, L., 1999. Fatty acid patterns of phospholipids and
lipopolysaccharides in the characterisation of microbial communities in
soil: A review. Biol. fertil. Soils. 29(2): 111-129.
DOI:10.1007/s003740050533
Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y.,
Kanagawa, T., Kurane R., 2000. Burkholderia kururiensis sp. nov., a
trichloroethylene (TCE)-degrading bacterium isolated from an aquifer
polluted with TCE. Inter. J. Syst. Evol. Microb. 50(2): 743-749. DOI:
https://doi.org/10.1099/00207713-50-2-743
Zhang, Z., Tang, C., Rengel, Z., 2005. Salt dynamics in rhizosphere of
Puccinellia ciliata Bor. in a loamy soil. Pedosphere 15 (6):784-791
Zhao, X.L., Cheng, H.T., Lu, G.H., Jia, Q.Y., 2006. Advances in soil
microbial biomass. Meteor Environ. 22: 68–72.
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.E., Schwember,
A.R., 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and
perspectives. Mol. Breeding 34(1): 13-30.
Tables and figures captions
Table 1 Quinoa growth indicators as influenced by different
planting densities
low density (row spacing 40 × 25 cm); H-high density (row spacing 20 ×
7.5 cm). The data are means ± standard errors (n=3). Different
lowercase letters in a row denote significant differences.
Table 2 Comparison of the estimated operational taxonomic unit
(OTU), Chao1 richness and Shannon diversity indices of the rhizosphere
and non-rhizosphere soils in different quinoa planting density
treatments.
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density
treatment, rhizosphere soil; HDN= High-density treatment,
non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Means (n = 3). Different letters in a column indicate significant (p
≤0.05) differences among the four treatments.
Table 3 KEGG enrichment results in the low-density vs
high-density treatments
Fig. 1 Soil salinity (a) and organic matter (b) in the
rhizosphere and non-rhizosphere soil as influenced by quinoa planting
density.
Different lower-case letters represent significant differences (p≤
0.05). Means ± SE (n=3). LDN= Low-density treatment, non-rhizosphere
soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density
treatment, non-rhizosphere soil; HDR= High-density treatment,
rhizosphere soil.
Fig. 2 Correlation between growth indicators of quinoa and the
rhizosphere soil organic matter and salinity.
The color gradient denotes Pearson’s correlation coefficients.
Fig. 3 Venn diagram of the bacterial OTUs
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density
treatment, rhizosphere soil; HDN= High-density treatment,
non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 4 Comparison of relative abundance of bacterial phyla
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density
treatment, rhizosphere soil; HDN= High-density treatment,
non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 5 LDA Effect Size (LEfSe)
The LDA scores distribution histograms (a) showing taxa with
significantly different abundance. The differences are mapped to
cladograms (taxonomic trees) (b). LDN= Low-density treatment,
non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDR=
High-density treatment, rhizosphere soil. In the cladograms, the taxa
associated with small circles and the shading in the color of a specific
soil played an important part in the structure of the microbial
community in that soil (significantly different from other soils). The
diameter of the small circle represents relative abundance of the taxa.
The taxa without a significant difference are colored yellow.
Fig. 6 Redundancy analysis of soil chemical properties and
relative abundance of bacterial taxa. The blue arrows represent
environmental factors (soil properties), and the red arrows represent
the top ten bacterial phyla in terms of relative abundance.
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density
treatment, rhizosphere soil; HDN= High-density treatment,
non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 7 PLS-DA score plot (a), Volcano map of differential
metabolites (b) and KEGG Enrichment scatterplot (c). L = low-density
treatment, H = high-density treatment.
Table 1 Quinoa growth indicators as influenced by different
planting densities