REFERENCES
- Abás, S., Erdozain, A.M., Keller, B., Rodríguez-Arévalo, S., Callado,
L.F., García-Sevilla, J.A., et al. (2017). Neuroprotective Effects of
a Structurally New Family of High Affinity Imidazoline I2 Receptor Ligands. ACS Chem. Neurosci. 8 :
737–742.
- Abás, S., Rodríguez-Arévalo, S., Bagán, A., Griñán-Ferré, C.,
Vasilopoulou, F., Brocos-Mosquera, I., et al. (2020). Bicyclic
α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands
for Alzheimer’s Disease. J. Med. Chem. 63 : 3610–3633.
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M.,
et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging21 : 383–421.
- Alemany, R., Olmos, G., Escribá, P. V, Menargues, A., Obach, R., and
García-Sevilla, J.A. (1995). LSL 60101, a selective ligand for
imidazoline I2 receptors, on glial fibrillary acidic protein
concentration. Eur. J. Pharmacol. 280 : 205–210.
- Archer, J. (1973). Tests for emotionality in rats and mice: A review.
Anim. Behav. 21 : 205–235.
- Blanchard, V., Moussaoui, S., Czech, C., Touchet, N., Bonici, B.,
Planche, M., et al. (2003). Time sequence of maturation of dystrophic
neurites associated with Abeta deposits in APP/PS1 transgenic mice.
Exp. Neurol. 184 : 247–263.
- Boada-Rovira, M., Brodaty, H., Cras, P., Baloyannis, S., Emre, M.,
Zhang, R., et al. (2004). Efficacy and safety of donepezil in patients
with Alzheimer’s disease. Drugs Aging 21 : 43–53.
- Boronat, M.A., Olmos, G., and García-Sevilla, J.A. (1998). Attenuation
of tolerance to opioid-induced antinociception and protection against
morphine-induced decrease of neurofilament proteins by idazoxan and
other I2-imidazoline ligands. Br. J. Pharmacol. 125 : 175–185.
- Bousquet, P., Hudson, A., García-Sevilla, J.A., and Li, J.X. (2020).
Imidazoline receptor system: The past, the present, and the future.
Pharmacol. Rev. 72 : 50–79.
- Casanovas, A., Olmos, G., Ribera, J., Boronat, M.A., Esquerda, J.E.,
and García-Sevilla, J.A. (2000). Induction of reactive astrocytosis
and prevention of motoneuron cell death by the I(2)-imidazoline
receptor ligand LSL 60101. Br. J. Pharmacol. 130 : 1767–1776.
- Companys-Alemany, J., Turcu, A.L., Bellver-Sanchis, A., Loza, M.I.,
Brea, J.M., Canudas, A.M., et al. (2020). A novel NMDA receptor
antagonist protects against cognitive decline presented by senescent
mice. Pharmaceutics 12 : 1–17.
- Cummings, J., Lee, G., Ritter, A., Sabbagh, M., and Zhong, K. (2020).
Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s
Dement. Transl. Res. Clin. Interv. 6 : 1–29.
- Curtis, M.J., Alexander, S., Cirino, G., Docherty, J.R., George, C.H.,
Giembycz, M.A., et al. (2018). Experimental design and analysis and
their reporting II: updated and simplified guidance for authors and
peer reviewers. Br. J. Pharmacol. 175 : 987–993.
- DeTure, M.A., and Dickson, D.W. (2019). The neuropathological
diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14 : 32.
- Dickson, D.W., and Rogers, J. (1992). Neuroimmunology of Alzheimer’s
disease: A conference report. Neurobiol. Aging 13 : 793–798.
- Dong, H., Yuede, C.M., Coughlan, C.A., Murphy, K.M., and Csernansky,
J.G. (2009). Effects of donepezil on amyloid-beta and synapse density
in the Tg2576 mouse model of Alzheimer’s disease. Brain Res.1303 : 169–178.
- Ennaceur, A., and Delacour, J. (1988). A new one-trial test for
neurobiological studies of memory in rats. 1: Behavioral data. Behav.
Brain Res. 31 : 47–59.
- Finn, D.P., Martí, O., Harbuz, M.S., Vallès, A., Belda, X., Márquez,
C., et al. (2003). Behavioral, neuroendocrine and neurochemical
effects of the imidazoline I2 receptor selective ligand BU224 in naive
rats and rats exposed to the stress of the forced swim test.
Psychopharmacology (Berl). 167 : 195–202.
- Fitzgerald, P.J., Hale, P.J., Ghimire, A., and Watson, B.O. (2020).
The cholinesterase inhibitor donepezil has antidepressant-like
properties in the mouse forced swim test. Transl. Psychiatry10 : 255.
- Frölich, L., Atri, A., Ballard, C., Tariot, P.N., Molinuevo, J.L.,
Boneva, N., et al. (2019). Open-Label, Multicenter, Phase III
Extension Study of Idalopirdine as Adjunctive to Donepezil for the
Treatment of Mild-Moderate Alzheimer’s Disease. J. Alzheimers. Dis.67 : 303–313.
- Garau, C., Miralles, A., Garcia-Sevilla, J. a, and García-Sevilla, J.
a (2013). Chronic treatment with selective I2-imidazoline receptor
ligands decreases the content of pro-apoptotic markers in rat brain.
J. Psychopharmacol. 27 : 123–34.
- Garcia-Sevilla, J., Escriba, P., Walzer, C., Bouras, C., and Guimon,
J. (1998). Imidazoline receptor proteins in brains of patients with
Alzheimer’s disease. Neurosci. Lett. 247 : 95–98.
- Gatt, J.M., Nemeroff, C.B., Dobson-Stone, C., Paul, R.H., Bryant,
R.A., Schofield, P.R., et al. (2009). Interactions between BDNF
Val66Met polymorphism and early life stress predict brain and arousal
pathways to syndromal depression and anxiety. Mol. Psychiatry14 : 681–695.
- Giacobini, E. (2000). Cholinesterase Inhibitors Stabilize Alzheimer
Disease. Neurochem. Res. 25 : 1185–1190.
- Griñán-Ferré, C., Izquierdo, V., Otero, E., Puigoriol-Illamola, D.,
Corpas, R., Sanfeliu, C., et al. (2018). Environmental Enrichment
Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations
Presented in 5xFAD Mouse Model. Front. Cell. Neurosci. 12 : 224.
- Griñan-Ferré, C., Palomera-Ávalos, V., Puigoriol-Illamola, D., Camins,
A., Porquet, D., Plá, V., et al. (2016). Behaviour and cognitive
changes correlated with hippocampal neuroinflammaging and neuronal
markers in female SAMP8, a model of accelerated senescence. Exp.
Gerontol. 80 : 57–69.
- Griñán-Ferré, C., Vasilopoulou, F., Abás, S., Rodríguez-Arévalo, S.,
Bagán, A., Sureda, F.X., et al. (2019). Behavioral and Cognitive
Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female
SAMP8 Mice. Neurotherapeutics 16 : 416–431.
- Grossberg, G.T. (2003). Cholinesterase inhibitors for the treatment of
Alzheimer’s disease:: getting on and staying on. Curr. Ther. Res.
Clin. Exp. 64 : 216–235.
- Hernández-Hernández, E., García-Sevilla, J.A., and García-Fuster, M.J.
(2020). Exploring the antidepressant-like potential of the selective
I2-imidazoline receptor ligand LSL 60101 in adult male rats.
Pharmacol. Reports.
- Hwang, J., Hwang, H., Lee, H.-W., and Suk, K. (2010). Microglia
signaling as a target of donepezil. Neuropharmacology 58 :
1122–1129.
- Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T.A., and Wirths, O.
(2012). Motor deficits, neuron loss, and reduced anxiety coinciding
with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD
mouse model of Alzheimer’s disease. Neurobiol. Aging 33 :
196.e29–40.
- Jiangbo, N., and Liyun, Z. (2018). Effect of donepezil hydrochloride
& aerobic exercise training on learning and memory and its mechanism
of action in an Alzheimer’s disease rat model. Pak. J. Pharm. Sci.31 : 2897–2901.
- Ju, Y., and Tam, K.Y. (2020). 9R, the cholinesterase and amyloid beta
aggregation dual inhibitor, as a multifunctional agent to improve
cognitive deficit and neuropathology in the triple-transgenic
Alzheimer’s disease mouse model. Neuropharmacology 181 : 108354.
- Kim, H.G., Moon, M., Choi, J.G., Park, G., Kim, A.-J., Hur, J., et al.
(2014). Donepezil inhibits the amyloid-beta oligomer-induced
microglial activation in vitro and in vivo. Neurotoxicology 40 :
23–32.
- Kotagale, N., Dixit, M., Garmelwar, H., Bhondekar, S., Umekar, M., and
Taksande, B. (2020). Agmatine reverses memory deficits induced by
Aβ1–42 peptide in mice: A key role of imidazoline receptors.
Pharmacol. Biochem. Behav. 196 :.
- Krishna, K.V., Saha, R.N., and Dubey, S.K. (2020). Biophysical,
Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil
Nanomedicine in a Aβ 1–42 Induced Alzheimer’s Disease Rat Model . ACS
Chem. Neurosci.
- Landel, V., Baranger, K., Virard, I., Loriod, B., Khrestchatisky, M.,
Rivera, S., et al. (2014). Temporal gene profiling of the 5XFAD
transgenic mouse model highlights the importance of microglial
activation in Alzheimer’s disease. Mol. Neurodegener. 9 : 33.
- Lee, C.Y.D., Daggett, A., Gu, X., Jiang, L.L., Langfelder, P., Li, X.,
et al. (2018). Elevated TREM2 Gene Dosage Reprograms Microglia
Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s
Disease Models. Neuron 97 : 1032-1048.e5.
- Lilley, E., Stanford, S.C., Kendall, D.E., Alexander, S.P.H., Cirino,
G., Docherty, J.R., et al. (2020). ARRIVE 2.0 and the British Journal
of Pharmacology: Updated guidance for 2020. Br. J. Pharmacol.177 : 3611–3616.
- Mehta, M., Adem, A., and Sabbagh, M. (2012). New acetylcholinesterase
inhibitors for Alzheimer’s disease. Int. J. Alzheimers. Dis.2012 : 728983.
- Meraz Rios, M.A., Toral-Rios, D., Franco-Bocanegra, D.,
Villeda-Hernández, J., And Campos-Peña, V. (2013). Inflammatory
process in Alzheimer’s Disease . Front. Integr. Neurosci. 7 :
59.
- Mirzaei, N., Mota, B.C., Birch, A.M., Davis, N., Romero‐Molina, C.,
Katsouri, L., et al. (2020). Imidazoline ligand BU224 reverses
cognitive deficits, reduces microgliosis and enhances synaptic
connectivity in a mouse model of Alzheimer’s disease. Br. J.
Pharmacol. 10.1111/bph.15312
- Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara,
R., and Dickson, D.W. (2011). Neuropathologically defined subtypes of
Alzheimer’s disease with distinct clinical characteristics: a
retrospective study. Lancet. Neurol. 10 : 785–796.
- Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J. et
al. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration,
and neuron loss in transgenic mice with five familial Alzheimer’s
disease mutations: potential factors in amyloid plaque formation. J
Neurosci. 4;26(40):10129-40.
- Olmos, G., Alemany, R., Escriba, P.V., and García‐Sevilla, J.A.
(1994). The effects of chronic imidazoline drug treatment on glial
fibrillary acidic protein concentrations in rat brain. Br. J.
Pharmacol. 111 : 997–1002.
- Ongnok, B., Khuanjing, T., Chunchai, T., Kerdphoo, S., Jaiwongkam, T.,
Chattipakorn, N., et al. (2021). Donepezil provides neuroprotective
effects against brain injury and Alzheimer’s pathology under
conditions of cardiac ischemia/reperfusion injury. Biochim. Biophys.
Acta. Mol. Basis Dis. 1867 : 165975.
- Puzzo, D., Gulisano, W., Palmeri, A., and Arancio, O. (2015). Rodent
models for Alzheimer’s disease drug discovery. Expert Opin. Drug
Discov. 10 : 703–711.
- Regunathan, S., Feinstein, D.L., and Reis, D.J. (1993). Expression of
non-adrenergic imidazoline sites in rat cerebral cortical astrocytes.
J. Neurosci. Res. 34 : 681–688.
- Riedel, G., Kang, S.H., Choi, D.Y., and Platt, B. (2009).
Scopolamine-induced deficits in social memory in mice: Reversal by
donepezil. Behav. Brain Res. 204 : 217–225.
- Rosini, M., Simoni, E., Minarini, A., and Melchiorre, C. (2014).
Multi-target design strategies in the context of Alzheimer’s disease:
acetylcholinesterase inhibition and NMDA receptor antagonism as the
driving forces. Neurochem. Res. 39 : 1914–1923.
- Ruiz, J., Martín, I., Callado, L.F., Meana, J.J., Barturen, F., and
García-Sevilla, J.A. (1993). Non-adrenoceptor [3H]idazoxan binding
sites (I2-imidazoline sites) are increased in postmortem brain from
patients with Alzheimer’s disease. Neurosci. Lett. 160 :
109–112.
- Sánchez-Blázquez, P., Boronat, M.A., Olmos, G., García-Sevilla, J.A.,
and Garzón, J. (2000). Activation of I(2)-imidazoline receptors
enhances supraspinal morphine analgesia in mice: a model to detect
agonist and antagonist activities at these receptors. Br. J.
Pharmacol. 130 : 146–152.
- Saul, A., Sprenger, F., Bayer, T.A., and Wirths, O. (2013).
Accelerated tau pathology with synaptic and neuronal loss in a novel
triple transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging34 : 2564–2573.
- Schmitt, B., Bernhardt, T., Moeller, H.-J., Heuser, I., and Frölich,
L. (2004). Combination therapy in Alzheimer’s disease: a review of
current evidence. CNS Drugs 18 : 827–844.
- Selkoe, D.J. (2008). Soluble oligomers of the amyloid beta-protein
impair synaptic plasticity and behavior. Behav. Brain Res. 192 :
106–113.
- Serrano-Pozo, A., Frosch, M.P., Masliah, E., and Hyman, B.T. (2011).
Neuropathological alterations in Alzheimer disease. Cold Spring Harb.
Perspect. Med. 1 : a006189.
- Sinforiani, E., Banchieri, L.M., Zucchella, C., Bernasconi, L., and
Nappi, G. (2003). Cholinesterase inhibitors in Alzheimer’s disease:
efficacy in a non-selected population. Funct. Neurol. 18 :
233–237.
- Takada-Takatori, Y., Nakagawa, S., Kimata, R., Nao, Y., Mizukawa, Y.,
Urushidani, T., et al. (2019). Donepezil modulates amyloid precursor
protein endocytosis and reduction by up-regulation of SNX33 expression
in primary cortical neurons. Sci. Rep. 9 : 11922.
- Tonello, R., Villarinho, J.G., Silva Sant’Anna, G. da, Tamiozzo, L.,
Machado, P., Trevisan, G., et al. (2012). The potential
antidepressant-like effect of imidazoline I 2 ligand 2-BFI in mice.
Prog. Neuro-Psychopharmacology Biol. Psychiatry 37 : 15–21.
- Vasilopoulou, F., Bagan, A., Rodriguez-Arevalo, S., Escolano, C.,
Griñán-Ferré, C., and Pallàs, M. (2020a). Amelioration of BPSD-like
phenotype and cognitive decline in SAMP8 mice model accompanied by
molecular changes after treatment with I2-imidazoline receptor ligand
MCR5. Pharmaceutics 12 :.
- Vasilopoulou, F., Griñán-Ferré, C., Rodríguez-Arévalo, S., Bagán, A.,
Abás, S., Escolano, C., et al. (2020b). I2 imidazoline receptor
modulation protects aged SAMP8 mice against cognitive decline by
suppressing the calcineurin pathway. GeroScience 27–31.
- Walf, A.A., and Frye, C.A. (2007). The use of the elevated plus maze
as an assay of anxiety-related behavior in rodents. Nat. Protoc.2 : 322–328.
- Walsh, D.M., and Selkoe, D.J. (2004). Oligomers on the brain: the
emerging role of soluble protein aggregates in neurodegeneration.
Protein Pept. Lett. 11 : 213–228.
- Yang, H., Mu, W., Wei, D., Zhang, Y., Duan, Y., Gao, J. xiao, et al.
(2020). A Novel Targeted and High-Efficiency Nanosystem for
Combinational Therapy for Alzheimer’s Disease. Adv. Sci. 7 :
1–13.
- Yoshiyama, Y., Kojima, A., Ishikawa, C., and Arai, K. (2010).
Anti-inflammatory action of donepezil ameliorates tau pathology,
synaptic loss, and neurodegeneration in a tauopathy mouse model. J.
Alzheimers. Dis. 22 : 295–306.
- Zhang, F., Gannon, M., Chen, Y., Yan, S., Zhang, S., Feng, W., et al.
(2020). β-amyloid redirects norepinephrine signaling to activate the
pathogenic GSK3β/tau cascade. Sci. Transl. Med. 12 : eaay6931.
- Zhang, F., and Jiang, L. (2015). Neuroinflammation in Alzheimer’s
disease. Neuropsychiatr. Dis. Treat. 11 : 243–256.
- Zhao, Y., Wu, X., Li, X., Jiang, L.-L., Gui, X., Liu, Y., et al.
(2018). TREM2 Is a Receptor for β-Amyloid that Mediates Microglial
Function. Neuron 97 : 1023-1031.e7.